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Abstract: Triple-negative breast cancer (TNBC) remains one of the most challenging subtypes since it
is initially characterized by the absence of specific biomarkers and corresponding targeted therapies.
Advances in methodology, translational informatics, genomics, and proteomics have significantly
contributed to the identification of therapeutic targets. The development of innovative treatments,
such as antibody–drug conjugates and immune checkpoint inhibitors, alongside chemotherapy, has
now become the standard of care. However, the quest for biomarkers defining therapy outcomes
is still ongoing. Peroxiporins, which comprise a subgroup of aquaporins, which are membrane
pores facilitating the transport of water, glycerol, and hydrogen peroxide, have emerged as potential
biomarkers for therapy response. Research on peroxiporins reveals their involvement beyond tradi-
tional channeling activities, which is also reflected in their cellular localization and roles in cellular
signaling pathways. This research on peroxiporins provides fresh insights into the mechanisms
of therapy resistance in tumors, offering potential avenues for predicting treatment outcomes and
tailoring successful TNBC therapies.
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1. Introduction

Since their discovery, our knowledge of aquaporins (AQPs) reveals the intricate reg-
ulation and diverse functions governing their interactions. Agre described them as the
cell’s plumbing system [1], yet their role and function in the cell are far from being as
straightforward. Today, we understand the mechanism governing water transport, which
is highly specific for water molecules due to the selectivity filter within the pore [2]. In addi-
tion, AQPs not only facilitate water transport, but also glycerol, ions, urea, lactic acid, and
hydrogen peroxide [3]. Interestingly, glycerol can hinder the flow of water through aqua-
porins. Unlike water, glycerol flows through aquaglyceroporins by rotational movements,
highlighting the intricate nature of these pores and their role in molecular transport within
biological systems [4]. Moreover, AQP6 deviates from the typical function of aquaporin as
a water channel, but functions as an anion channel. This change in function arises from the
critical substitution of glycine (Gly-57) to asparagine residue (Asn-60), the position corre-
sponding to Gly-57 [5]. In addition to water, glycerol, and ions, and due to high structural
similarities to water regarding size, dielectric properties, and capacity to form hydrogen
bonds, H2O2 is also a substrate for AQPs [6]. These AQPs involved in channeling H2O2 are
named peroxiporins [7]. The ability of aquaporins to transport several substrates widens
their function to include not only the regulation of cellular and tissue water homeostasis
but also cell proliferation, migration, and adhesion [8]. Following these functions, it is not
surprising that AQPs have been implicated in various non-communicable diseases, includ-
ing cancer [8]. Furthermore, the regulation of AQPs and their response to various stimuli
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contribute an additional layer of complexity to understanding the pathways influenced by
AQPs. An example of this complexity lies in the most prominent regulatory mechanism of
AQP function, which involves their subcellular translocation from intracellular vesicles to
the membrane in response to hormonal stimuli [9]. Hence, investigating the role of AQPs
in tumorigenesis presents a challenge, as their role and mechanisms of their regulation are
far from being straightforward. Furthermore, new functions and interactions are emerging,
complicating our understanding of their role in cancer development and therapy resistance.

The worldwide cancer mortality rate is 8.2 million people per year and it is expected
that 13.1 million people will die of cancer by 2030, thereby overtaking cardiovascular
disease as the leading cause of death in humans [10,11]. Breast cancer is the leading cause
of cancer death in women, with 2.3 million cases annually [10,12].

Because of its molecular and clinical heterogeneity, the personalization of breast
cancer diagnosis and treatment is necessary. In the era of molecular testing, conventional
prognostic factors, such as lymph node metastasis, tumor size, and histologic tumor grade,
are no longer sufficient to personalize treatment and diagnosis. Molecular prognostic and
predictive biomarkers increase the knowledge of tumor characteristics, enabling oncologists
to predict tumor aggressiveness and invasiveness. The critical role of molecular biomarkers
is to avoid the undertreatment, mistreatment, and overtreatment of those who will not
benefit from therapies [12]. Consequently, new biomarkers are needed to better characterize
the disease and to apply effective therapy.

Currently, markers in breast cancer diagnostics are determined routinely by immuno-
histochemistry (IHC) and include hormone receptors (estrogen receptor (ER) and proges-
terone receptor (PR)), human epidermal growth factor receptor 2, HER2, and Ki67. Based
on the marker profile, breast cancer can be classified into four surrogate subtypes (Table 1).
Breast cancer with a low or negative ER and PR without expression or amplification of the
HER2 receptor is often defined as triple-negative breast cancer (TNBC).

Table 1. Classification of breast cancer based on immunohistochemical markers.

Breast Cancer Type ER PR Ki67 HER2

Luminal A + + Low −

Luminal B
HER2−

+ +/− High −
HER2+ +

HER2-positive − − − +

Triple-negative − or low − − −

Tumor protein p53 (TP53), Breast Cancer Gene 1 (BRCA1), and Breast Cancer Gene 2
(BRCA2) play important roles in breast cancer development [12,13]. BRCA1 and BRCA2 are
tumor suppressor genes, where mutations cause inefficient DNA repair, further increasing
the mutation rate and supporting tumor development [12]. BRCA1 and BRCA2 (BRCA1/2)
gene mutations are the most encountered cancer predisposition genes and are present in less
than 10% of breast cancer cases and around 10–20% of TNBC patients [14]. BRCA1/2 have
an essential role in cycle checkpoints and DNA repair via the homologous recombination
pathway [15].

