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A B S T R A C T

Hyperspectral imaging (HSI) holds significant potential for transforming the field of computational pathology. 
However, the number of HSI-based research studies remains limited, and in many cases, the advantages of HSI 
over traditional RGB imaging have not been conclusively demonstrated, particularly for specimens collected 
intraoperatively. To address these challenges we present: (i) a database consisted of 27 HSIs of hematoxylin-eosin 
stained frozen sections, collected from 14 patients with colon adenocarcinoma metastasized to the liver. It is 
aimed to validate pixel-wise classification for intraoperative tumor resection; (ii) a novel method which combines 
Grassmann points with nearest subspace classifier for pixel-wise classification of HSIs. The HSIs were acquired in 
the spectral range of 450 nm–800 nm, with a resolution of 1 nm, resulting in images of 1384 × 1035 pixels. Pixel- 
wise annotations were performed by two pathologists and one medical expert. To overcome challenges such as 
experimental variability and the lack of annotated data, we applied Grassmann manifold (GM) approach in 
combination with spectral-spatial features extracted by tensor singular spectrum analysis (TSSA) method to non- 
overlapping patches of 230 × 258 pixels. Using only 1 % of labeled pixels per class, the GM-TSSA method 
achieved a micro balanced accuracy (BACC) of 0.963 and a micro F1-score of 0.959 on the HSI dataset. The GM- 
TSSA approach outperformed six deep learning architectures trained with 63 % of labeled pixels. Data are 
available at: https://data.fulir.irb.hr/islandora/object/irb:538, and code is available at: https://github.com/ikop 
riva/ColonCancerHSI.

1. Introduction

Segmentation and classification of medical images are crucial for 
disease diagnosis, therapy planning, follow-up tracking of therapy effi
ciency, and intraoperative tumor resection. It is known that life expec
tancy improves with the extensive resection of both primary tumors and 
their metastasis, such as colon adenocarcinoma in the liver [1]. This also 

applies to other tumors, including gliomas [2], and oral squamous cell 
carcinomas [3]. In particular, the margin of non-tumor tissue sur
rounding the tumor, known as the resection margin [4], is a powerful 
predictor of the 5-year survival rate [5–7]. However, achieving total 
resection is challenging due to tumor infiltration into surrounding tis
sue, making tumor borders difficult to identify. Surgeons rely on intra
operative information provided by pathologists, who perform 
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near-real-time analysis of rapidly frozen and stained histopathological 
sections. Traditionally, as noted in Ref. [8], computational pathology 
has relied on RGB images of these sections, which limits information to 
the visual range and excludes the data across the continuous spectral 
range. To address this limitation, hyperspectral imaging (HSI) technol
ogy is increasingly being used in various medical imaging applications, 
including computational pathology. We refer interested readers to 
Ref. [8] for an overview of computational pathology from 2013 to 2019, 
to Ref. [9] for surgical applications over the same period, to Ref. [10] for 
medical HSI research from 1998 to early 2013, and to Ref. [11] for the 
review of major developments of spectral imaging technology in the 
biomedical field.

Although HSI has demonstrated its potential to detect diseases- 
related pathological changes, several unresolved issues still prevent 
the routine use of HSI in computational pathology. While HSI is gener
ally assumed to offer performance improvements over RGB imaging, the 
number of studies supported this claim is limited, as highlighted in 
Ref. [8], and further research is needed to confirm the advantages of HSI 
technology over traditional RGB images. Studies such as [12–15] are 
addressing this gap. Since HSI captures both spatial (morphological) and 
spectral information from specimens, classifiers that leverage both 
spectral and spatial features have been shown to outperform those 
relying solely on spectral information [3,7,13,15–23]. Most of the ar
chitectures cited above are deep networks, which require large amounts 
of annotated HSI data for training to avoid overfitting. However, as 
noted in Refs. [8,14,24,25], there is a significant lack of annotated HSI 
databases. That is especially the case with the HSI databases in histo
pathology annotated on pixel level and that is required for solving tumor 
demarcation problem. Two primary factors contribute to this shortage. 
First, due to time constraints, data collection during intraoperative 
procedures is demanding, even for RGB microscopic images [1]. Second, 
pixel-wise annotation requires pathologists, whose availability is 
limited. Additionally, the appearance of HSI data differs significantly 
from RGB images, making the annotation process even more challenging 
[13]. Our investigation on HSI databases in histopathology discovered 
that only [14,25] provide ground truth information based on pixel-wise 
labeling by pathologists. Outlined factors hinder the routine usage of 
HSI in computational pathology. To address this, several HSI databases 
have been created [19,22,26–28]. However, due to the privacy protec
tion reason public access to HSI databases in histopathology is allowed 
only in Refs. [14,25–28].

Motivated by the issues outlined above we present herein the 
following contributions: 

1) HSI database creation: We introduce a novel database of 27 HSIs of 
hematoxylin-eosin (H&E) stained frozen sections, collected intra
operatively from 14 patients with colon adenocarcinoma metasta
sized to the liver. The HSIs were acquired in spectral range from 450 
nm to 800 nm, with a 1 nm resolution. To the best of our knowledge, 
a HSI database for specified diagnosis does not exist yet, at least not 
with public access. In addition to the HSIs, the dataset includes pixel- 
wise ground truth maps labeled by three pathologists, distinguishing 
cancerous and non-cancerous pixels, as well as co-registered pseudo 
RGB images. The ground truth maps are accompanied with rigorous 
kappa-statistics-based assessment of inter- and intra-annotator 
agreement. To the best of our knowledge, this is the first HSI data
set of frozen sections for this metastatic colon cancer in the liver, 
addressing the scarcity of intraoperative HSI datasets, particularly 
for metastatic colorectal cancer.

2) A Grassmann manifold and nearest subspace classifier approach to 
semi-supervised learning with spectral-spatial features: To address 
challenges such as costly expert labeling, experimental variability, 
and limited annotated data, we propose combination of Grassmann 
manifold [29,30] and nearest subspace classifier for pixel-wise 
classification of HSIs. We estimate Grassmann points, bases of sub
spaces that represent cancer and non-cancers classes, from small 

neighborhoods of randomly selected small percentage of labeled 
pixels. Labels are assigned to the rest of the pixels by using the 
nearest subspace classifier. In combination with Grassmann manifold 
approach, we leverage recently developed spectra-spatial feature 
extraction technique called tensor singular spectrum analysis (Ten
sorSSA) [31]. We compared proposed approach with 
label-propagation-based semi-supervised learning method achieving 
high-quality classification performance with as little as 0.5 % of 
labeled pixels. Unlike deep networks, proposed approach can be 
applied on a HSI-by-HSI basis, making it suitable for very few HSIs. 
Proposed methodology is illustrated in Fig. 1.

2. Materials and methods

Hyperspectral imaging technology has been widely used for many 
years in remote sensing, supporting applications in resource manage
ment, agriculture, exploration of minerals, monitoring of environment, 
and more [32]. Since the late 1990s, HSI has also been applied in various 
medical imaging applications, showing significant potential in cancer 
diagnosis for the cervix, breast, colon, head and neck, prostate, ovary 
and lymph nodes, among others. For more detailed references on these 
applications see Ref. [10].

