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74 LIP and Instituto Superior Técnico, Technical University of Lisbon, Portugal
78 J. Stefan Institute, Ljubljana, Slovenia

79 Laboratory for Astroparticle Physics, University of Nova Gorica, Slovenia
80 Instituto de Física Corpuscular, CSIC-Universitat de València, Valencia, Spain

81 Universidad Complutense de Madrid, Madrid, Spain
82 Universidad de Alcalá, Alcalá de Henares (Madrid), Spain

83 Universidad de Granada & C.A.F.P.E., Granada, Spain
84 Universidad de Santiago de Compostela, Spain

85 Rudolf Peierls Centre for Theoretical Physics, Universityof Oxford, Oxford, United Kingdom
87 School of Physics and Astronomy, University of Leeds, United Kingdom

88 Argonne National Laboratory, Argonne, IL, USA
89 Case Western Reserve University, Cleveland, OH, USA

90 Colorado School of Mines, Golden, CO, USA
91 Colorado State University, Fort Collins, CO, USA

92 Colorado State University, Pueblo, CO, USA
93 Fermilab, Batavia, IL, USA

94 Louisiana State University, Baton Rouge, LA, USA
95 Michigan Technological University, Houghton, MI, USA

96 New York University, New York, NY, USA
97 Northeastern University, Boston, MA, USA
98 Ohio State University, Columbus, OH, USA

99 Pennsylvania State University, University Park, PA, USA
100 Southern University, Baton Rouge, LA, USA

101 University of Chicago, Enrico Fermi Institute, Chicago, IL, USA
105 University of Nebraska, Lincoln, NE, USA

106 University of New Mexico, Albuquerque, NM, USA
108 University of Wisconsin, Madison, WI, USA

109 University of Wisconsin, Milwaukee, WI, USA
110 Institute for Nuclear Science and Technology (INST), Hanoi, Vietnam

(†) Deceased
(a) at Konan University, Kobe, Japan

Abstract

We present the results of an analysis of data recorded at the Pierre Auger Observatory in which
we search for groups of directionally-aligned events (or ‘multiplets’) which exhibit a correlation
between arrival direction and the inverse of the energy. These signatures are expected from sets
of events coming from the same source after having been deflected by intervening coherent mag-
netic fields. The observation of several events from the samesource would open the possibility to
accurately reconstruct the position of the source and also measure the integral of the component
of the magnetic field orthogonal to the trajectory of the cosmic rays. We describe the largest
multiplets found and compute the probability that they appeared by chance from an isotropic
distribution. We find no statistically significant evidencefor the presence of multiplets arising
from magnetic deflections in the present data.

Key words: Ultra-High Energy Cosmic Rays, Pierre Auger Observatory, Arrival Directions
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PACS:98.70.Sa

1. Introduction

The origin of ultra-high energy cosmic rays is a long-standing open question, and the iden-
tification of their sources is one of the primary motivationsfor the research conducted at the
Pierre Auger Observatory. If the density of cosmic rays sources is not too large, it is expected
that there could be indications of the presence of multiplets, i.e. sets of events with different
energy that come from a single point-like source. Due to the magnetic fields that cosmic rays
traverse on their paths from their sources to the Earth, theywill be deflected and this deflection
is proportional to the inverse of their energy if the deflections are small. Therefore, to identify
sets of cosmic rays that come from a single source, a search for events that show a correlation
between their arrival direction and the inverse of their energy has been performed using the data
recorded at the Pierre Auger Observatory. The observation of cosmic ray multiplets could allow
for the accurate location of the direction of the source and could also provide a new means to
probe the galactic magnetic field, as it should be possible toinfer the value of the integral of the
component of the magnetic field orthogonal to the trajectoryof the cosmic rays. Note that to
observe a correlated multiplet the source should be steady,in the sense that its lifetime is larger
than the difference in the time delays due to the propagationin the intervening magnetic fields
for the energies considered. Moreover, magnetic fields should also be steady in the same sense
so that cosmic rays traverse approximately the same fields.

This study relies on the acceleration at the source of a proton component (or intermediate
mass nuclei being accelerated and photo-disintegrated during extragalactic propagation with the
deflections due to extragalactic magnetic fields being smallcompared to those in the Galaxy).
Due to the magnitude of the known magnetic fields involved, heavy nuclei at these energies
would appear spread over a very large region of the sky, probing regions with different ampli-
tudes and directions of the magnetic field, and hence losing their alignment and correlation with
the inverse of energy.

