hrvatski jezikClear Cookie - decide language by browser settings

Altered Wiener indices of thorn trees

Vukičević, Damir; Zhou, Bo; Trinajstić, Nenad (2007) Altered Wiener indices of thorn trees. Croatica Chemica Acta, 80 (2). pp. 283-285. ISSN 0011-1643

[img] PDF - Published Version
Download (141kB)


Three modifications of the Wiener index W(G) of a structure G have been recently proposed: the lambda-modified Wiener index (lambda)W(G) = Sigma(uv epsilon E(G)) n(G)(u,v)(lambda)n(G)(v,u)(lambda), the lambda-variable Wiener index lambda W(G)=1/2 Sigma(uv epsilon E(G)) (n(G)(lambda) - n(G)(u,v)(lambda) - n(G)(v,u)(lambda)) and the lambda-altered Wiener index W(min,lambda)(G) = 1/2 Sigma(uv epsilon E(G)) (n(G)(lambda) m(G)(u,v)(lambda) - m(G)(u,v)(2 lambda)) where n(G) is the number of vertices of G, and m(G) = min {n(G)(u,v), n(G)(v,u)}. For a given positive integer k, explicit formulae are available for calculating the k-modified Wiener index and the k-variable Wiener index of a thorn tree by means of the i-modified Wiener indices and the i-variable Wiener indices, respectively, of the parent tree for integers i and k with 0 <= i <= k. It is pointed out in the present report that this is not the case of the k-altered Wiener index.

Item Type: Article
Uncontrolled Keywords: Wiener index; altered Wiener index; modified Wiener index; variable Wiener index; thorn tree; hexagonal systems; hydrocarbons; number
Subjects: NATURAL SCIENCES > Chemistry
Divisions: Division of Physical Chemistry
Project titleProject leaderProject codeProject type
Diskretni matematički modeli u kemiji[256631] Damir Vukičević177-0000000-0884MZOS
Diskretna matematika i primjene[45724] Dragutin Svrtan037-0000000-2779MZOS
Razvoj metoda za modeliranje svojstava bioaktivnih molekula i proteina[184293] Bono Lučić098-1770495-2919MZOS
Depositing User: Nenad Trinajstić
Date Deposited: 09 Oct 2013 11:55

Actions (login required)

View Item View Item


Downloads per month over past year

Increase Font
Decrease Font
Dyslexic Font