hrvatski jezikClear Cookie - decide language by browser settings

Water Does Not Dance as Ions Sing: a New Approach in Elucidation of Ion-Invariant Water Fluctuations

Brkljača, Zlatko; Butumović, Marija; Bakarić, Danijela (2023) Water Does Not Dance as Ions Sing: a New Approach in Elucidation of Ion-Invariant Water Fluctuations. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy . ISSN 1386-1425

[img] PDF - Accepted Version - article
Available under License Creative Commons Attribution Non-commercial No Derivatives.

Download (1MB)


Aqueous solutions of salts composed from monovalent ions are explored using temperature-dependent FT-IR spectroscopy in transmission. Water combination band, being extremely sensitive to the network of hydrogen bonds due to the contribution of water librations (ρLH2O), is analyzed in uni- and multivariate fashion. Univariate analysis of the combination band maximum (νmax) reveals that perturbation of water hydrogen bond network by ions is primary driven by electrostatic interactions between water and ions. Using multivariate curve resolution with alternating least squares and evolving factor analysis this band is separated into two components that represent low- and high-density water. The observed asymmetry in their behavior is interpreted in terms of fluctuations of a hydrogen bond network of two water components. The significance of the found phenomenon is unambiguously confirmed by performing analogous analysis in the spectral range that contains partial signature of water linear bending (HOH) and is free from ρLH2O, in which the asymmetry is absent. Additionally, we show that this phenomenon, namely ion-invariant behavior of water fluctuations, persists even in the regime of high ionic strengths. Although ions indeed participate in shaping of water hydrogen bond network, this straightforward approach shows that its temperature-dependent fluctuations are ion-independent.

Item Type: Article
Uncontrolled Keywords: Water; Salts; Temperature-dependent transmission FT-IR spectra; Combination band; Multivariate curve resolution method; Fluctuations
Subjects: NATURAL SCIENCES > Chemistry > Physical Chemistry
Divisions: Division of Organic Chemistry and Biochemistry
Project titleProject leaderProject codeProject type
Model demijelinizacije na molekulskoj skali pri fiziološkim i patološkim uvjetima-DEMYMOLSCALEDanijela BakarićUIP-2020-02-7669HRZZ
Depositing User: Danijela Bakarić
Date Deposited: 27 Oct 2023 10:52
DOI: 10.1016/j.saa.2022.120907

Actions (login required)

View Item View Item


Downloads per month over past year

Increase Font
Decrease Font
Dyslexic Font