hrvatski jezikClear Cookie - decide language by browser settings

Direct Identification of Urinary Tract Pathogens by MALDI-TOF/TOF Analysis and De Novo Peptide Sequencing

Svetličić, Ema; Dončević, Lucija; Ozdanovac, Luka; Janeš, Andrea; Tustonić, Tomislav; Štajduhar, Andrija; Brkić, Antun Lovro; Čeprnja, Marina; Cindrić, Mario (2022) Direct Identification of Urinary Tract Pathogens by MALDI-TOF/TOF Analysis and De Novo Peptide Sequencing. Molecules, 27 . ISSN 1420-3049

PDF - Published Version - article
Available under License Creative Commons Attribution.

Download (1MB) | Preview


For mass spectrometry-based diagnostics of microorganisms, matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) is currently routinely used to identify urinary tract pathogens. However, it requires a lengthy culture step for accurate pathogen identification, and is limited by a relatively small number of available species in peptide spectral libraries (≤3329). Here, we propose a method for pathogen identification that overcomes the above limitations, and utilizes the MALDI-TOF/TOF MS instrument. Tandem mass spectra of the analyzed peptides were obtained by chemically activated fragmentation, which allowed mass spectrometry analysis in negative and positive ion modes. Peptide sequences were elucidated de novo, and aligned with the non- redundant National Center for Biotechnology Information Reference Sequence Database (NCBInr). For data analysis, we developed a custom program package that predicted peptide sequences from the negative and positive MS/MS spectra. The main advantage of this method over a conventional MALDI-TOF MS peptide analysis is identification in less than 24 h without a cultivation step. Compared to the limited identification with peptide spectra libraries, the NCBI database derived from genome sequencing currently contains 20, 917 bacterial species, and is constantly expanding. This paper presents an accurate method that is used to identify pathogens grown on agar plates, and those isolated directly from urine samples, with high accuracy.

Item Type: Article
Uncontrolled Keywords: uropathogenic infection ; tandem mass spectrometry ; de novo peptide sequencing ; peptide identification software
Subjects: NATURAL SCIENCES > Chemistry
TECHNICAL SCIENCES > Chemical Engineering
Divisions: Division of Molecular Medicine
Project titleProject leaderProject codeProject type
Qua/Qua Protein: Kvantitativna i kvalitativna analiza proteina za potrebe biomedicine i biotehnološke industrijeCindrić, MarioKK.
Depositing User: Mario Cindrić
Date Deposited: 04 Oct 2022 11:51
DOI: 10.3390/molecules27175461

Actions (login required)

View Item View Item


Downloads per month over past year

Increase Font
Decrease Font
Dyslexic Font