hrvatski jezikClear Cookie - decide language by browser settings

Laser microsurgery reveals conserved viscoelastic behavior of the kinetochore

Cojoc, Gheorghe; Roscioli, Emanuele; Zhang, Lijuan; García-Ulloa, Alfonso; Shah, Jagesh V.; Berns, Michael W.; Pavin, Nenad; Cimini, Daniela; Tolić, Iva M.; Gregan, Juraj (2016) Laser microsurgery reveals conserved viscoelastic behavior of the kinetochore. Journal of Cell Biology, 212 (7). pp. 767-776. ISSN 0021-9525

[img]
Preview
PDF - Published Version - article
Available under License Creative Commons Attribution Non-commercial Share Alike.

Download (2MB) | Preview

Abstract

Accurate chromosome segregation depends on proper kinetochore– microtubule attachment. Upon microtubule interaction, kinetochores are subjected to forces generated by the microtubules. In this work, we used laser ablation to sever microtubules attached to a merotelic kinetochore, which is laterally stretched by opposing pulling forces exerted by microtubules, and inferred the mechanical response of the kinetochore from its length change. In both mammalian PtK1 cells and in the fission yeast Schizosaccharomyces pombe, kinetochores shortened after microtubule severing. Interestingly, the inner kinetochore–centromere relaxed faster than the outer kinetochore. Whereas in fission yeast all kinetochores relaxed to a similar length, in PtK1 cells the more stretched kinetochores remained more stretched. Simple models suggest that these differences arise because the mechanical structure of the mammalian kinetochore is more complex. Our study establishes merotelic kinetochores as an experimental model for studying the mechanical response of the kinetochore in live cells and reveals a viscoelastic behavior of the kinetochore that is conserved in yeast and mammalian cells.

Item Type: Article
Uncontrolled Keywords: kinetochore ; chromosome segregation ; mitosis ; laser ablation ; fluorescence microscopy ; quantitative modeling
Subjects: NATURAL SCIENCES > Physics
NATURAL SCIENCES > Biology > Biochemistry and Molecular Biology
Divisions: Division of Molecular Biology
Depositing User: Marina Mayer
Date Deposited: 05 Mar 2019 11:43
Last Modified: 05 Mar 2019 11:43
URI: http://fulir.irb.hr/id/eprint/4438
DOI: 10.1083/jcb.201506011

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year