hrvatski jezikClear Cookie - decide language by browser settings

Simulating the Effects of Temperature and Food Availability on True Soles (Solea spp.) Early-Life History Traits: A Tool for Understanding Fish Recruitment in Future Climate Change Scenarios

Sardi, Adriana E.; Moreira, José M.; Omingo, Lisa; Cousin, Xavier; Bégout, Marie-Laure; Manchado, Manuel; Marn, Nina (2023) Simulating the Effects of Temperature and Food Availability on True Soles (Solea spp.) Early-Life History Traits: A Tool for Understanding Fish Recruitment in Future Climate Change Scenarios. Fishes, 8 (2). ISSN 2410-3888

[img]
Preview
PDF - Published Version - article
Available under License Creative Commons Attribution.

Download (6MB) | Preview

Abstract

Research on recruitment variability has gained momentum in the last years, undoubtedly due to the many unknowns related to climate change impacts. Knowledge about recruitment—the process of small, young fish transitioning to an older, larger life stage—timing and success is especially important for commercial fish species, as it allows predicting the availability of fish and adapting fishing practices for its sustainable exploitation. Predicting tools for determining the combined effect of temperature rise and food quality and quantity reduction (two expected outcomes of climate change) on early-life history traits of fish larvae are valuable for anticipating and adjusting fishing pressure and policy. Here we use a previously published and validated dynamic energy budget (DEB) model for the common sole (Solea solea) and adapt and use the same DEB model for the Senegalese sole (S. senegalensis) to predict the effects of temperature and food availability on Solea spp. early life-history traits. We create seven simulation scenarios, recreating RCP 4.5 and 8.5 Intergovernmental Panel on Climate Change (IPCC) scenarios and including a reduction in food availability. Our results show that temperature and food availability both affect the age at metamorphosis, which is advanced in all scenarios that include a temperature rise and delayed when food is limited. Age at puberty was also affected by the temperature increase but portrayed a more complex response that is dependent on the spawning (batch) period. We discuss the implications of our results in a climate change context.

Item Type: Article
Uncontrolled Keywords: climate change ; dynamic energy budget theory ; early-life stages ; flatfish ; food availability ; recruitment
Subjects: NATURAL SCIENCES > Interdisciplinary Natural Sciences
Divisions: Division for Marine and Enviromental Research
Projects:
Project titleProject leaderProject codeProject type
Prilagodba uzgoja bijele ribe klimatskim promjenamaKlanjšček, TinIP-2018-01-3150HRZZ
Depositing User: Nina Marn
Date Deposited: 16 Jun 2023 07:58
URI: http://fulir.irb.hr/id/eprint/8019
DOI: 10.3390/fishes8020068

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

Contrast
Increase Font
Decrease Font
Dyslexic Font
Accessibility