2.1. Hyperspectral imaging in computational pathology

In this section, we provide review of HSI databases in histopatholo
gy. Since our contribution is focused on tumor demarcation, we focus on 
databases that satisfy the following criteria: (i) annotation is performed 
on pixel-wise level; (ii) co-registered RGB or pseudo RGB images are 
available together with HSIs; (iii) HSIs are recorded at the high spectral 
resolution (iv) database is public. A hyperspectral microscopic patho
logical dataset of cholangiocarcinoma is presented in Ref. [14]. Dataset 
contains 880 hyperspectral images collected from 174 patients with 
pixel-wise tumor labeling by pathologists. HSIs are acquired in spectral 
range between 500 nm and 1000 nm at 30 spectral channels. Binary 
prediction of convolutional neural network (CNN) on the patch level is 
combined with random forest classifier for prediction on the scene 
(image) level and that achieved accuracy of 0.937. Dataset is publicly 
available. Performance improvement in comparison with RGB images is 
demonstrated as well. A large-scale dataset is built containing HSIs of 
924 scenes of precancerous lesions in gastric cancer [15]. HSIs were 
acquired in spectral range between 450 nm and 700 nm at 40 spectral 
channels, i.e. 6.25 nm spectral resolution. Self-supervised learning 
method is developed and applied in combination with pre-trained 
ResNet18 and ResNet50 backbones. The method is focused on diag
nosis on the patch level in terms of normal, intestinal metaplasia and 
gastric intraephitelial neoplasia. Performance improvement in compar
ison with RGB images is demonstrated as well. Dataset is not publicly 
available. A dataset containing 469 HSIs of 13 patients diagnosed with 
glioblastoma is presented in Ref. [24]. HSIs were acquired in spectral 
range between 400 nm and 1000 nm at 826 spectral channels. Pathol
ogists provided annotations on the image level. Dataset is publicly 
available. A multidimensional publicly available Choledoc database is 
described in Ref. [25]. It contains HSIs and RGB images of 880 scenes of 
174 patients diagnosed with cholangiocarcinoma with the pixel-wise 
annotations of the tumor cells. HSIs were acquired in spectral range 
between 550 nm and 1000 nm at 60 spectral channels. A publicly 
available dataset containing 517 HSIs of brain tissue with glioblastoma 
is presented in Ref. [28]. HSIs were acquired in spectral range between 
400 nm and 1000 nm with a resolution of 2.8 nm, i.e. 826 spectral 
channels. Samples were extracted during brain tumor surgery and 
stained with H&E. Images are annotated on the regions-of-interest level. 
A database containing HSIs from 68 patients with two types of mem
branous nephropathy (MN) is introduced in Ref. [27]. A tensor 
patch-based linear discriminative regression method was proposed for 
classification, exploiting the characteristics of medical HSIs. In 
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Ref. [33], a key challenge in surgical HSI is addressed - the development 
of public intraoperative HSI neurosurgical database. The HSI camera 
captures images within the 500 nm–900 nm spectral range, and a 
spectral resolution of 3 nm–5 nm. Corresponding RGB images were also 
obtained as anatomical references, which were used to label the HSI 
data. The database includes 52 HSIs acquired during 10 microsurgical 
operations. In Ref. [34], the use of HSI acquired over micro-FTIR HSI 
absorbance spectroscopy for characterizing of cancerous, inflammatory 
and healthy colon tissues is discussed. In total 71 HSIs were acquired: 24 
form healthy tissue, 27 from inflammatory tissue and 20 from cancerous 
tissue. In comparison with discussed datasets, our dataset is the only one 
containing HSI of metastatic colon cancer in the liver. It is also among 
the few datasets only that are publicly available. In addition to our 
dataset, only two more datasets are annotated on the pixel level, i.e. they 
can be used for studies related to tumor demarcation. Our dataset is 
recorded at the spectral resolution of 1 nm which also makes it unique.

2.2. Hyperspectral image database

The database consists of 27 HSIs of H&E stained frozen sections, 
collected intraoperatively from 14 patients diagnosed with adenocarci
noma of the colon in the liver. These specimens were gathered through a 
clinical study funded by the Croatian science foundation grant IP-2016- 
06-5235, conducted between March 2017 and February 2020 at the 
Department of Pathology and Cytology, Clinical Hospital Dubrava, 
Zagreb, Croatia. The Institutional Review Board of Clinical Hospital 
Dubrava approved the collection of samples on May 24, 2016. All pa
tients provided written informed consent, and the data were anony
mized. The HSIs were recorded across a spectral range of 450 nm–800 
nm, with a spectral resolution of 1 nm, and a spatial resolution of 0.11 
μm2. Each image has a size of 1384 × 1035 pixels and is stored in HDF5 
format. Accompanying each HSI is a binary ground truth map created 
through majority voting of pixel-wise annotations by two pathologists 
(A.P and M.M.P) and a medical expert (M.H). Two images per patient 
were acquired for thirteen patients and one image for one patient. 
Regarding the cancer stages, for twelve patients they are given as 
pT4aN2aM1a, pT2N1aM1a, pT3N2aM1a, pT3N0M1a, pT3N0M1a, 
pT3N0M1a, pT3N2bM1a, pT1N0M1a, pT3N4aM1a, pT3(2)N1bM1a, 
pT4aN1aM1a and pT3N2bM1a. For two patients staging information is 
not available.

2.2.1. Hyperspectral image acquisition
Regions of interest were marked by pathologists on H&E stained 

histopathological specimens. These regions were then imaged using 
Photon etc’s hyperspectral fluorescence microscope IMA, [35], as shown 
in Fig. 2. The IMA employs volume Bragg gratings (VBG) to capture 
spectrally resolved images, which are combined into a hyperspectral 
data cube. The use of VBG allows for global imaging, where signals from 
all points within the field of view are collected simultaneously, avoiding 
the need for x-y or line scanning. The resulting data cubes are composed 
of 351 Gy scale images, each with a spectral resolution of 1 nm, covering 

the 450 nm–800 nm range, with a focus at 590 nm. Broadband source 
was used for illumination. The images were captured using a 20 ×
objective lens with the exposure time of 500 ms, producing images of 
1392 × 1040 pixels with a field-of-view of 449μm × 335 μm. This cor
responds to a spatial resolution of 0.11 μm2 per pixel, which effectively 
eliminates the mixing of cancer and non-cancer tissues at the pixel level. 
To avoid edge effects, we retained rows 4:1387 and columns 6:1040 
columns, resulting in a final data cube size of 1384 × 1035 × 351. Data 
were normalized using the lamp spectrum. Fig. 3 shows spatially aver
aged spectral profiles of one pixel labeled as cancerous and another 
labeled as non-cancerous.

2.2.2. Pixel-wise annotation
Pixel-wise annotation was performed by two pathologists, (A.P. and 

M.M.P.), and one medical expert (M.H.). Pixel-wise labeling of HSIs is 
challenging for pathologists due to the visual differences between HSIs 
and RGB images [13]. Since HSI system used in Fig. 2 cannot capture 
co-registered HSIs and RGB images simultaneously, we adopted the 
approach from Ref. [19]. For each HSI, we constructed a corresponding 
pseudo RGB image, a common practice in remote sensing for HSI visu
alization [36].3 This process involves generating realistic color images 
by mapping the visible spectrum of the HSIs to the CIE XYZ color space, 
then converting it to the standardized RGB color space. Subsequently, 
pixel-wise labeling by experts was conducted on pseudo RGB images, 
aided by a super-pixels-based software system, described in Ref. [1]. 
Fig. 4 shows an example of pseudo RGB image constructed from a HSI, 
along with its ground truth map, generated by majority voting as 
explained below.