There is an ~80% overlap between the triple-negative and intrinsic basal subtypes,
but the triple-negative subtype also includes some special histological types [12,16]. Due
to the overlapping features, basal-like breast cancer can be misinterpreted as TNBC (77%
of them really are TNBC) [17]. Vice versa, 71–91% of TNBCs are basal-like, and the final
observation is that both types of breast cancer overlap and are classified differently. Addi-
tionally, each of these cancers has unique clinical outcomes, phenotypes, and pharmacologic
sensitivities [17].
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2. Triple-Negative Breast Cancer

TNBC accounts for approximately 15–20% of all breast cancers. It is most common
in premenopausal women younger than 40 years of age and individuals with inherited
gene mutations that primarily affect BRCA1 and/or BRCA2 genes. TNBC is character-
ized by aggressive clinical behavior and a poor prognosis, with a shorter survival of
these patients compared with other breast cancers [14,18]. The mortality rate is 40% in
the first five years after diagnosis, and it is mostly due to high invasiveness and distant
metastases (the median survival time for metastatic TNBC is only 13.3 months) [14,18].
One of the issues in treating TNBC is the lack of therapeutic targets [19], making local
treatments, such as surgery and radiotherapy, as well as chemotherapy-based systemic
therapy, the mainstays of TNBC treatment [20].

The intense genomic and transcriptional heterogeneity of TNBC is responsible for the
complexity of defining appropriate molecular targets in preclinical studies. Burstein et al.
proposed, after RNA and DNA profiling, a four-type classification of TNBC (Figure 1):
basal-like immuno-suppressed (BLIS), basal-like immuno-activated (BLIA), mesenchymal
(MES), and luminal androgen receptor type (LAR) [21]. Lehmann et al. redefined the
TNBC subtypes as follows: basal-like (BL1 and BL2), immunomodulatory (IM), MES, and
LAR [22]. For each subtype, the following is to be mentioned: BLIS tumors have the worst
outcome, while BLIA tumors have the best outcome; the LAR subgroup is defined by
specific biomarkers and targets, such as the androgen receptor MUC1 and several estrogens
regulated genes. The MES subgroup is defined by IGF1, which is the prostaglandin F
receptor [21]. A characteristic of the BL1 subtype is the increased expression of cell cycle
and DNA damage response genes. The BL2 subtype is defined by growth factor signaling
and myoepithelial markers. As already mentioned, the basal-like subtypes constitute 75%
of TNBC. According to studies, basal-like immunosuppressed TNBC subtypes have lower
numbers of B cells, T cells, and natural killer cells, resulting in a poorer prognosis.
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In general, all BRCA1 and BRCA2 mutations are associated with basal-like gene
patterns [10]. BRCA-mutated (mBRCA) breast cancer is more probable in individuals with
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a familial background of breast cancer, those who are younger, and those experiencing
concurrent or successive occurrences of breast and ovarian cancer on the opposite side [23].
The IM subtype is composed of genes that encode immune antigens, cytokine, and nuclear
immune signal transduction pathways, and likely represents gene expression from both
tumor cells and infiltrating lymphocytes. The MES subtype exhibits increased expression of
the epithelial–mesenchymal transition and growth factor genes. Luminal gene expression
is part of the LAR subtype, and the androgen receptor is a driver of the LAR subtype.
Cell lines of each subtype show different sensitivities to the alkylating agent cisplatin. All
mentioned subtypes may be targeted with efficient TNBC therapy in the future [21,22].

There are interesting data about the connection between TNBC and the tumor microen-
vironment (TME), which contains the extracellular matrix (ECM), vascular endothelial
growth factors, tumor-associated macrophages (TAMs), tumor-infiltrating lymphocytes
(TILs), and other molecules important for tumor growth and migration [10]. Genetic
modifiers, developmental pathways, growth factors, chemokines, exosomes, epigenetic
regulators, and microRNAs control the TME. Expertise on the TME and its regulators will
be beneficial in shaping targeted therapies for TNBC [24].

Currently, following the initial work-up, which involves radiological assessment of
the primary tumor using mammography, MRI, and/or ultrasound, the diagnosis of TNBC
is confirmed through the histopathological evaluation of tumor specimens obtained via
a core needle biopsy. Disease staging is then conducted by assessing the regional lymph
node involvement and determining the presence of distant metastases [16].

A blood-based liquid biopsy is one of the diagnostic methods that may be considered
for TNBC diagnosis in the future. A blood-based liquid biopsy analyzes the presence
of circulating tumor cells (CTCs), tumor-derived extracellular vesicles (exosomes), and
circulating tumor nucleic acids (ctNAs), which include circulating tumor DNA (ctDNA)
and microRNAs (miRNAs). The amount of ctDNA in the bloodstream depends on the size
of the tumor or metastases burden, which leads to the assumption that a higher ctDNA
concentration increases the probability of tumor metastasis existence [25].

3. TNBC Therapy

TNBC has traditionally been considered a heterogenous disease with poorly under-
stood behavior, thereby delaying the development of targeted therapy compared with other
breast cancer subtypes. Due to the lack of therapeutic targets, such as ER and PR expression
and HER2 overexpression, as well as the absence of actionable biomarkers and molecular
tumor growth drivers, the treatment of TNBC has been and continues to be mainly based
on chemotherapy as the standard of care. Significant progress in TNBC treatment has been
achieved by optimizing chemotherapy delivery by considering the selection, dosing, and
sequencing of cytotoxic drugs, as well as applied therapy protocols [26].

