hrvatski jezikClear Cookie - decide language by browser settings

Cell cycle alterations in the mussel Mytilus galloprovincialis hemocytes caused by environmental contamination

Batel, Iris; Fafanđel, Maja; Smodlaka Tanković, Mirta; Ivetac, Ivan; Bihari, Nevenka (2018) Cell cycle alterations in the mussel Mytilus galloprovincialis hemocytes caused by environmental contamination. Acta Adriatica, 59 (2). pp. 161-172. ISSN 0001-5113

[img]
Preview
PDF - Published Version - article
Available under License Creative Commons Attribution.

Download (1MB) | Preview

Abstract

Environmental contamination includes a mixture of organic substances that can have detrimental effects on marine organisms and should be evaluated in the quality and risk assessment of investigated marine areas. Marine areas selected for this study are a protected area, a mariculture area, a shipyard and an industrial area. Based on the toxicity of the organic seawater extracts these areas were classified as an undisturbed reference area (S1), an area with the low anthropogenic impact (S2), a potentially endangered area (S3) and an area with high anthropogenic impact (S4) respectively. The organic mixtures present in seawater samples collected at the above defined areas were tested for the induction of DNA damage and cell cycle alterations in the mussel Mytilus galloprovincialis hemocytes. Flow cytometric analyses were performed to detect changes in hemocytes DNA content distribution throughout the cell cycle. Organic seawater extracts from sampling sites S2, S3 and S4 induced an increase in the coefficient of variation of the G0/G1 peak and an increase in the number of cells in the G2/M phase reflecting the extent of DNA damage and G2/M arrest, respectively. The G2/M arrest in mussel hemocytes was concentration-dependent upon injection with organic seawater extracts from the S3 site and time dependant for S2, S3 and S4 sampling sites. The time dependence of the induction of the G2/M arrest showed a characteristic pattern for each site due to the different quantitative and qualitative composition of the organic seawater extracts. The G2/M arrest was reversible 24 or 72 hours after treatment with organic seawater extracts from S2 or S3, and S4 sites, respectively. This reversibility was time- and site-specific indicating that such DNA damage is repairable to a certain degree according to the organic seawater extract composition. Thus, the hemocytes cell cycle alterations in the mussel Mytilus galloprovincialis caused by organic seawater extracts reliably reflect the extent of organic contamination effects for selected marine areas.

Item Type: Article
Uncontrolled Keywords: organic contamination ; flow cytometry ; DNA damage ; G2M arrest ; hemocytes ; Mytilus galloprovincialis
Subjects: NATURAL SCIENCES > Interdisciplinary Natural Sciences
Divisions: Center for Marine Research
Projects:
Project titleProject leaderProject codeProject type
Ekotoksični učinci onečišćenja na morske organizme-Nevenka Bihari098-0982705-2725MZOS
Depositing User: Nevenka Bihari
Date Deposited: 11 Feb 2019 15:07
Last Modified: 11 Feb 2019 15:08
URI: http://fulir.irb.hr/id/eprint/4412
DOI: 10.32582/aa.59.2.1

Actions (login required)

View Item View Item

Downloads

Downloads per month over past year