The annotation process is inherently affected by inter-observer and 
intra-observer variability, which can introduce subjectivity into the la
beling of images [37]. To address this issue, three experts are involved in 
the annotation process. After an initial round of annotations on pseudo 
RGB images, the same three experts were asked to repeat the annotation 
process three months later. To evaluate the reliability of the annotations 
and measure agreement among the annotators, Fleiss’ kappa statistics 
were employed [38,39]. Table 1 presents kappa statistics 
intra-annotator agreements reproduced from Ref. [38]. Table 2 presents 
the estimated kappa values indicating the agreement among three an
notators (two pathologists and one medical expert) for the first and 
second labeling sessions. According to Table 1, the agreement between 
the two pathologists was nearly perfect in both annotations, while their 
agreement with medical expert was significantly lower, particularly 
during the first annotation.

It can be observed from Table 2, that the agreement between medical 
expert (M.H.) and the two pathologists improved in the second anno
tation session. For the formation of the final ground truth, we utilized 
both annotations from the pathologists and the second annotation from 

Fig. 1. Illustration of the proposed Grassmann manifold approach for semi-supervised pixel-wise classification of hyperspectral images (HSIs) of frozen sections from 
metastatic colon cancer in the liver. Using TensorSSA spectral-spatial features [31], Grassmann manifold approach outperforms significantly a label-propagation 
based semi-supervised learning approach to pixel-wise classification of HSIs, see section 3.4. Yellow color indicates cancerous tissue and blue color represents 
non-cancerous tissue. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

3 The MATLAB code for method from Magnusson et al. (2020) https://gith 
ub.com/JakobSig/HSI2RGB.
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Fig. 2. Hyperspectral fluorescence microscopy system equipped with volume Bragg gratings and an optical microscope.

Fig. 3. Left: Pseudo RGB image of a patch from which cancerous and non-cancerous pixels were extracted. Right: Spatially averaged spectra of cancer-annotated 
pixel (red) and non-cancer-annotated pixel (green) in the 450–800 nm range, with a spectral resolution of 1 nm. Spectra are averaged on neighborhood with the 
size of 5 × 5 pixels. (For interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)

Fig. 4. Pseudo RGB image (left) constructed from the corresponding HSI using the method from Ref. [36]. The associated ground truth map (right) shows pixel-wise 
annotations, where yellow color indicates cancerous tissue and blue color represents non-cancerous tissue. (For interpretation of the references to color in this figure 
legend, the reader is referred to the Web version of this article.)
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the medical expert through majority voting. The estimated kappa sta
tistics for selected five annotations was κ = 0.754 which, according to 
Table 1, indicates the substantial agreement. To contribute further to the 
transparency of the annotation process we show in Fig. 5 kappa statistics 
estimated between "five" annotators on image-by-images basis. It can be 
observed that agreement on only one image is below substantial as well 
as that agreements on six images are almost perfect.

Fig. 6 displays the annotations made by the two pathologists and the 
medical expert for the pseudo RGB image shown in Fig. 4. The source of 
disagreement between the pathologists and the medical expert stemmed 
from the categorization of a necrotic area within the tumor, which was 
addressed and resolved in the second annotation.

2.3. Methodology

As indicating in the Introduction, in addition to hyperspectral image 
database another contribution of the paper is a Grassmann manifold and 
nearest subspace classifier approach to semi-supervised pixel-wise 
classification of hyperspectral images. This is motivated by need to 
reduce the reliance on a large amount of annotated pixels for training as 
well as by need to cope with batch effects caused by experimental 
variabilities.

2.3.1. Grassmann manifold approach to semi-supervised pixel-wise 
classification of HSIs

Pixel-wise classification of HSIs can be seen as instance of wider 
problem related to clustering high-dimensional data with complex 
intrinsic relations and nonlinear manifold structure. This problem is 

known as demanding [28], and it is dominantly addressed by 
kernel-based methods and deep networks-based methods. However, the 
Grassmann manifold-based representation is legitimate candidate to 
address this problem, see Refs. [40–43] for examples of Grassmann 
manifold approaches to clustering data from nonlinear manifolds. Let us 
assume the HSI cube is represented as X ∈ Rh×w×b, where h represents 
number of rows, w represents number of columns and b represents 
number of spectral bands. The canonical Union-of-Subspaces (UoS) 
model asserts that data in a b-dimensional ambient space can be rep
resented through a union of C low-dimensional subspaces [44,45]: 
M C = ∪C

c=1S c, Σc is a subspace in Rb. Thereby, dim(Σc) = dc ≪ b. By 
assuming further {dc = d}C

c=1, each Σc corresponds to a point on the 
Grassmann manifold G (b,d), which denotes the set of all d-dimensional 
linear subspaces of b-dimensional Euclidean spaces [30] 4: 

G (b, d)=
{
Y∈Rb×d : YTY= Id

}/
O (d) (1) 

where O (d) represents the group of d-orthonormal matrices and d ≤ b. 
Each point on G (b, d) is represented as follows: 

S : = spand(Y) (2) 

Equation (1) ensures the equivalence relation: 

[Y] =
{
YQ
⃒
⃒YTY= Id,Q∈O (d)

}
. (3) 

Two representatives Y1 and Y2 are equivalent if there exists Q ∈ O (d)
such that Y1=Y2Q. In other words, the two representatives Y1 and Y2 are 
equivalent if they span the same subspace: 

spand(Y1)= spand(Y2). (4) 

Therefore, usually one representative is taken to represent the 
Grassmann point. In pixel-wise classification problem considered in the 
paper, the HSI tensor Ξ is matricized: 

X ∈Rh×w×b → X ∈ Rb×hw (5) 

It is clear that proposed Grassmann manifold approach is derived for 
multiclass problem. However, since the current paper is focused on 
tumor demarcation problem we assume the existence of two classes or 
groups: cancerous and non-cancerous, i.e., C = 2. Thus, the pixels labels 
are from the set {ci ∈ {0,1}}hw

i=1. By convetion 0 implies non-cancerous 
pixels and 1 implies cancerous pixels. To estimate representatives of 
the Grassmann points,Y0 and Y1, on non-canerous and cancerous man
ifolds we need to form non-cancerous and cancerous pixel-sets 
{

X
͝

c ∈ Rb×n
͝
c

0+

}

c∈{0,1}
from which representatives of Grassmann points 

will be estimated according to: 

X
͝

c = UcΣcVT
c

Yc ∈ Rb×d = Uc(:, 1 : d) c ∈ {0,1}
(6) 

where d in (6) represents the uknown subspace dimension. In the spirit 
of semi-supervised learning (SSL), [46,47], we select a small amnout of 

labeled data, 
{

X
͝

cc

}1

c=0
, from each category. Then, according to (6) we 

construct representatives of Grassmann points, Y0 and Y1, that corre
spond to non-cancerous and cancerous category. Classification of the 

remaning pixels belonging to the set X
͝
∈ R

b×nx
0+ := X\

{

X
͝

0 ∪X
͝

1

}

is based 

on the minimum of a point-to-subspace distance criterion [48]. For this 
purpose we first compute: 

Table 1 
Kappa statistics and strength of agreement [38].

Kappa statistics Strength of Agreement

<0.00 Poor
0.00–0.20 Slight
0.21–0.40 Fair
0.41–0.60 Moderate
0.61–0.80 Substantial
0.81–1.00 Almost Perfect

Table 2 
Inter-annotators agreements in terms of kappa statistics for two annotation 
sessions. 0.61≤kappa≤0.8 indicates substantial agreement, see Table 1.