In early, localized disease, the improvement in outcome has been based on the escalation
of systemic therapy, and significant effort has been undertaken to switch from the historically
adapted approach of postoperative adjuvant systemic therapy toward therapy delivered
preoperatively in the neoadjuvant setting. Systemic therapy in this setting is composed of
anthracycline- and taxane-based chemotherapy combinations [16,27], decreasing the mortality
rate by ~38% in patients younger than 50 years and ~20% in patients aged 50–69 years old [28].
The efficacy of therapy varies greatly between subtypes. TNBC patients with basal-like
subtypes respond better to chemotherapy in comparison with the mesenchymal and luminal
androgen receptor subtypes [29,30]. The addition of a platinum compound to the standard
neoadjuvant therapy backbone has improved the pathological complete response (pCR) rates,
which can be attributed to the known TNBC sensitivity to DNA-damaging drugs [31–35]. The
described benefit was translated into the improvement of long-term outcomes, like event-free
survival (EFS), as well as disease-free survival (DFS) [36].

The neoadjuvant strategy has enabled in vivo assessment of tumor sensitivity to the
systemic treatment, and therefore, accelerated novel drug development, together with the
de-escalation of surgery [37,38]. It has also allowed for making decisions on postoperative
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adjuvant therapy escalation or de-escalation, depending on the individual response to the
neoadjuvant therapy [39,40]. Patients with an incomplete response to neoadjuvant therapy
experience higher recurrence and mortality rates, which are amplified with the extent of
residual disease measured by the pathologist using the Residual Cancer Burden (RCB)
index [41–45]. Patients who do not achieve a pCR should be offered adjuvant therapy after
surgery as a therapy escalation modality, while patients who achieve a complete response
are candidates for de-escalation strategy and could be spared the toxicity of additional
postoperative therapy. The new potential biomarkers for identifying high-risk patients
among those who do not achieve a pCR include the detection of minimal residual disease
by circulating free DNA and the assessment of tumor-infiltrating lymphocytes in residual
disease [45–47].

Patients with early TNBC treated with neoadjuvant chemotherapy alone who do
not achieve a pCR should be offered adjuvant capecitabin due to overall survival (OS)
improvement confirmed by the Asian Create-X study [35]. To improve the outcome of early
TNBC, the search for new therapy approaches is intensively ongoing, with new targets
emerging. Immunotherapy provides a good approach to targeting specific molecules in
immune and cancer cells. One such target is the programmed cell death protein ligand 1
(PD-L1) [18,48], which is expressed on tumor cells and binds to the programmed cell death
protein 1 (PD-1) expressed on the T cell surface [49]. The binding of PD-L1 to PD-1 enables
tumor cells to modulate the activity of immune cells (T cells in particular) in the tumor [50],
and therefore, it is not surprising that PD-L1 and/or PD-1 are highly expressed in TNBC
and are associated with histological-grade and tumor-infiltrating lymphocytes [18,48]. Sev-
eral clinical trials demonstrated significant improvement in the pCR with a combination of
chemo- and immunotherapy [51,52]. The anti-PD-1 monoclonal antibody and checkpoint
inhibitor pembrolizumab is currently the standard in combination therapy with anthra-
cycline, taxane, and carboplatin chemotherapy for high-risk (stage II and III) early TNBC
according to the Keynote-522 trial, regardless of PD-L1 expression [52,53]. In addition to
pembrolizumab, other checkpoint inhibitors, such as atezolizumab [54], cemiplimab [55],
and durvalumab, have been explored in the treatment of early TNBC. These trials have
demonstrated the benefits of immunotherapy, contributing to increased pCR rates and
prolonged invasive DSF (iDSF) [56].

Another strategy arises from tumor development, during which the accumulation of
mutations occurs due to DNA damage, evading multiple repairing mechanisms [57]. Poly-
ADP-ribose-polymerase (PARP) is a crucial protein involved in DNA repair mechanisms,
such as homologous recombination and non-homologous end-joining deficiency-based
repair, as well as base excision repair [58]. PARP inhibition is associated with the induction
of DNA damage and subsequent destruction of BRCA-mutated cancer cells [58]. Therefore,
PARP inhibitors, such as olaparib, are a therapy option in BRCA-mutated patients who
are upfront surgically treated for high-risk TNBC or those with residual disease after
neoadjuvant treatment of BRCA-mutated patients [23].

In addition to novel approved therapeutic options, such as immune checkpoint inhibi-
tion and targeted therapy (including PARP inhibition), antibody-drug conjugates (ADCs),
such as sacituzumab-govitecan (SG) and trastuzumab-deruxtecan (T-DXd), have emerged
as a new therapeutical approach, contributing to a modest improvement in the prognosis of
metastatic TNBC. ADCs are new antineoplastic agents consisting of a monoclonal antibody
conjugated to a cytotoxic payload by a linker. In addition to these two ADCs, other new
molecules are being investigated in metastatic TNBC, such as datopotamab-deruxtecan [59]
and patritumab-deruxtecan [60]. The described targeted therapies approved by FDA and
EMA are listed in Figure 2.
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included molecular expression for each molecule. Magenta boxes: header row and column, blue
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EMA and FDA, except * atezolizumab, which is approved by EMA only [61,62]. CPS—Combined
Positive Score; IHC—immunohistochemical score; ISH—in situ hybridization.

Furthermore, along with the aforementioned strategies, studies on AKT inhibitors
(e.g., capivasertib, ipatasertib), in combination with chemotherapy, are ongoing. Other
promising therapies include androgen receptor antagonists, JAK1/2 inhibitors, and PI3K
inhibitors for various subtypes, all of which are currently undergoing clinical trials [63,64].