The galactic magnetic field is poorly constrained by the available data, even though there
has been considerable effort to improve this knowledge using different observational techniques,
see e.g. [1, 2, 3]. This field is usually described as the superposition of a large-scale regular
component and a turbulent one. The regular component has a few µG strength and is coherent on
scales of a few kpc with a structure related to the spiral armsof the galactic disk, and eventually
also a more extended halo component (see e.g. [4]). The deflection of cosmic rays with energy
E and chargeZ by the regular component of the magnetic field~B after traversing a distanceL is
given by

δ ≃ 16◦
20 EeV

E/Z

∣

∣

∣

∣

∣

∣

∣

∫ L

0

d~l
3 kpc

×
~B

2 µG

∣

∣

∣

∣

∣

∣

∣

, (1)

where 1 EeV≡ 1018 eV. This is the predominant deflection because, although theturbulent
component has a root mean square amplitude ofBrms ≃ (1 − 2)Breg, it has a much smaller
coherence length (typicallyLc ≃ 50-100 pc) [5, 6], leading to a smaller deflection, with a typical
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root mean square value

δrms ≃ 1.5◦
20 EeV

E/Z
Brms

3 µG

√

L
1 kpc

√

Lc

50 pc
. (2)

After traveling a distanceL through the turbulent field, the trajectories of cosmic rayswould be
displaced a distance∼ δrmsL with respect to the one they would have had if only the regular
field were present. If this displacement is smaller than the coherence lengthLc, this means that
all the particles with that energy have experienced nearly the same values of the turbulent field
along their trajectories. Thus, the effect is that the arrival direction of cosmic rays will coherently
wiggle with an amplitudeδrms(E) around the direction determined by the deflection due to the
regular magnetic field as a function of the energy. Conversely, whenδrms(E)L > Lc, particles
of the same energy that have probed uncorrelated values of the turbulent field are able to reach
the observer from the source and several images appear, scattered byδrms(E) around the image
that would be produced by the regular field alone. Which of thetwo regimes actually takes place
depends on the energy considered and on the distance traveled in the turbulent field. For instance,
for L ≃ 2 kpc and energy about 20 EeV, the second situation applies, while at much higher ener-
gies the first one holds.

Extragalactic magnetic fields could also deflect the trajectories of cosmic rays, but their
strength is yet unknown and the relevance of their effect is amatter of debate, see e.g. [7, 8, 9].

2. The Pierre Auger Observatory and the data set

The Pierre Auger Observatory, located in Malargüe, Argentina (35.2◦S, 69.5◦W) at 1400
m a.s.l. [10], was designed to measure ultra-high energy cosmic rays (energyE > 1018) with
unprecedented statistics. It consists of a surface array of1660 water-Cherenkov stations. The
surface array is arranged in an equilateral triangular gridwith 1500 m spacing, covering an area
of approximately 3000 km2 [11]. The array is overlooked by 27 fluorescence telescopes located
on hills at four sites on its periphery [12]. The surface and air fluorescence detectors are designed
to perform complementary measurements of air showers created by cosmic rays. The surface ar-
ray is used to observe the lateral distribution of the air shower particles at ground level, while
the fluorescence telescopes are used to record the longitudinal development of the shower as it
moves through the atmosphere.

In this work we analyze events with zenith angles smaller than 60◦ recorded by the surface de-
tector from 1st January 2004 to 31st December 2010. The events are required to have at least five
active stations surrounding the station with the highest signal, and the reconstructed core must be
inside an active equilateral triangle of stations [13]. Thecorresponding exposure is 25806 km2

sr yr. The angular resolution, defined as the 68th percentile of the distribution of opening angles
between the true and reconstructed directions of simulatedevents, is better than 0.9◦ for events
that trigger at least six surface stations (E > 10 EeV) [14]. The energy resolution is about 15%
and the absolute energy scale, given by the fluorescence calibration, has a systematic uncertainty
of 22% [15].
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3. Method adopted for the multiplets search

In the limit of large energy, and hence small deflections, it is a good approximation to con-
sider the following simplified relation between the cosmic ray observed arrival directions, de-
scribed by the unit vector~θ, and the actual source direction~θs

~θ = ~θs +
Ze
E

∫ L

0
d~l × ~B ≃ ~θs +

~D(~θs)
E
, (3)

whereZe is the electric charge of the cosmic ray andD ≡ |~D(~θs)| will be called the deflection
power and will be given in units of 1◦ 100 EeV, which is≈ 1.9eµG kpc.

In the case of proton sources, departures from the linear approximation are relevant for en-
ergies below 20 EeV for typical galactic magnetic field models [16], as the deflections of the
trajectories are large and the integral of the magnetic fieldcomponent orthogonal to the path can-
not be approximated as a constant for a fixed source direction. This fact motivates the restriction
of the present analysis to events with energies above 20 EeV.