Annotation AP-MMP-MH AP-MMP AP-MH MMP-MH

1. 0.6966 0.7698 0.6542 0.6636
2. 0.7228 0.7687 0.6827 0.7136

Fig. 5. Kappa statistics estimated between "five" annotators on image-by- 
image basis.

4 From dim(Σc) = dc ≪ b it is evident that, due to low-dimensionality of the 
ambient space, the Grassmann manifold concept is not applicable to pixel-wise 
classification of RGB images where b = 3.
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⎧
⎪⎪⎨

⎪⎪⎩

X
͝

c ← X
͝

c −

⎡

⎢
⎢
⎣μc...μc⏟̅̅̅⏞⏞̅̅̅⏟

n
͝
c times

⎤

⎥
⎥
⎦

⎫
⎪⎪⎬

⎪⎪⎭

c ∈ {0,1} (7) 

where: 

μc =
1

n
͝

c

∑n
͝
c

i=1
Xc(:, i) c ∈ {0,1}. (8) 

We now apply (6) to 
{

X
͝

c

}1

c=0 
to estimate representatives {Yc}

1
c=0. 

Note that despite (7) and (8), {Yc}
1
c=0 are still representatives of Grass

mann points because they satisfy condition (1): YT
c Yc = Id c ∈ {0,1}. We 

now assign label to a new pixel x ∈ X
͝ 

according to Ref. [26]: 

l(x)= argmin
k∈{0,1}

⃦
⃦x̃k

− YkYT
k x̃k⃦⃦

2 (9) 

where x̃k
= x − μk. We summarize our approach to pixel-wise classifi

cation on Grassmann manifolds in Algorithm 1. 

Algorithm 1. Pixel-wise classification on Grassmann manifolds 

Input: Vectorized hyperspectral image X ∈ Rb×hw
0+ . Labeled pixel- 

subsets X
͝

c ∈ Rb×n
͝
c c ∈ {0,1}. We assume n

͝
0 = n

͝
1 = n.

Step 1: Compute X
͝

c←X
͝

c c ∈ {0,1} using (7) and (8).
Step 2: Compute representatives Y0 and Y1 of Grassmann points 
using (6).

Step 3: Assign label l(x) to arbitrary pixel x ∈ X
͝
:= X\

{

X
͝

0 ∪X
͝

1

}

using (9).

Output: Assigned labels l(x): x ∈ X
͝
:= X\

{

X
͝

0 ∪X
͝

1

}

.

To improve quality of classifier as well as quality of representatitv
ness in the Algorithm 1 we can apply spatial averaging by taking into 
account the local neighborhood information. To be specific we define 
the neighborhood around selected pixel: 

xij ∈Rb
0+ = X (i, j, :) i ∈ {1, ..., h}, j ∈ {1, ...,w}.

We form a local patch: 

X ij ∈R
(2p+1)×(2p+1)×b
0+ p ∈ N0 (10) 

centered at xij. If p = 0, the local patch X ij coincides with xij. The total 
number of pixels in the patch is (2p+1)2. We assume that in the local 
neighborhood of xij are mostly the pixels belonging to the same category 
(cancerous or non-cancerous). Thus, it is important that p is not too 
large. In the experiments reported in section 3.4 we used p∈{0, 1, 2, 3, 4, 
5, 6, 7} and achieved the best results with p = 5. Now, we map xij into 
the patch mean (spatial average): 

xij→xij

xij =
1

(2p + 1)2

∑2p+1

k=1

∑2p+1

l=1
X ij(k, l, :)

(11) 

We perform mapping (11) in both cases, when computing the rep
resentatives of Grassmann points from labeled pixel subsets, as well as 

when assigning labels to arbitrary pixels from X
͝
.

Fig. 6. Annotations from two pathologists and one medical expert are presented from left to right. Each set of annotations is shown from top to bottom: the first 
annotation followed by the second annotation. Yellow color indicates pixels annotated as cancer, and blue color indicates pixels annotated as non-cancer. (For 
interpretation of the references to color in this figure legend, the reader is referred to the Web version of this article.)
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2.3.2. HSI classifiers based on spectral-spatial features
As is discussed in Section 2.1, designing a deep architecture that 

effectively extracts discriminative spectral-spatial features from HSIs 
while reducing the need for a large amount of annotated pixels for 
training is challenging. As noted in Ref. [9], it is also crucial that the 
proposed architecture demonstrates a significant improvement in clas
sification performance using HSIs compared to RGB images. These 
challenges are consistent with the experience in the remote sensing 
community, where deep-network-based HSI classification methods 
either offer only marginal improvements over hand-crafted features or 
require significantly more labeled data [49].

2.3.2.1. The SSL classifier. The SSL approach [46] is motivated by need 
to reduce the reliance on a large amount of annotated pixels for training. 
SSL algorithms aim to train a classifier and assign labels to unlabeled 
data, starting with a classifier trained on a small labeled dataset. Spe
cifically, we used a self-training SSL algorithm [47], which assigns 
pseudo-labels to high-confidence unlabeled samples. These samples are 
then added to the training set, and the classifier is iteratively improved. 
In our implementation of this SSL classifier, we utilized the MATLAB 
function fitsemiself.

2.3.2.2. The TensorSSA spectral-spatial features. Tensor Singular Spec
trum Analysis (TensorSSA) [31],5 is designed to extract global and 
low-rank 3D spectral-spatial features from HSI. The low-rank nature of 
extracted features is guaranteed through the tensor singular value 
decomposition (t-SVD) model [50]. The TensorSSA method first per
forms adaptive embedding of the HSI X ∈ Rh×w×b onto a tensor Z ∈

Rl×hw×b, where n × n is the size of the patch centered around each pixel, 
with n=2u+1. l≤(n-2)2 is the number of pixels surrounding the central 
pixel that are evaluated for similarity to the central pixel, based on the 
normalized Euclidean distance. Both u and l are hyperparameters of the 
TensorSSA method. In our experiments reported in Section 3, after 
cross-validation we set u=5 and l = 8 for processing pseudo RGB images, 
and u = 5 and l=60 for processing HSIs. The trajectory tensor Z con
tains both spectral and spatial information corresponding to the entire 
HSI. The tensor Z is then replaced by its t-SVD-based 
low-tensor-tubal-rank approximation, i.e., Z →Z rtub ∈ Rl×hw×b, where 
tubal rank satisfies rtub≪min(l,hw). Experiments carried out in Ref. [31] 
showed that rtub = 1 works well. The tensor Z rtub is subsequently 
re-projected to Y ∈ Rh×w×b, which contains 3D spectral-spatial features 
associated with Ξ. While in Ref. [31] a linear support vector machine 
(SVM) algorithm was used to classify HSI based on these spectral-spatial 
features Y , in this paper, we employ Grassmann manifold SSL classifier 
and label-propagation SSL classifier.