The development of genomic, transcriptomic, and proteomic profiling of both cancer
cells, as well as the cancer microenvironment, has resulted in groundbreaking classifications
of TNBC, revealing distinct oncogenesis drivers [21,22,65,66]. As usual, novel therapies
initially demonstrated efficacy in the metastatic disease setting before swiftly advancing to
the neoadjuvant or adjuvant treatment of early breast cancer [39,53].

Unfortunately, in the setting of metastatic TNBC, therapy resistance will eventually
emerge. Multiple resistance mechanisms have been identified across different therapeutic
options. The continuous pursuit of new therapeutic strategies for pretreated patients aims
to overcome such resistance challenges [67].

4. Aquaporins

The aquaporin protein family consists of 13 members (AQP0–AQP12), with isoforms
expressed in specific tissues through unique combinations [68]. They are pores that facilitate
the transport of water and other small molecules across the membrane [8]. Affinity toward
different substrates categorizes them into distinct groups: orthodox aquaporins (AQP0,
AQP1, AQP2, AQP4, AQP5, AQP6, and AQP8) primarily facilitate water transport and
aquaglyceroporins (AQP3, AQP7, AQP9, and AQP10) channel glycerol, while S-aquaporins
are grouped due to their exclusive intracellular localization (AQP11 and AQP12) [8]. In
addition to their primary substrates, specific aquaporins, including AQP1, AQP3, AQP5,
AQP8, AQP9, and AQP11, also function as channels for hydrogen peroxide. The importance
of channeling hydrogen peroxide is recognized by naming them peroxiporins [69].

The crystal structures of AQPs reveal high similarities in their structures (Figure 3).
They are tetramers, with each monomer functioning independently of the others and
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forming the central pore [70]. Each monomer consists of six transmembrane α-helices with
five loops (loops A–E) in between [71]. Loops B and E are of special importance to aquaporin
gating [72]. These loops have an NPA motif (asparagine–proline–alanine) that are located
in the center of the channel [73]. The specificity of channeling is dictated by these motifs
that form an hourglass structure [74], thereby providing maximized permeability and
optimized hydrodynamic transport [75]. Another constriction site, the aromatic/arginine
(ar/R) constriction site, is near the extracellular side of the pore [76]. Residues at the ar/R
site are variable in the AQP family, being the factor that causes AQPs to differ in size
and hydrophobicity, as well as channel selectivity [77,78]. The importance of this site in
selectivity is supported by the study of Beitz et al., which showed that point mutation in
the ar/R region dictates the selectivity of the channel [77]. In addition, the ar/R region is
wider in aquaglyceroporins than in aquaporins [76].
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Although very similar in structure, they exhibit distinct characteristics and variations
in the ar/R constriction site, which affects the pore size and dictates their permeability.
AQP1 is a 28 kDa protein when unglycosylated, or approximately 40 kDa when glycosy-
lated [79]. Early research on erythrocytes revealed that AQP1 is a homotetramer with one
glycosylated subunit [80,81]. At its C-terminus, approximately 4.3 kDa in size, AQP1 con-
tains motifs for the Ca2+ binding site, which regulates gating via binding cyclic guanosine
monophosphate (cGMP) [80]. The ar/R constriction site of AQP1 comprises phenylala-
nine and histidine, which are common residues for orthodox AQPs, and cysteine, which
is specific to AQP1 [82]. Aquaglyceroporin AQP3 has its gating regulated by pH [83],
with pH-sensitive residues (His53, His154, Tyr124, and Ser152) located in its extracellular
loops [84]. AQP3 is also sensitive to divalent cations, such as Ni2+ or Co2+ [85]. The
residues Trp128, Ser152, and His241 located on its extracellular side were identified as
targets for the inhibition of these two divalent cations [84,86]. While AQP3 is known to be
permeable to glycerol, there are conflicting data on its permeability to urea, which could be
attributed to variations in assays used to measure this permeability [82]. AQP5 is a 265-
amino-acid-residue-long water-permeant aquaporin [71]. Interestingly, a high-resolution
X-ray structure showed the presence of phosphatidylserine in the central pore [87]. How-
ever, the role of phosphatidylserine in this context remains unclear. Most of the studies
focused on trafficking as a mode of AQP5 regulation and identified phosphorylation sites
that are thought to have a role in trafficking. Two of these phosphorylation sites, Ser152
and Ser156 [88,89], are located in loop D, while Thr259 is located in the C-terminus [90].
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The C-terminus also harbors Ser156, which is a target for protein kinase A phosphorylation,
which triggers the Ras signaling pathway [91].

The central pore is formed due to the tetrameric assembly of AQP monomers, leaving
a pore in the middle of the structure. The first reports implied that due to its hydrophobic
nature, the central pore conducts gases [92]. At first, there were implications that ions are
also transported through central pore, [92,93], but now we know that CO2, NO, Na+, K+,
and Cs+ permeate through the central pore of AQP1 [94,95]. The permeation of cations
is regulated by cGMP, which causes conformational changes of loop D [94]. Furthermore,
molecular dynamics showed that CO2 can permeate easier through the central pore than
through a monomer of AQP5, and it can also permeate through AQP1 and AQP4 [96,97].

Due to their involvement in the movement of these diverse molecules across the mem-
brane, aquaporins play a crucial role in cellular and tissue water homeostasis, migration,
cell–cell adhesion, and proliferation [71,98–100]. Furthermore, aquaporins play a role in
various pathological conditions that stem from the dysregulation of their expression and/or
pore activity. This dysregulation has cascading effects on the movement of water, glycerol,
and hydrogen peroxide, contributing to the complexities of these pathological scenarios.

