hrvatski jezikClear Cookie - decide language by browser settings

Retrieving sinusoids from nonuniformly sampled data using recursive relations

Marić, Ivan (2017) Retrieving sinusoids from nonuniformly sampled data using recursive relations. Expert Systems with Applications, 72 . pp. 245-257. ISSN 0957-4174

[img]
Preview
PDF - Archival copy - article
Download (561kB) | Preview

Abstract

A heuristic procedure based on novel recursive formulation of sinusoid (RFS) and on regression with predictive least-squares (LS) enables to decompose both uniformly and nonuniformly sampled 1-d signals into a sparse set of sinusoids (SSS). An optimal SSS is found by Levenberg–Marquardt (LM) optimization of RFS parameters of near-optimal sinusoids combined with common criteria for the estimation of the number of sinusoids embedded in noise. The procedure estimates both the cardinality and the parameters of SSS. The proposed algorithm enables to identify the RFS parameters of a sinusoid from a data sequence containing only a fraction of its cycle. In extreme cases when the frequency of a sinusoid ap- proaches zero the algorithm is able to detect a linear trend in data. Also, an irregular sampling pattern enables the algorithm to correctly reconstruct the under-sampled sinusoid. Parsimonious nature of the obtaining models opens the possibilities of using the proposed method in machine learning and in ex- pert and intelligent systems needing analysis and simple representation of 1-d signals. The properties of the proposed algorithm are evaluated on examples of irregularly sampled artificial signals in noise and are compared with high accuracy frequency estimation algorithms based on linear prediction (LP) approach, particularly with respect to Cramer–Rao Bound (CRB). ©

Item Type: Article
Uncontrolled Keywords: signal decomposition; signal recovery; sparse set of sinusoids; time series modeling; predictive least squares
Subjects: TECHNICAL SCIENCES > Electrical Engineering
TECHNICAL SCIENCES > Computing
Divisions: Division of Electronics
Projects:
Project titleProject leaderProject codeProject type
Postupci računalne inteligencije u mjernim sustavima-Ivan Marić098-0982560-2565MZOS
Depositing User: Ivan Marić
Date Deposited: 21 Apr 2017 13:19
Last Modified: 28 Apr 2017 13:52
URI: http://fulir.irb.hr/id/eprint/3458
DOI: 10.1016/j.eswa.2016.10.057

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year