2.3.2.3. The MPRI spectral-spatial features. The multiscale principle of 
relevant information (MPRI) architecture was recently introduced in 
hyperspectral remote sensing [51]. It learns discriminative 
spectral-spatial features for HSI classification by leveraging PRI [52]. 
For a random variable X with a known probability density function 
(PDF) g, PRI aims to learn a reduced statistical representation of X, 
instantiated in a random variable Y with PDF f. This is framed as 
trade-off between the entropy H(f) of Y and its descriptive power 
regarding X, quantified by the divergence D(f||g) [51,52]: 

min
f

H(f) + βD(f‖g). (12) 

Here, β is a hyper-parameter that controls the amount of relevant 
information Y that can be extracted from X. The PRI optimization 
problem from (12) is then formulated as [51]: 

fopt ≡ argmin
f

(1 − β)H2(f) + 2βH2(f ; g) (13) 

where H2() represents Reny’s 2-entropy. Let us assume X := {xi}
N
i=1 and 

Y :=
{
yi
}N

i=1 are realizations of random variables drawn independently 
from g and f, respectively. Using a Parzen’s window-density estimator 
with a Gaussian kernel Gσ( ⋅) = exp

(
− ‖⋅‖2

/2σ2) [53], equation (2) can 
be written as [54]: 

Y* = argmin
Y

⎡

⎢
⎢
⎢
⎢
⎢
⎣

− (1 − β)log

(
1
N2

∑N

i,j=1
Gσ

(
yi − yj

)
)

− 2β log

(
1
N2

∑N

i,j=1
Gσ
(
yi − xj

)
)

⎤

⎥
⎥
⎥
⎥
⎥
⎦

. (14) 

Now, let us assume the HSI is given as a 3D data cube X ∈ Rh×w×b. 
Around each target vector t* ∈ Rb, a local patch T ∈ RN×b is extracted 
using a sliding window of size n, centered at t*. The total number of 
pixels in the patch is N = n × n, and t* = T⌊n/2+1,⌊n/2+1, where ⌊ ⋅ denotes 
the nearest integer function. The PRI-based spectral-spatial character
ization Y* ∈ RN×b of T is then computed using equation (14), making the 
estimation fully data driven. The PRI-based representation for the cur
rent patch is given by t* = Y⌊n/2+1,⌊n/2+1, and scanning the entire 3D cube 
X yields the PRI-based spectral-spatial representation Y ∈ Rh×w×b. To 
obtain PRI at multiple scales, procedure can be repeated for patches of 
varying sizes n, resulting in a multiscale PRI. The patch-size n is a hyper- 
parameter. To reduce feature redundancy, regularized linear discrimi
nant analysis is applied [51,55]. A multilayer structure is created by 
feeding PRI-based spectral-spatial features from one layer into the input 
of the next. The final spectral-spatial representation is obtained by 
concatenating the representations from each layer. In the original work 
[51], this representation is used with a standard k-nearest neighbor 
(k-NN) classifier. In our contribution, we use Grassmann manifold-based 
SSL classifier and label propagation-based SSL classifier, as they achieve 
comparable performance with significantly less labeled samples. The 
MPRI architecture has four hyper-parameters that need tuning during 
cross-validation: the number of scales (determined by the patch size n), 
β, the number of layers, and the kernel variance σ2 [51]. In our imple
mentation,6 after cross-validation, we selected three layers, n∈{3, 7, 
11}, β∈{2, 3} and σ2 = 0.3. Consequently, the MPRI architecture 
transforms a spectral pixel vector into 6D spectral-spatial feature vector. 
This was used in combination with the label propagation SSL classifier. 
Grassmann manifold based SSL classifier demands that subspace 
dimension d is less than or equal to the ambient space dimension. 
Therefore, this approach is not applicable to features with reduced 
dimensionality. Instead, we applied Grassmann manifold approach to 
concatenated feature vectors of multiscale MPRI, i.e., we combined raw 
features from three scales and two values of β. That yields 6 × 351 
feature vector with a cross-validate subspace dimension d = 50.

2.3.2.4. Deep learning HSI classifiers. As discussed in Section 2.1, sig
nificant efforts have been made to design architectures that can effec
tively extract spectral-spatial features from HSIs, while reducing the 
need for large amount of annotated pixels for training. Several special
ized architectures, such as S3-R in Ref. [13] and HyperNet [56] have 
been proposed for this purpose. These architectures address the limited 
ability of U-shaped networks to model long-range contextual relation
ship across the spectral dimension of HSIs [13,56]. One such network 
termed U-within-U-Net (UwU-Net),7 was introduced in Ref. [57] as a 

5 The MATLAB code for TensorSSA method is available at: https://github. 
com/RsAI-lab/TensorSSA.

6 The initial MATLAB-based implementation of MPRI is available at: htt 
p://bit.ly/MPRI_HSI.

7 The code for UwU-Net is available at https://doi.org/10.5281/zenodo. 
4396327.
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convolutional framework that preserves spatial resolution and accom
modates an arbitrary number of spectral channels. In Section 3, we apply 
UwU-Net to the segmentation of HSIs and pseudo RGB images of 
adenocarcinoma of the colon in the liver. Another network, nnUnet, was 
proposed in Ref. [58], with code in Supplementary Software link, to 
address the limitations of existing deep-learning-based methods for 
segmenting biomedical datasets. nnUnet automatically configures itself 
for a new segmentation task, and since it was trained on a large and 
diverse data pool, it is expected to perform well on datasets with limited 
training data. Therefore, we also applied nnUnet to the segmentation 
HSIs and pseudo RGB images of adenocarcinoma of the colon in the 
liver. Additionally, to corroborate some previous findings, we applied 
well-known deep networks for the classification of both HSIs and cor
responding pseudo RGB images: DeepLabv3+ [59], Unet [60], Unet++

[61], and MA-Net [62]. MA-Net, in particular, incorporates a 
self-attention mechanism and is expected to effectively capture both 
spatial and spectral feature dependencies.

3. Results

We conducted experiments to validate whether: (i) proposed Grass
mann manifold based semi-supervised classification method yields the 
highest classification performance in comparison with some state-of- 
the-art methods; (ii) selected state-of-the-art methods provide signifi
cantly better classification of cancerous and non-cancerous pixels from 
HSIs compared to corresponding pseudo RGB images (in terms of sta
tistical significance), and (iii) proposed semi-supervised classification 
methods can reduce the need for a large number of labeled pixels 
necessary for training.

3.1. Software environment

We implemented the Grassmann manifold-TensorSSA and -MPRI 
classifiers, the SSL-MPRI, SSL-TensorSSA classifiers, k-NN-MPRI and 
SVM-TensorSSA classifiers in MATLAB on a computer running a 64-bit 
Windows 10 operating system. The computer was equipped with 256 
GB of RAM and an Intel Xeon CPU E5-2650 v4 2 processor, operating at a 
clock speed of 2.2 GHz. All deep learning-based classifiers were imple
mented using the PyThorch software environment [63].

3.2. Train and test protocols

3.2.1. The Grassmann manifold-, SSL-, k-NN- and SVM classifiers 
combined with MPRI and TensorSSA 3D spectral-spatial features

Due to the memory constraints, the Grasmmann manifold semi- 
supervised classifier combined with MPRI and TensorSSA features, 
label-propagation SSL-MPRI and SSL-TensorSSA classifiers, k-NN and 
SVM classifiers operated on input patches of size 230 × 258 pixels, i.e. 
each HSI was split into 24 non-overlapping patches. As a result, these 
classifiers work on a patch-by-patch basis, allowing them to handle cases 
where only a single image is available in a given scenario. This approach 
is often applied in deep learning models from remotely sensed HSIs [49].