In breast mammary glands, two peroxiporins are found, specifically AQP1 and
AQP3. AQP3 is highly expressed on the basolateral membranes of mammary ducts and
glands [101], while AQP1 has notably lower expression [102]. In breast cancer, the expres-
sion of both AQP1 and AQP3, along with newly occurring AQP5, is elevated [102,103].
Here, it should be noted that AQP5 is absent in normal, non-tumorigenic mammary tissue,
but appears in cancer, reaching its highest levels in metastatic breast cancer [103]. These
changes in AQP expression patterns highlight the importance of AQP-tissue-specific ex-
pression patterns as potential biomarkers of the malignant transformation of breast tissue.
Furthermore, increased AQP1 expression in breast cancer is emerging as a potential prog-
nostic marker, particularly for the basal-like phenotype of breast carcinoma, and correlates
with a poorer prognosis for patients [104]. The association of AQP1 with hypoxia-induced
angiogenesis, independent of VEGF [105], suggests that its increased level in tumors pro-
vides a strategic advantage in nutritional supply and supports growth. Moreover, the
effects of AQP1 overexpression extend beyond this, as the immunostaining of tumor tissue
reveals that AQP1 positivity moves from membrane-only to the cytoplasmic positivity, an
implication which still remains to be elucidated [104,106]. Furthermore, AQP1 positivity
showed stratification in tumor tissue, with stronger expression observed at the invasive
front of the tumor, indicating an important role in tumor growth [104].

5. Peroxiporins as Biomarkers for TNBC

The initial studies on aquaporins primarily focused on their expressions in tumor
tissue and on their roles in cellular functions within cellular models. In breast cancer,
AQP1 [107], AQP3 [108], and AQP5 [109] were found to be upregulated. The altered
cellular functions that result from their upregulation were comprehensively reviewed
in [98,103,110,111]. Notably, these three aquaporins are also regulated by trafficking, where
they are translocated to the membrane in response to hormonal stimuli through G-protein-
coupled receptors [112]. AQP5 localization within the tumor tissue correlates with a study
on MDCK cells, indicating no significant differences in overall AQP5 levels, but rather an
AQP5-intensified distribution at the site of migration [113]. AQP5 has also been associated
with the downregulation of junctional proteins, independent of Ras activation (Ser156
residue) triggering cell detachment, which is a crucial event in cancer dissemination [113].
Similarly, a decrease in junction proteins was also observed for AQP1, while AQP3 affected
different junctional proteins, indicating the importance of studying these AQPs together and
considering their relative ratios [98,113]. The intricate interplay between numerous proteins
contributing to cancer progression is reflected in the regulation of AQP1 by PKC [112,114],
which is often overexpressed in cancer, and thus, a target for cancer therapy [115]. The
inhibition of AQP1 by miR-3194-3p reduced the migration, proliferation, and apoptosis
of MDA MB 231 and MCF7 cells [116]. These examples illustrate just a few facets of AQP
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function in (cancer) cells. For these reasons, aquaporins are emerging as novel biomarkers
in the management of breast cancer, as well as other types of cancers. Their potential
applications in diagnostics are summarized in Table 2.

Table 2. Aquaporins and breast cancer diagnostics.

Peroxiporin Expression in BC Cytoplasmic
Localization in BC

Cancer Type
(Except BC) Increased Reference

AQP1 Increased in aggressive
basal-like BC + Brain, colon, lung, ovarian, colon

cancer, pancreatic, prostate cancer [117–123]

AQP3 Increased with
BC malignancy +

Colon, lung, prostate, esophageal
and oral squamous cell carcinoma,

hepatocellular, pancreatic
adenocarcinoma

[108,120,124–128]

AQP4 − N/A Brain, gastric, lung, pancreatic,
thyroid gland cancer [120,123,129,130]

AQP5

Not present in normal
breast epithelia;
associated with
BC malignancy

No data, but localized
on the invasive front of

the tumor

Ovary, prostate, gastric,
pancreatic cancer [123,126,131–135]

AQP6 − N/A Gastric, ovarian cancer [121,130]

AQP7 Overexpressed No data Prostate cancer [127,128]

AQP8 N/A N/A Cervical, gastric, pancreatic cancer [130,136]

AQP9 Increased No data Brain, ovarian, prostate cancer [120,121,127]

BC—breast cancer; N/A—not applicable.

Early research reported that AQP1 expression is associated with a particularly aggres-
sive subgroup of basal-like breast carcinomas and localizes predominantly in the membrane,
but also in the cytoplasm [104]. The AQP1-positive carcinomas also exhibited increased
membrane and cytoplasmic AQP1 positivity in all adjacent myoepithelial cells, further
supporting AQP1 as a strong marker of the poor outcome [104]. Furthermore, localization
of AQP1 was also shown to be a determining factor in prognosis. In benign lesions and in
situ ductal carcinomas, AQP1 was localized primarily in plasma membranes, whereas in
invasive ductal carcinoma cells, it was found in the cytoplasm and correlated with breast
cancer invasiveness [119]. Moreover, AQP1 expression is elevated in blood vessels of breast
cancer tissues. This is supported by the in vitro part of the same study, which showed that
AQP1 is induced by estrogen, highlighting the role of estrogen in angiogenesis [137].

