hrvatski jezikClear Cookie - decide language by browser settings

Puncturing lipid membranes: onset of pore formation and the role of hydrogen bonding in the presence of flavonoids

Sadžak, Anja; Brkljača, Zlatko; Eraković, Mihael; Kriechbaum, Manfred; Maltar-Strmečki, Nadica; Přibyl, Jan; Šegota, Suzana (2023) Puncturing lipid membranes: onset of pore formation and the role of hydrogen bonding in the presence of flavonoids. Journal of Lipid Research, 64 (10). ISSN 0022-2275

[img] PDF - Published Version - article
Available under License Creative Commons Attribution.

Download (3MB)

Abstract

Products of lipid peroxidation induce detrimental structural changes in cell membranes, such as the formation of water pores, which occur in the presence of lipids with partially oxidized chains. However, the influence of another class of products, dicarboxylic acids, is still unclear. These products have greater mobility in the lipid bilayer, which enables their aggregation and the formation of favorable sites for the appearance of pores. Therefore, dodecanedioic acid (DDA) was selected as a model product. Additionally, the influence of several structurally different flavonoids on DDA aggregation via formation of hydrogen bonds with carboxyl groups was investigated. The molecular dynamics of DDA in DOPC lipid bilayer revealed the formation of aggregates extending over the hydrophobic region of the bilayer and increasing its polarity. Consequently, water penetration and the appearance of water wires was observed, representing a new step in the mechanism of pore formation. Furthermore, DDA molecules were found to interact with lipid polar groups, causing them to be buried in the bilayer. The addition of flavonoids to the system disrupted aggregate formation, resulting in the displacement of DDA molecules from the center of the bilayer. The placement of DDA and flavonoids in the lipid bilayer was confirmed by small-angle X-ray scattering. Atomic force microscopy and electron paramagnetic resonance were used to characterize the structural properties. The presence of DDA increased bilayer roughness and decreased the ordering of lipid chains, confirming its detrimental effects on the membrane surface, while flavonoids were found to reduce or reverse these changes.

Item Type: Article
Uncontrolled Keywords: antioxidant; dicarboxylic acid; flavone; flavonol; lipid/peroxidation; oxidized lipid; phospholipid/phosphatidylcholine; physical biochemistry
Subjects: NATURAL SCIENCES > Chemistry > Physical Chemistry
NATURAL SCIENCES > Chemistry > Organic Chemistry
Divisions: Division of Organic Chemistry and Biochemistry
Division of Physical Chemistry
Projects:
Project titleProject leaderProject codeProject type
Zaštitni mehanizmi i učinci flavonoida ugrađenih u nanonosače u modelnim membranama i neuronima-NanoFlavNeuroProtectSuzana ŠegotaIP-2016-06-8415HRZZ
Depositing User: Lorena Palameta
Date Deposited: 09 Aug 2024 06:50
URI: http://fulir.irb.hr/id/eprint/9007
DOI: 10.1016/j.jlr.2023.100430

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year

Contrast
Increase Font
Decrease Font
Dyslexic Font
Accessibility