3.2.2. Deep learning classifiers
For the deep learning classifiers, we split the datasets, consisting of 

both HSIs and pseudo RGB images into 63 % for training (17 images) and 
37 % for testing (10 images). To ensure fair performance validation, we 
made sure that the test set images came from different patients than the 
training set. In other words, the test set included five patients, none of 
whom was part of the training set, which contained images from nine 
patients. Regarding the deep networks used in the experiment (Unet, 
Unet++, DeepLabv3+, MA-Net, nnUnet, and UwU-Net) pixel values 
were normalized to a range between 0 and 1. We also applied a patching 
process using a 128 × 128 window with strides of 64 pixels. Addition
ally, 20 % of the preprocessed train set was set aside as a validation set. 
We trained each deep network model ten times from the scratch always 

with the same partition. Our aim was to verify robustness of the models 
to the variations of the initial conditions.

3.3. Performance measures

We used six metrics to evaluate classification performance of 
different architectures on HSIs and their corresponding pseudo RGB 
images: sensitivity (SE), specificity (SP), balanced accuracy (BACC), 
precision (PREC), F1 score, and intersection-over-union (IoU). Each 
metric ranges from 0 to 1, where 0 indicates the worst performance and 
1 indicates the best performance. Sensitivity, also known as recall and 
true positive rate, is defined as: 

SE=
TP

TP + FN 

where TP denotes the number of true positives (correctly diagnosed 
cancerous pixels) and FN denotes the number of false negatives (incor
rectly diagnosed cancerous pixels). Specificity, also known as selectivity 
and true negative rate, is defined as: 

SP=
TN

TN + FP 

where TN denotes the number of true negatives (correctly diagnosed 
non-cancerous pixels) and FP denotes the number of false positives 
(incorrectly diagnosed non-cancerous pixels). Precision, also known as 
positive predicted value, is defined as: 

PREC=
TP

TP + FP 

F1 score, also known as the Dice coefficient, is the harmonic mean of 
precision and sensitivity defined as: 

F1 =
2 × TP

2 × TP + FP + FN 

IoU, also referred to as the Jaccard index, is defined as: 

IoU=
TP

TP + FP + FN
=

F1

2 − F1
.

3.4. Results

3.4.1. Grassmann manifold semi-supervised classifier
We present in Table 3 results of the ablation study aimed to select the 

optimal configuration for Grassmann manifold approach to semi- 
supervised pixel-wise classification of HSIs. As commented in section 
2.3.1, from the requirement on subspace dimension d << b it is evident 
that the Grassmann manifold concept is not applicable to pixel-wise 
classification of pseudo RGB images where b = 3. As emphasized in 
section 2.3.1, the Algorithm 1 can be applied directly on selected 
spectral pixels but also on their spatial averages estimated from 5 × 5 
patches around each pixel. Furthermore, the Algorithm 1 can also be 
applied to spatial-spectral features extracted by the TensorSSA method 
[30] and MPRI method [51]. In conducted ablation study we fixed the 
number of labels per category for estimation of Grassmann points (bases 
of susbpaces representing cancerous and non-cancerous groups) to 0.5 
%. Results reported in Table 3 represent micro performances. However, 
statistical significance analysis was conducted on image-based perfor
mance sequences. We assessed statistical significance between the two 
classifiers using the Wilcoxon rank-sum test. The null hypothesis of the 
test assumes that the data come from continuous distributions with 
equal medians at a 5 % significance level. A p-value less than 0.05 in
dicates rejection of the null hypothesis. As can be seen in Table 3, 
configuration which combines Grassmann manifold approach with the 
TensorSSA 3D spectral-spatial features yields the best performance. It is 
also statistically significantly better than performance achieved on 
spectral features and MPRI features. It is better, but not statistically 
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significant, from performance achieved by combination of spatial 
averaging and TensorSAA features. This is result is in agreement with 
intuition because 3D spectral-spatial TensorSAA features already 
contain pixel-wise local information. Thus, the additional spatial aver
aging step only deteriorates classification performance. We want to 
emphasize that micro BACC in the amount of 95.10 % achieved by 
Grassman-TensorSSA classifier can be considered virtually perfect giv
ing the fact that the pixel-wise ground truth is obtained with the 
inter-annotator agreement of κ = 0.754, see section 2.2.2. To provide 
additional information on quality of Grassmann-TensorSSA classifier, 
we present in Table 4 classification performance as a function of per
centage of labeled pixels per category. By increasing number of labeled 
pixels per category to 1 %, the micro BACC achieves the amount of 96.3 
%.

3.4.2. Label propagation semi-supervised classifier
In this section, we conducted a study to validate performance of the 

SSL-MPRI and SSL-TensorSSA classifiers, as well as to compare them 
with the k-NN-MPRI, SVM-TensorSSA and standard SSL-spectral classi
fiers for both HSIs and corresponding pseudo RGB images. For each 
patch, 1 % and 2 % of pixels per class were labeled to train the SSL-based 
classifiers. For comparison, k-NN-MPRI and linear SVM-TensorSSA 
classifiers were trained using 20 % and 5 % of labeled pixels per class, 
respectively. The reason for using the greater number of labeled pixel 
per class for training was to achieve decent performance by the k-NN- 
MPRI and linear SVM-TensorSSA classifiers in conducted analysis. The 
results of this study are presented in Table 5, focusing on micro per
formance. For both HSIs and corresponding pseudo RGB images, the 
SSL-MPRI classifier, using 2 % labeled pixels per class, achieved the 
highest BACC, F1 score, and IoU. This performance was superior to the k- 
NN-MPRI classifier and the SVM-TensorSSA classifier. It also out
performed the SSL-spectral classifier applied to both HSIs and RGB im
ages. It is however important to notice that micro BACC of the SSL-MPRI 
classifier was 93.6 % with 2 % of labels pixels per class, while 
Grassmann-TensorSSA classifier achieved micro BACC of 96.3 % with 1 
% of labeled pixels per class only. Thus, we prefer to use the Grassmann- 
TensorSSA classifier for pixel-wise classification of HSIs, and SSL-MPRI 
classifier for pixel-wise classification of pseudo RGB images. We show in 
Table 6, performance of SSL-MPRI and SSL-TensorSSA classifiers using 
only 1 % of labeled pixels per class for training. These results ought to be 

compared with the results of Grassmann-TensorSSA classifier in Table 4. 
For SSL-MPRI and SSL-TensorSSA classifiers, we report in Table 7 per
formance metrics as mean ± standard deviation, calculated on an 
image-by-image basis. This approach allows for the evaluation of sta
tistical significance between performance on HSIs and their corre
sponding pseudo RGB images. As shown, both classifiers achieve 
statistically significant improvements on HSIs compared to pseudo RGB 
images across all performance metrics. On HSIs, the Grassmann- 
TensorSSA classifier achieves a statistically significant performance 
improvement over the SSL-MPRI and SSL-TensorSSA classifiers, see 
Table 8. Moreover, it is approximately three times faster than the SSL- 
TensorSSA classifier and it is approximately nine time faster than the 
SSL-MPRI classifier.

We illustrate in Fig. 7 classification results of Grassmann-TensorSSA, 
SSL-MPRI and SSL-TensorSAA classifiers on one selected HSI and cor
responding pseudoRGB image. As, notified before Grassmann manifold 
approach is not applicable to pseudo RGB images.