A study of AQP3 and AQP5 expression patterns in TNBC patients indicates that the
overexpression of these two peroxiporins is strongly associated with tumor aggressiveness
and poor prognosis. Both AQP3 and AQP5 were found in the cytoplasm and membrane of
tumor cells [126,127], similar to APQ1. Furthermore, an analysis of the expression profile
of aquaglyceroporins, which was correlated with immunohistochemical staining, revealed
that in addition to AQP3, AQP7 and AQP9 are also expressed in normal breast epithelia
but are increased in invasive ductal carcinoma, with AQP7 and AQP9 localized only
intracellularly [127]. This study concluded that a unique combination of AQP expression
could serve as a biomarker for personalized anticancer therapy [127]. Interestingly, AQP7
regulates lipid, GSH, and urea/arginine metabolism, thereby regulating the response to
stress of cancer cells [138].

AQP5, along with AQP1 and AQP3, is strongly associated with breast cancer malig-
nancy, correlating with the tumor grade. It is more frequent in hormone-receptor-negative
tumors, and strongly correlated with HER2-positive tumors [139]. This increase in AQP5
expression is in some part due to gene amplification [139]. Several studies confirmed
through immunolabeling that AQP5 increases with the malignancy of the disease and
correlates with a poor prognosis [103,140,141]. Examining the localization of AQP5 within
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the tumor tissue, it is found at the invasive front of the tumor and decreases in necrotic
parts [126].

These studies suggest the possible use of AQPs as biomarkers for predicting the
prognosis. We are now aware that AQPs should be studied together rather than individually,
highlighting the interplay between isoforms of these channels in the regulation of cellular
processes that lead to pathology.

6. Peroxiporins as Potential Targets in TNBC Therapy

As our understanding of the pathways influenced by aquaporin activity increases,
the focus is now shifting toward the effects of aquaporins on cancer therapy. Moreover,
accumulating evidence suggests that aquaporins modulate cancer therapy resistance, with
the effect being specific to each involved aquaporin. The story gains complexity when
considering the tumor microenvironment, where interactions with adipocytes contribute
to the intricate story. Furthermore, specific aquaporins can have different roles in the
cancers of different origins [99]. In this context, we focused on peroxiporins, which have
demonstrated a significant role in breast cancer, with highlights summarized in Table 3.

Table 3. Aquaporins and breast cancer treatments.

Peroxiporin Therapy and Expression Interactions
and/or Regulation References

AQP1 Higher expression → sensitivity
to anthracycline

β-catenin
topoisomerase II

Annexin A2 and Rab1b
[117–119]

AQP3 Higher expression → resistance
to nucleotide analogs [108,124–126]

AQP5 Upregulation AQP5 expression
in doxorubicin-resistant variant

Ras regulation:
NFkB, JNK, MAPK, Rac1 [126,131–133]

BC—breast cancer.

Among AQPs, AQP1 emerged as a promising target to elucidate mechanisms of tumor
progression and therapy resistance. As discussed in the previous section, AQP1 showed
potential as a biomarker of breast cancer aggressiveness [119], linking its expression to in-
creased sensitivity to the anthracycline therapy of invasive ductal carcinoma patients [117].
These findings combined suggest that the subcellular localization of AQP1 [119] could
reflect its function in anthracycline sensitivity. In MDA-MB-231 cells, AQP1 competes with
GSK3β for binding to β-catenin, stabilizing the latter by inhibiting ubiquitination. This
interaction occurs via the C-terminus of AQP1 and results in increased sensitivity to epiru-
bicin by enhancing topoisomerase IIα activity [117]. Additionally, the role of cytoplasmic
AQP1 is further supported by a study on the MDA-MB-231 cell line. The overexpression of
AQP1 in these cells showed that AQP1 coprecipitated with Annexin A2, localizing to the
perinuclear Golgi region and inducing Golgi apparatus extension [118]. Furthermore, cy-
tosolic AQP1 forms a complex with cytosolic free Rab1b protein and Annexin A2, triggering
the secretion of ICAM1 and CTSS, and thus, inducing migration and invasion [118]. These
findings suggest that AQP1 serves not only as a biomarker for anthracycline sensitivity but
may be a potential target for preventing or reversing this resistance.

Another peroxiporin, AQP3, is a candidate for use in the management of breast cancer
chemotherapy resistance. Treatment with 5’fluorouracile, 5’-DFUR, and gemcitabine, but
not cisplatin, caused cell cycle arrest in MCF7, which is a response that was reversed by
silencing AQP3 [124]. Yet, in the triple-negative cell line MDA-MB-468, only gemcitabine
caused an increase in AQP3 mRNA and in cell volume [124]. In contrast, in another
study, AQP3 silencing in MDA-MB-231 cells reduced the proliferation and migration, as
well as increased the sensitivity to 5-fluorouracil, while leaving adhesion unaffected [125].
Although there is still not enough evidence for the role of AQP3 in chemotherapy resistance
in TNBC, accumulating evidence suggests that AQP3 can have a role in the resistance
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to nucleotide analogs in estrogen-positive tumors, which is not surprising, as estrogen-
binding sites are found in the promoter regions of the AQP3 gene [108]. As is the case with
AQP1, there is a question whether AQP3 localization in the cancer cell cytoplasm could be
of importance for its role in cancer aggressiveness.