In order to identify sets of events coming from the same source, the main requirement will be
that they appear aligned in the sky and have a high value of thecorrelation coefficient between
the arrival direction and the inverse of the energy.

To compute the correlation coefficient for a given subset ofN nearby event directions, we first
identify the axis along which the correlation is maximal. For this we initially use an arbitrary
coordinate system (x, y) in the tangent plane to the celestial sphere (centered in the average
direction to the events) and compute the covariance

Cov(x, 1/E) =
1
N

N
∑

i=1

(xi − 〈x〉)(1/Ei − 〈1/E〉) (4)

and similarly for Cov(y, 1/E). We then rotate the coordinates to a system (u,w) in which
Cov(w, 1/E) = 0, and hence Cov(u, 1/E) is maximal. This corresponds to a rotation angle
between theu andx axes given by

α = arctan

(

Cov(y, 1/E)
Cov(x, 1/E)

)

. (5)

The correlation betweenu and 1/E is measured through the correlation coefficient

C(u, 1/E) =
Cov(u, 1/E)
√

Var(u)Var(1/E)
, (6)

where the variances are given by Var(x) =
〈

(x− 〈x〉)2
〉

. We demonstrate this procedure in Figure
1. In the left panel we show the selection of coordinatesu andw for a set of events of a simulated
source superimposed on a background of isotropically distributed events. In the right panel the
correlation betweenu and 1/E for the same source events is plotted.
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(a) (b)

Figure 1: Selection of coordinatesu andw for a set of events of a simulated source (black thick asterisks) superimposed
on a background of isotropically-distributed events (blueasterisks) (a). The size of the circles is proportional to the
energy of the events. Correlation betweenu and 1/E for the same source events (b).

A given set of events will be identified as a correlated multiplet whenC(u, 1/E) > Cmin and,
when the spread in the transverse directionw is small,W = max(|wi −〈w〉 |) <Wmax (correspond-
ing to a total width of∼ 2Wmax in the perpendicular direction). The values forCmin andWmax

were chosen as a compromise between maximizing the signal from a true source and minimizing
the background arising from chance alignments. In order to determine the optimal values of these
quantities, we performed numerical simulations of sets of events from randomly-located extra-
galactic sources. In these simulations, protons were propagated through a bisymmetric magnetic
field with even symmetry (BSS-S) [17, 18] (the local value of the field used was 2µG) and the ef-
fect of the turbulent magnetic field was included by simply adding a random deflection with root
mean square amplitudeδrms = 1.5◦(20 EeV/E). Although the latter is a rough approximation,
and a dependence on the arrival directions should be expected, it is good enough for the purpose
of fixing Cmin andWmax. We considered one hundred extragalactic sources located at random
isotropic directions and simulated sets ofN events coming from each source (N = 14, 13, 12).
The energy of the events followed anE−2 spectrum at the source and we added random gaussian
uncertainties in the angular directions and energies to account for the experimental resolution.
Magnetic lensing effects [18] were taken into account in thesimulation through the magnifica-
tion or demagnification of the energy spectrum of each source. As an example we show in Figure
2(a) the resulting distribution ofW for multiplets of 14 events. The significance of a given mul-
tiplet can be quantified by computing the fraction of isotropically distributed simulations, with
the same total number of events as in the data and with the sameenergy spectrum, in which a
multiplet with the same or larger multiplicity and passing the same cuts appears by chance. At
high energies the UHECR angular distribution may not be isotropic, reflecting structure in the
distribution of sources within the GZK horizon. However, our data set is dominated by lower en-
ergy events for which isotropy is an excellent approximation. We show in Figure 3(a) the chance
probability for multiplets of different multiplicity as a function ofWmax. We note that when re-
ducingWmax, some of the events of the multiplets will be missed and theirmultiplicity will be
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reduced. However, the significance of a smaller multiplet passing a tighter bound onWmax can
be larger than the significance of the complete multiplet with a looserWmax cut. It turns out that
the largest mean significance for the simulated sources (i.e. the average of the significances of
the resulting multiplets after imposing the cuts) appears when a cutWmax ≃ 1.5◦ is applied. The
angular scale of 1.5◦ provides in fact a reasonable cut which accounts for the angular resolution
and the mean value of the turbulent field deflections. We note that in the case of 14-plets, in 50%
of the simulations all the events pass this cut and the multiplet will be reconstructed as a 14-plet,
while in 38% of the cases one event is lost and in 11% of the cases two events are lost.

