hrvatski jezikClear Cookie - decide language by browser settings

More on the Weak Gravity Conjecture via Convexity of Charged Operators

Antipin, Oleg; Bersini, Jahmall; Sannino, Francesco; Wang, Zhi-Wei; Zhang, Chen (2021) More on the Weak Gravity Conjecture via Convexity of Charged Operators. Journal of High Energy Physics .

[img]
Preview
PDF - Submitted Version - article
Download (2MB) | Preview
[img]
Preview
PDF - Published Version - article
Download (4MB) | Preview

Abstract

The Weak Gravity Conjecture has recently been re-formulated in terms of a particle with non-negative self-binding energy. Because of the dual conformal field theory (CFT) formulation in the anti-de Sitter space the conformal dimension $\Delta (Q)$ of the lowest-dimension operator with charge Q under some global U(1) symmetry must be a convex function of Q. This property has been conjectured to hold for any (unitary) conformal field theory and generalized to larger global symmetry groups. Here we refine and further test the convex charge conjecture via semiclassical computations for fixed charge sectors of different theories in different dimensions. We analyze the convexity properties of the leading and next-to-leading order terms stemming from the semiclassical computation, de facto, extending previous tests beyond the leading perturbative contributions and to arbitrary charges. In particular, the leading contribution is sufficient to test convexity in the semiclassical computations. We also consider intriguing cases in which the models feature a transition from real to complex conformal dimensions either as a function of the charge or number of matter fields. As a relevant example of the first kind, we investigate the $O(N)$ model in $4+\epsilon$ dimensions. As an example of the second type we consider the $U(N)\times U(M)$ model in $4-\epsilon$ dimensions. Both models display a rich dynamics where, by changing the number of matter fields and/or charge, one can achieve dramatically different physical regimes. We discover that whenever a complex conformal dimension appears, the real part satisfies the convexity property.

Item Type: Article
Additional Information: Imported from arXiv
Uncontrolled Keywords: Conformal and W Symmetry; Conformal Field Theory; Global Symmetries
Subjects: NATURAL SCIENCES
NATURAL SCIENCES > Physics
NATURAL SCIENCES > Physics > Physics of Elementary Particles and Fields
Divisions: Theoretical Physics Division
Depositing User: Oleg Antipin
Date Deposited: 07 Dec 2022 14:21
URI: http://fulir.irb.hr/id/eprint/7660
DOI: 10.1007/JHEP12(2021)204

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

Contrast
Increase Font
Decrease Font
Dyslexic Font
Accessibility