Along with the aforementioned AQP1 and AQP3, AQP5 is strongly associated with
breast cancer malignancy [126]. Studies on the hormone-positive cell line MCF7 with
doxorubicin-sensitive and -resistant variants, suggest that at least several peroxiporins are
implicated in breast cancer resistance. Especially interesting is the upregulation of AQP5
expression in its doxorubicin-resistant variant. The silencing of AQP5 in this resistant
strain resulted in decreased proliferation and induction of apoptosis [131]. Yet, in the
AQP5-overexpressing MDA-MB-231 spheroids doxorubicin, a combination of doxorubicin,
cisplatin, and 5-FU or a combination with the Ras inhibitor salirasib, but not cisplatin and
5-FU alone, reduced the spheroid size and viability, indicating the role of AQP5 in the
sensitivity to doxorubicin [132]. Furthermore, AQP5 with a mutation for the Ras binding
site S156A did not affect the spheroid size, suggesting that Ras could have a role in the
increased sensitivity to doxorubicin [132]. AQP5 also positively regulates Rac1, which is
a protein that regulates lamellipodia; modulates cell growth by the activation of NFkB,
JNK, and p38 mitogen-activated protein kinase (MAPK); and also contributes to ROS
production [133]. In colorectal cancer cells, the knockdown of AQP5-sensitized cells to
5-FU acts through the inhibition of Wnt-β catenin signaling [142].

Studies on the role of aquaporins/peroxiporins in breast cancer and therapy resis-
tance usually focus on an individual aquaporin, overlooking potential changes and/or
interactions with other aquaporins. However, presenting changes in aquaporins relevant
to breast cancer in parallel could highlight the necessity of studying these aquaporins
together. Investigating AQP1, AQP3, and AQP5 together may yield deeper insights into
their interactions and collective contributions to therapy resistance in breast cancer.

Finally, the evidence on breast cancer tissue and on breast cancer cell lines implies
peroxiporin involvement in the development of cancer and therapy resistance. Their
intricate role in cell adhesion and change in cell localization in cancer highlights the need
to study them in more detail and to obtain a wider picture by introducing more than
one peroxiporin in the study due to their overlapping functions and differential roles in
different types of cancer.

7. Future Perspectives

Despite their straightforward role at first sight, aquaporins are complex and multifaced
proteins. Emerging research suggests that the interplay between various aquaporins can
significantly influence cellular responses, which is crucial for cancer treatment. In cancer,
there is a disbalance of aquaporins, not only in aquaporins present in the non-tumorigenic
tissue but also newly expressed aquaporins. Current evidence positions aquaporins as
biomarkers for the cancer progression and as important players in defining therapeutic
responses. Consequently, future research should focus on all isoforms actively expressed in
cancer cells. This could open the door for personalized therapies based on the aquaporin
expression profile and possible additional therapeutic strategies to target aquaporins,
thereby sensitizing cancer cells to treatment.

8. Conclusions

While aquaporins were at first described as the “plumbing system of the cell”, their
role in cellular processes and signaling pathways is very complex and multidimensional.
In addition, our understanding of the biology and specific molecular characteristics of
TNBC is improving, where we now recognize subtypes of this malignant disease. These
evolving fields present new opportunities for improving TNBC therapy. AQP1, AQP3, and
AQP5 have emerged as promising biomarkers for breast cancer malignancy, with studies
implying their role in the effectiveness of cancer chemotherapy. These AQPs have the
potential to support TNBC chemotherapy effectiveness and, as such, have a great potential
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as biomarkers for therapy selection in TNBC. Nevertheless, the previous studies imply
the necessity to study peroxiporin biology, integrating the new therapeutic approaches in
TNBC to elucidate their role and eventually incorporate them into clinical practice.
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4. de Maré, S.W.; Venskutonytė, R.; Eltschkner, S.; de Groot, B.L.; Lindkvist-Petersson, K. Structural Basis for Glycerol Efflux and

Selectivity of Human Aquaporin 7. Structure 2020, 28, 215–222.e3. [CrossRef] [PubMed]
5. Liu, K.; Kozono, D.; Kato, Y.; Agre, P.; Hazama, A.; Yasui, M. Conversion of Aquaporin 6 from an Anion Channel to a Water-

Selective Channel by a Single Amino Acid Substitution. Proc. Natl. Acad. Sci. USA 2005, 102, 2192–2197. [CrossRef] [PubMed]
6. Bienert, G.P.; Møller, A.L.B.; Kristiansen, K.A.; Schulz, A.; Møller, I.M.; Schjoerring, J.K.; Jahn, T.P. Specific Aquaporins Facilitate

the Diffusion of Hydrogen Peroxide across Membranes. J. Biol. Chem. 2007, 282, 1183–1192. [CrossRef] [PubMed]
7. Prata, C.; Hrelia, S.; Fiorentini, D. Peroxiporins in Cancer. Int. J. Mol. Sci. 2019, 20, 1371. [CrossRef] [PubMed]
8. Soveral, G.; Nielsen, S.; Casini, A. (Eds.) Aquaporins in Health and Disease, 1st ed.; CRC Press: Boca Raton, FL, USA, 2016.
9. Bill, R.M. Drugging Aquaporins. Biochim. Biophys. Acta (BBA) Biomembr. 2024, 1866, 184164. [CrossRef] [PubMed]
10. Obidiro, O.; Battogtokh, G.; Akala, E.O. Triple Negative Breast Cancer Treatment Options and Limitations: Future Outlook.