A similar analysis can be performed to fix the cut on the correlation coefficientCmin. The
distribution ofC(u, 1/E) for the simulated 14-plets is shown in Figure 2(b) and the chance prob-
ability for multiplets of different multiplicity as a function of Cmin is illustrated in Figure 3(b).
The largest mean significance is attained now for values ofCmin in the range from 0.85 to 0.9,
depending on the multiplicity considered. We will then fix inthe following Wmax = 1.5◦ and
Cmin = 0.9. Considering simulations with 14 events and for a cutCmin = 0.9, we find that in
57% of the cases all events pass the cuts, in 12% of the simulations one event is lost and in 11%
of them two events are lost. We note that the choice of the optimal cuts depends slightly on the
galactic magnetic field model considered in the simulationsand on the modeling of the turbulent
field deflections.

(a) (b)

Figure 2: Distribution of the maximum angular distanceW (a) and the correlation coefficientC(u, 1/E) between the
angular positionu and 1/E (b) for 14-plets from the 100 simulated sources. The vertical dashed lines indicate the cuts
on W andC optimized for multiplicity and significance (see text).

We will hence search for correlated multiplets of events with energies above 20 EeV (so that
the linear correlation of the deflection with 1/E is still expected to be valid for proton sources)
which extend up to 20◦ in the sky (see eq. (1)). We also require that the multiplet contains at
least one event with energy above 45 EeV. We note that the energy of the most energetic event
of a set of 10 events withE > 20 EeV from a source with spectral indexs = 2.5 is larger than
45 EeV with a probability of 97% (for a spectral indexs = 3 this probability is∼ 90% and for
s = 2 it is ∼ 99.7% ). Hence, requiring one high energy event above 45 EeV is not restrictive,
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(a) (b)

Figure 3: Chance probabilityPch for finding in isotropic simulations one large multiplet of agiven multiplicity as a
function ofWmax (adoptingCmin = 0.9) (a) and as a function ofCmin (adoptingWmax = 1.5◦) (b) (see text).

and it simplifies the strategy to start the search for multiplets, which proceeds by looking at all
possible sets of events contained in windows of 20◦ around those high energy events. Since we
are ultimately interested in multiplicities larger than 8 (see Fig. 3 in which it is apparent that
for the present statistics above 20 EeV correlated sets of smaller multiplicity are very likely to
appear by chance in isotropic simulations), it is possible to make this search more efficient by
first identifying the high energy end of the candidate multiplets. We hence consider for every
event above 45 EeV the quadruplets that it forms with the events within a circle of 15◦ having
energies above 25 EeV and with a correlation coefficientC(u, 1/E) ≥ 0.8. The precise values
of these cuts are not crucial as long as they allow one to safely include the larger multiplets of
interest. For each of these candidates we then extend the search including all the events above
20 EeV with an angular distance to the highest energy one smaller than 20◦ and at a distance
smaller than 3Wmax from the quadruplet axis. This allows us to find the correlated multiplets
satisfying the cuts inWmax andCmin in a very efficient way, as it is desirable to be able to perform
a large number of simulations.

The multiplets search procedure has been designed for sources having a light composition.
For sources having instead a heavy composition above 20 EeV,multiplets will be much more
difficult to identify since they would typically spread through a larger region in the sky and also
the linearity of their directional distribution will be lost.

Once a correlated multiplet is identified, from the linear fitto the relation

u = us+
D
E
, (7)

the position of the source (us, 0) (in theu-w coordinate system) and the deflection powerD can
be obtained.

A true correlated multiplet arising from magnetic field deflections of events from a single
source can also include by chance some events from the background that appear aligned and cor-
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related in energy with the events from the source. We have estimated the fraction of events that
is expected to be due to chance background alignments by simulating an isotropic background
distribution of events with the energy of the observed events above 20 EeV and superimposing
multiplets of 12 events from simulated sources. We found that 29% of the reconstructed multi-
plets do not pick additional background events, while 46% just pick one additional background
event and 25% pick two or more. Thus, the fraction of events added from the background is
typically very small.

4. Results

We applied the method discussed in Section 3 to 1509 events above 20 EeV recorded at the
Pierre Auger Observatory from 1st January 2004 to 31st December 2010. We implemented a
search for all possible multiplets which extend up to 20◦ in the sky and contain at least one event
with energy above 45 EeV, and that have a half-width smaller thanWmax = 1.5◦ and a correlation
coefficient larger thanCmin = 0.9. The largest multiplet found in this data set is one 12-plet
and there are also two independent decuplets. They are displayed in Figure 4. Their deflection
power, position of the potential source location and correlation coefficient are listed in Table 1.
Decuplet II in Table 1 consists of three dependent sets of tenevents (a-c) that are formed by the
combination of a set of twelve events. These three decupletsare not independent of each other
since they have most events in common. The uncertainties in the reconstruction of the position
of the potential sources have been calculated propagating the uncertainties in energy and arrival
direction to an uncertainty in the rotation angle (Eq. 5) andin the linear fit performed to the
deflection vs. 1/E (Eq. 7).