For deep networks, we provided in Table 9 the mean and standard 
deviation obtained over 10 runs. Data partition into 63 % for training 
(17 images) and 37 % for testing (10 images) was fixed through all runs. 
The best performance overall is achieved by the nn-Unet, but there is no 
difference between HSIs and pseudo RGB images. In comparison with 
the Grassmann-TensorSSA classifier the performance, depending on the 
metrics, is 5 %–12 % worse. It is interesting that Grassmann manifold 
approach with only 0.12 % of labeled pixels-per-class achieved micro 
BACC of 0.926, see Tables 4 and in comparison with 0.890 achieved by 
the nn-Unet classifier.

According to our understanding, the main reason why deep networks 
failed to achieve significantly better performance on HSIs in comparison 
with the pseudo RGB images is heterogeneity of HSI dataset caused by 
experimental variations known as batch effects [64]. We show in Fig. 8
pseudo RGB images of six patients that illustrate our claim. These effects 
can be significantly reduced by means of the stain normalization algo
rithms [65]. However, to the best of our knowledge, there are no stain 
normalization methods yet developed for reduction of batch effects in 
hyperspectral images. Therefore, to make comparison between HSIs and 
pseudo RGB images fair, we did not apply stain normalization procedure 
on pseudo RGB images. As opposed to deep networks, proposed 
Grassmann-TensorSSA semi-supervised classifier is able to adapt to local 
spectral variations by working on the patches of the size of 238 × 250 
pixels.

4. Discussion

Efficacy of intraoperative tumor resection directly affects life ex
pectancy, i.e., the resection margin has been known as a powerful pre
dictor of the 5-year survival rate. Traditionally, computational 
pathology has relied on RGB images of frozen tissue sections, which 
limits information to the visual range and excludes the data across the 
continuous spectral range. To address this limitation, HSI technology is 

Table 3 
Micro performance metric for Grassman manifold approach to semi-supervised pixel-wise classification of HSIs with 0.5 % of labeled pixels per-group. The best results 
are in bold. Wilcoxon test is conducted against the best method with corresponding p-values reported in a row below performance metrics.

Spatial average Spectral TensorSSA MPRI BACC F1 IoU PREC CPU [min/patch]

– + – – 0.801 0.774 0.631 0.776 0.061
2.98 × 10− 10 2.98 × 10− 10 2.98 × 10− 10 2.98 × 10− 10

+ + – – 0.943 0.937 0.881 0.934 0.474
6.20 × 10− 4 1.54 × 10− 4 1.54 × 10− 4 5.2 × 10− 3

– – + – 0.956 0.951 0.907 0.950 3.37
+ – + – 0.952 0.947 0.899 0.943 3.87

0.213 0.078 0.078 0.128
– – – + 0.878 0.864 0.761 0.866 12.89

3.03 × 10− 10 3.03 × 10− 10 3.03 × 10− 10 3.03 × 10− 10

+ – – + 0.948 0.942 0.890 0.940 23.66
0.005 0.002 0.002 0.031

Table 4 
Micro performance of the Grassman-TensorSSA semi-supervised classification 
method vs. percentage (%) of labeled pixels per-group.

[%] SE SP BACC F1 IoU PPV CPU [min/patch]

1 0.961 0.964 0.963 0.959 0.920 0.956 3.46
0.5 0.953 0.960 0.956 0.951 0.907 0.950 3.37
0.25 0.938 0.946 0.942 0.935 0.879 0.933 3.39
0.12 0.921 0.932 0.926 0.919 0.850 0.917 3.42
0.05 0.892 0.908 0.900 0.890 0.801 0.887 3.48
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increasingly being used in various medical imaging applications, 
including computational pathology. However, application of HSI in 
computational pathology faces three challenges: (1) a shortage of pixel- 
wise annotated HSI data necessary for training machine learning and DL 
models; (2) in many cases, the advantages of HSI over traditional RGB 
imaging have not been conclusively demonstrated, particularly for 
specimens collected intraoperatively; (3) experimental variability in 
slide preparation process, also known as batch effects [64], transfers to 
spectrum variability. That, in combination with the lack of annotated 
data, makes training of deep networks challenging. To address first two 
challenges we created a database consisted of 27 HSIs of H&E stained 
frozen sections, collected from 14 patients with colon adenocarcinoma 
metastasized to the liver. To overcome third challenge, we combined 
Grassmann-manifold approach with spectral-spatial features extracted 
by tensor singular spectrum analysis method for pixel-wise classification 
of cancerous and non-cancerous pixels. While proposed approach ach
ieved highly competitive performance in intraoperative tumor 

demarcation problem it still demands involvement of the human expert 
to label a small amount pixels as cancerous and non-cancerous (0.5 % 
per class or less). Our future efforts will be directed towards: (i) fully 
automation of the tumor demarcation problem through usage of some 
state-of-the-art subspace clustering methods [66], to generate initial 
small amount of high-quality pseudo labels for Grassmann-TensorSSA 
classifier. (ii) fine tuning SpectralGPT foundation model [67] trained 
on remote sensing hyperspectral data and apply it to interactive tumor 
demarcation problem.

5. Conclusion

In this work, we addressed intraoperative tumor resection problem 
through pixel-wise classification of HSIs of H&E stained specimens of 
metastatic colon cancer in the liver. By using only 1 % of labeled pixels 
per class (cancer vs. non-cancer) generated locally (on the patch level), 
the Grassmann-TensorSSA classifier achieved a micro balanced accuracy 

Table 5 
Micro performance metrics for the k-NN-MPRI, SVM-TensorSSA, SSL-spectral, SSL-MPRI and SSL-TensorSSA algorithms vs. percentage of labeled pixels-per-class. 
Evaluation on 27 HSIs and pseudo RGB images. Patch size 230 × 258 pixels.

Algorithm Percent/Image SE SP BACC F1 IoU PREC. CPU [min/patch]

k-NN-MPRI 20 HSI 0.912 0.934 0.927 0.919 0.850 0.919 56.72
RGB 0.862 0.887 0.875 0.862 0.757 0.861 15.95

SVM-TensorSSA 5 HSI 0.892 0.896 0.894 0.883 0.790 0.874 3.38
RGB 0.886 0.889 0.887 0.876 0.779 0.866 0.10

SSL-Spectral 2 HSI 0.911 0.902 0.907 0.897 0.812 0.883 17.27
RGB 0.870 0.854 0.862 0.848 0.737 0.823 2.07

SSL-MPRI 2 HSI 0.944 0.930 0.936 0.929 0.867 0.915 16.07
RGB 0.887 0.878 0.883 0.870 0.771 0.854 8.18

SSL-TensorSSA 2 HSI 0.916 0.907 0.911 0.902 0.821 0.888 15.75
RGB 0.870 0.858 0.868 0.855 0.747 0.883 1.75

Table 6 
Micro performance metrics for the SSL-MPRI and SSL-TensorSSA classifiers for 1 % of labeled pixels-per-class. Evaluation on 27 HSIs and pseudo RGB images. Patch 
size 230 × 258 pixels.

Algorithm Image SE SP BACC F1 IoU PREC. CPU [min/patch]

SSL-MPRI HSI 0.940 0.923 0.931 0.924 0.858 0.908 29.60
RGB 0.887 0.878 0.883 0.870 0.771 0.854 11.82

SSL-TensorSSA HSI 0.911 0.900 0.906 0.896 0.811 0.880 10.25
RGB 0.875 0.854 0.864 0.851 0.779 0.829 1.48

Table 7 
Macro performance metrics for the SSL-MPRI and SSL-TensorSSA classifiers for 1 % of labeled pixels-per-class. Evaluation on 27 HSIs and pseudo RGB images. Wilcox 
rank-sum test of statistical significance within 95 % confidence interval (p-value). Last row represents statistical significance between SSL-MPRI and SSL-TensorSSA 
classifiers on HSIs.