Pharmaceutics 2023, 15, 1796. [CrossRef]
11. Jusu, S.M.; Obayemi, J.D.; Salifu, A.A.; Nwazojie, C.C.; Uzonwanne, V.; Odusanya, O.S.; Soboyejo, W.O. Drug-Encapsulated Blend

of PLGA-PEG Microspheres: In Vitro and in Vivo Study of the Effects of Localized/Targeted Drug Delivery on the Treatment of
Triple-Negative Breast Cancer. Sci. Rep. 2020, 10, 14188. [CrossRef]

12. Neves Rebello Alves, L.; Dummer Meira, D.; Poppe Merigueti, L.; Correia Casotti, M.; do Prado Ventorim, D.; Ferreira Figueiredo
Almeida, J.; Pereira de Sousa, V.; Cindra Sant’Ana, M.; Gonçalves Coutinho da Cruz, R.; Santos Louro, L.; et al. Biomarkers in
Breast Cancer: An Old Story with a New End. Genes 2023, 14, 1364. [CrossRef] [PubMed]

13. Menon, S.S.; Guruvayoorappan, C.; Sakthivel, K.M.; Rasmi, R.R. Ki-67 Protein as a Tumour Proliferation Marker. Clin. Chim. Acta
2019, 491, 39–45. [CrossRef] [PubMed]

14. Loizides, S.; Constantinidou, A. Triple Negative Breast Cancer: Immunogenicity, Tumor Microenvironment, and Immunotherapy.
Front. Genet. 2023, 13, 1095839. [CrossRef] [PubMed]

15. Neiger, H.E.; Siegler, E.L.; Shi, Y. Breast Cancer Predisposition Genes and Synthetic Lethality. Int. J. Mol. Sci. 2021, 22, 5614.
[CrossRef] [PubMed]

16. Cardoso, F.; Kyriakides, S.; Ohno, S.; Penault-Llorca, F.; Poortmans, P.; Rubio, I.T.; Zackrisson, S.; Senkus, E. Early Breast Cancer:
ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Ann. Oncol. 2019, 30, 1674. [CrossRef] [PubMed]

17. Wang, D.-Y.; Jiang, Z.; Ben-David, Y.; Woodgett, J.R.; Zacksenhaus, E. Molecular Stratification within Triple-Negative Breast
Cancer Subtypes. Sci. Rep. 2019, 9, 19107. [CrossRef] [PubMed]

18. Yin, L.; Duan, J.-J.; Bian, X.-W.; Yu, S. Triple-Negative Breast Cancer Molecular Subtyping and Treatment Progress. Breast Cancer
Res. 2020, 22, 61. [CrossRef] [PubMed]

19. Almansour, N.M. Triple-Negative Breast Cancer: A Brief Review About Epidemiology, Risk Factors, Signaling Pathways,
Treatment and Role of Artificial Intelligence. Front. Mol. Biosci. 2022, 9, 836417. [CrossRef]

20. Zheng, Y.; Li, S.; Tang, H.; Meng, X.; Zheng, Q. Molecular Mechanisms of Immunotherapy Resistance in Triple-Negative Breast
Cancer. Front. Immunol. 2023, 14, 1153990. [CrossRef]

21. Burstein, M.D.; Tsimelzon, A.; Poage, G.M.; Covington, K.R.; Contreras, A.; Fuqua, S.A.W.; Savage, M.I.; Osborne, C.K.;
Hilsenbeck, S.G.; Chang, J.C.; et al. Comprehensive Genomic Analysis Identifies Novel Subtypes and Targets of Triple-Negative
Breast Cancer. Clin. Cancer Res. 2015, 21, 1688–1698. [CrossRef]

https://doi.org/10.1074/jbc.273.24.14659
https://www.ncbi.nlm.nih.gov/pubmed/9614059
https://doi.org/10.1038/414872a
https://www.ncbi.nlm.nih.gov/pubmed/11780053
https://doi.org/10.1007/s00018-007-7163-2
https://www.ncbi.nlm.nih.gov/pubmed/17571212
https://doi.org/10.1016/j.str.2019.11.011
https://www.ncbi.nlm.nih.gov/pubmed/31831212
https://doi.org/10.1073/pnas.0409232102
https://www.ncbi.nlm.nih.gov/pubmed/15671159
https://doi.org/10.1074/jbc.M603761200
https://www.ncbi.nlm.nih.gov/pubmed/17105724
https://doi.org/10.3390/ijms20061371
https://www.ncbi.nlm.nih.gov/pubmed/30893772
https://doi.org/10.1016/j.bbamem.2023.184164
https://www.ncbi.nlm.nih.gov/pubmed/37146744
https://doi.org/10.20944/preprints202306.0074.v1
https://doi.org/10.1038/s41598-020-71129-0
https://doi.org/10.3390/genes14071364
https://www.ncbi.nlm.nih.gov/pubmed/37510269
https://doi.org/10.1016/j.cca.2019.01.011
https://www.ncbi.nlm.nih.gov/pubmed/30653951
https://doi.org/10.3389/fgene.2022.1095839
https://www.ncbi.nlm.nih.gov/pubmed/36712858
https://doi.org/10.3390/ijms22115614
https://www.ncbi.nlm.nih.gov/pubmed/34070674
https://doi.org/10.1093/annonc/mdz189
https://www.ncbi.nlm.nih.gov/pubmed/31236598
https://doi.org/10.1038/s41598-019-55710-w
https://www.ncbi.nlm.nih.gov/pubmed/31836816
https://doi.org/10.1186/s13058-020-01296-5
https://www.ncbi.nlm.nih.gov/pubmed/32517735
https://doi.org/10.3389/fmolb.2022.836417
https://doi.org/10.3389/fimmu.2023.1153990
https://doi.org/10.1158/1078-0432.ccr-14-0432


Int. J. Mol. Sci. 2024, 25, 6658 13 of 17
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