The probability that the observed number (or more) of correlated multiplets appears by
chance can be computed by applying a similar analysis to simulations of randomly distributed
events weighted by the geometric exposure of the experiment[19] and with the energies of the
observed events. The fraction of simulations with at least one multiplet with 12 or more events
is 6%, and the fraction having at least three multiplets with10 or more events is 20%. Therefore,
there is no statistically significant evidence for the presence of multiplets from actual sources
in the data. We note that with the present statistics, an individual multiplet passing the required
selection cuts should have at least 14 correlated events in order that its chance probability be 10−3.

Measurements by the Pierre Auger Observatory [20] of the depth of shower maximum and
its fluctuations indicate a trend towards heavy nuclei with increasing energy. This interpreta-
tion of the shower depths is not certain, however. It relies on shower simulations that use
hadronic interaction models to extrapolate particle interaction properties two orders of magni-
tude in centre-of-mass energy beyond the regime where they have been tested experimentally.
Magnetic alignment and correlation with the inverse of the energy as searched here are not ex-
pected for heavy nuclei. Assuming there are sources which accelerate an appreciable proton
component, the non-observation of significant multiplets could be the consequence of having
a large density of sources. Given the present statistics, the maximum source density which
would allow to observe a multiplet containing 12 events above 20 EeV from the nearest source
to the Earth can be roughly estimated by considering that this source should produce a fraction
12/1509 ≈ 1/125 of the total flux observed in the field of view of the Auger Observatory in
this energy range. Assuming that the sources have equal intrinsic luminosity and are uniformly
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distributed and that cosmic rays in this energy range can arrive from distances up to about 1 Gpc,
the above mentioned constraints imply that the nearest source should be within∼ 10 Mpc. Thus,
the mean local density of sources should not be larger than a few 10−4 Mpc−3. The fact that we
have not seen a larger multiplet is an indication that the density of sources is probably larger.
This very rough estimation is subject to large fluctuations but it is indicative that densities within
the current lower limits may lead to the kind of signals searched for here. We note, however, that
this bound would be relaxed if contributions of heavy cosmicray primaries become significant,
or if very strong turbulent magnetic fields were present.

Figure 4: Observed multiplets with 10 or more events in galactic coordinates. The size of the circles is proportional
to the energy of the event. Plus signs indicate the positionsof the potential sources for each multiplet. One decuplet
is in fact three dependent decuplets that are formed by the combination of twelve events and the three corresponding
reconstructions of the potential sources are shown. The solid line represents the border of the field of view of the
Southern Observatory for zenith angles smaller than 60◦ and the grey shaded area is the region outside the field of view.

5. Conclusions

A search for ultra-high energy cosmic ray multiplets was performed in the data gathered be-
tween 1st January 2004 and 31st December 2010 by the Pierre Auger Observatory with energy
above 20 EeV. The largest multiplet found was one 12-plet. The probability that it appears by
chance from an isotropic distribution of events is 6%. Thus,there is no significant evidence
for the existence of correlated multiplets in the present data set. Future data will be analyzed
to check if some of the observed multiplets grow significantly or if some new large multiplets
appear.
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multiplet D[◦100 EeV] (l, b)S[◦] ∆uS[◦] ∆wS[◦] C

12− plet 4.3± 0.7 (−46.7, 13.2) 2.4 0.9 0.903
10− plet I 5.1± 0.9 (−39.9, 23.4) 2.7 0.9 0.901
10− plet IIa 8.2± 1.3 (−85.6,−80.4) 4.3 1.9 0.920
10− plet IIb 7.6± 1.2 (−79.6,−77.9) 4.0 1.6 0.919
10− plet IIc 6.5± 1.1 (−91.5,−75.7) 3.9 1.6 0.908

Table 1: Deflection power,D; reconstructed position of the potential source in galactic coordinates, (l, b)S; uncertainty
in the reconstructed position of the potential source alongthe direction of deflection,∆uS, and orthogonal to it,∆wS; and
linear correlation coefficient,C, for the largest correlated multiplets found. The data correspond to events with energy
above 20 EeV from 1st January 2004 to 31st December 2010.
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