Algorithm Image SE SP BACC F1 IoU PREC.

SSL-MPRI p-value HSI 0.940 ± 0.013 0.918 ± 0.026 0.929 ± 0.015 0.921 ± 0.014 0.854 ± 0.024 0.903 ± 0.023
RGB 0.888 ± 0.023 0.874 ± 0.025 0.881 ± 0.019 0.862 ± 0.037 0.759 ± 0.056 0.841 ± 0.068
​ 5.28 × 10− 10 5.25 × 10− 7 8.78 × 10− 10 1.94 × 10− 9 1.94 × 10− 9 2.43 × 10− 3

SSL-TensorSSA p-value HSI 0.913 ± 0.020 0.895 ± 0.028 0.904 ± 0.020 0.892 ± 0.021 0.805 ± 0.034 0.873 ± 0.037
RGB 0.877 ± 0.030 0.851 ± 0.031 0.864 ± 0.024 0.844 ± 0.043 0.732 ± 0.062 0.817 ± 0.074
​ 3.85 × 10− 6 4.45 × 10− 5 1.07 × 10− 7 4.19 × 10− 6 4.19 × 10− 6 2.00 × 10− 3

p-value ​ 8.20 × 10− 7 3.70 × 10− 3 1.03 × 10− 5 2.14 × 10− 6 2.14 × 10− 6 4.60 × 10− 3

Table 8 
Micro performance metrics for the Grassmann-TensorSSA classifier, SSL-MPRI and SSL-TensorSSA classifiers for 1 % of labeled pixels-per-class. Evaluation on 27 HSIs. 
Wilcox rank-sum test of statistical significance within 95 % confidence interval (p-value) against Grassman-TensorSSA classifier.

Classifier SE SP BACC F1 IoU PPV CPU [min/patch]

Grassman-TensorSSA 0.961 0.964 0.963 0.959 0.920 0.960 3.46
SSL-MPRI p-value 0.940 0.923 0.931 0.924 0.858 0.908 29.6

1.39 × 10− 8 9.01 × 10− 8 3.65 × 10− 9 9.11 × 10− 10 9.11 × 10− 10 9.11 × 10− 10

SSL-TensorSSA p-value 0.911 0.900 0.906 0.896 0.811 0.880 10.25
6.57 × 10− 10 8.17 × 10− 10 3.89 × 10− 10 3.03 × 10− 10 3.03 × 10− 10 3.03 × 10− 10
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(BACC) of 0.963 and a micro F1-score of 0.959 on the HSI dataset. In 
comparison, the performance on corresponding pseudo RGB images 
achieved by the SSL-MPRI classifier was 0.881 and 0.869, in respective 
order. The improvements relative to RGB images are statistically sig
nificant in six classification performance metrics. The Grassmann- 
TensorSSA approach also outperformed the SSL-MPRI approach as 
well as six DL architectures trained with 63 % of labeled pixels. More
over, DL architectures achieved on HSIs classification performance no 
better than the one on corresponding pseudo RGB images. Based on 
computation times reported in Tables 3 and 4 it is evident that software 
efficient implementation can enable to process the hyperspectral image 

with the size of 1384 × 1035 × 351 within the time frame of 5 min. 
Thus, we conclude that Grassmann-TensorSSA classifier in combination 
with HSI represents state-of-the-art solution for intraoperative compu
tation of tumor resection margin.

CRediT authorship contribution statement

Ivica Kopriva: Writing – review & editing, Writing – original draft, 
Visualization, Supervision, Software, Project administration, Method
ology, Formal analysis, Conceptualization. Dario Sitnik: Software, 
Methodology. Laura-Isabelle Dion-Bertrand: Data curation. Marija 

Fig. 7. Top: (left) ground truth image; (middle and right) results of the SSL-MPRI and SSL-TensorSSA classifiers on HSI for 1 % of labeled pixels per class. Bottom: 
(left) results of Grassmann-TensorSSA classifier on HSI for 0.5 % of labeled pixels per class; (middle and right) results of the SSL-MPRI and SSL-TensorSSA classifiers 
corresponding pseudo RGB image, shown in Fig. 4, (left). Yellow color denotes pixels classified as cancerous, blue color denotes pixels classified as non-cancerous. 
For Grassmann-TensorSSA, SSL-MPRI and SSL-TensorSSA, the balanced accuracy in respective order for HSIs is: 0.955, 0.930, 0.860, and for pseudo RGB 0.889 and 
0.870. Value of Dice coefficient for HSI in respective order is: 0.947, 0.918, 0.839, and for pseudo RGB 0.870 and 0.832. (For interpretation of the references to color 
in this figure legend, the reader is referred to the Web version of this article.)

Table 9 
Micro performance metrics for deep-neural networks (DNN) averaged over 10 runs. Evaluation on 10 hyperspectral and pseudo RGB images from the test set. Data 
partition into 63 % for training (17 images) and 37 % for testing (10 images) was fixed through all runs.

DNN Image SE SP BACC F1 IoU PREC.

DLabv3+ HSI 0.896 ± 0.025 0.829 ± 0.048 0.862 ± 0.019 0.852 ± 0.019 0.742 ± 0.028 0.814 ± 0.040
RGB 0.881 ± 0.021 0.853 ± 0.022 0.867 ± 0.003 0.855 ± 0.003 0.742 ± 0.004 0.832 ± 0.019

Unet HSI 0.888 ± 0.073 0.769 ± 0.114 0.828 ± 0.037 0.820 ± 0.033 0.696 ± 0.048 0.773 ± 0.086
RGB 0.867 ± 0.014 0.866 ± 0.018 0.866 ± 0.006 0.854 ± 0.007 0.746 ± 0.009 0.842 ± 0.016

Unet++ HSI 0.901 ± 0.091 0.784 ± 0.058 0.842 ± 0.030 0.831 ± 0.037 0.712 ± 0.052 0.788 ± 0.037
RGB 0.853 ± 0.027 0.879 ± 0.016 0.866 ± 0.008 0.853 ± 0.010 0.744 ± 0.015 0.854 ± 0.014

MAnet HSI 0.919 ± 0.022 0.800 ± 0.034 0.856 ± 0.012 0.851 ± 0.011 0.740 ± 0.017 0.792 ± 0.025
RGB 0.851 ± 0.002 0.876 ± 0.013 0.864 ± 0.005 0.850 ± 0.006 0.740 ± 0.009 0.850 ± 0.012

UwU-Net HSI 0.952 ± 0.037 0.733 ± 0.065 0.843 ± 0.021 0.837 ± 0.018 0.720 ± 0.026 0.749 ± 0.041
RGB 0.791 ± 0.056 0.864 ± 0.051 0.828 ± 0.012 0.809 ± 0.017 0.679 ± 0.022 0.831 ± 0.039

nn-Unet HSI 0.921 ± 0.021 0.860 ± 0.049 0.890 ± 0.029 0.865 ± 0.083 0.763 ± 0.112 0.827 ± 0.126
RGB 0.885 ± 0.046 0.901 ± 0.029 0.891 ± 0.030 0.872 ± 0.046 0.772 ± 0.061 0.865 ± 0.084
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