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1  |  INTRODUC TION

Human activities are rapidly altering the global climate, resulting in 
significant consequences for organisms across ecosystems (Deutsch 
et al., 2008; Garcia-Costoya et al., 2023; Sinervo et al., 2010; Thomas 

et  al.,  2004). Predicting how organisms will respond to changing 
thermal environments requires accurate quantification and map-
ping of current thermal conditions. However, this is hindered by two 
key challenges: (1) there is a mismatch between the scale at which 
environmental data are typically collected and the scale at which a 
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Abstract
1.	 The accurate quantification of thermal environments is crucial for predicting the 

impacts of climate change across ecosystems.
2.	 Two major obstacles exist in mapping biologically relevant thermal landscapes: 

(1) overcoming the mismatch between the scale at which environmental data are 
typically collected and the scale at which a particular organism experiences ther-
mal variation and (2) quantifying thermal landscapes without substantial meas-
urement gaps in time or space.

3.	 We present a new method that integrates aerial thermography from uncrewed 
aerial vehicles with field-deployed operative temperature models to generate 
fine-scale, spatiotemporally complete maps of operative temperature.

4.	 To ensure the accessibility of our method, we developed an R package, ‘throne’, 
which streamlines the necessary corrections to raw drone data and produces op-
erative thermal landscapes for any day or time during which data loggers were 
deployed.

5.	 Our method allows researchers to generate detailed and biologically relevant 
thermal landscapes for species of interest, which should enhance our under-
standing of animal thermal ecology and improve our ability to understand the 
responses of organisms to environmental change.
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particular organism experiences thermal variation, and (2) there can 
be substantial measurement gaps in time and space. While these are 
significant challenges for all organisms, they are especially acute for 
ectotherms that live in the spatiotemporally heterogenous thermal 
environments that are typical of terrestrial habitats.

Many studies have demonstrated the importance of fine-scale 
thermal heterogeneity in the ecology and evolution of terrestrial 
ectotherms (e.g. Alujević et al., 2023; Cox et al., 2018; Cox, Tribble, 
et al., 2020; Logan et al., 2014, 2015, 2016, 2021; Neel et al., 2021; 
Potter et  al.,  2009; Sears & Angilletta,  2015; Williams et  al.,  2022) 
despite the fact that numerous researchers continue to incorporate 
coarse-scale environmental data from sources like WorldClim into 
their models (Fick & Hijmans, 2017; Karger et al., 2017). Several meth-
ods have been developed that partially overcome the challenges of 
measuring biologically relevant thermal environments. These include 
the use of biophysical (mathematical) models combined with remote 
sensing (where operative temperatures are predicted from biophysical 
theory) or physical models (data loggers) deployed at a field site (where 
temperatures are measured empirically; Figure S2). These approaches 
are used to assess ‘operative temperature distributions’, which can be 
thought of as null distributions of temperatures that are available to a 
particular organism in a given space and time and provide information 
on habitat thermal quality (Bakken, 1992; Dzialowski, 2005). The quan-
tification of operative temperatures has played a pivotal role in the 
study of animal thermal ecology, physiology, behaviour and evolution 
(reviewed in Angilletta, 2009), and it has been an irreplaceable tool in 
understanding ecosystem responses to rapid environmental changes 
(Gunderson & Leal, 2012; Huey et al., 2012; Logan et al., 2013).

Although the measurement of operative temperatures has been 
fundamental to our understanding of animal thermal biology and pre-
dicting responses to climate change, there are limits to their use and 
application. Biophysical models require environmental inputs such as 
air temperature, humidity, wind speed and solar radiation, obtained 
from weather stations or satellites, which are then integrated with spa-
tial data to simulate organismal heat exchange. Ecophysiological mod-
elling tools (e.g. NicheMapR, Kearney & Porter, 2017; TrenchR, Buckley 
et al., 2023; microclima, Maclean et al., 2019) have advanced the fields 
of thermal ecology and global change biology by improving our ability 
to estimate microclimates. However, these software programs face 
some limitations in their capacity to translate population-level esti-
mates to the dynamics of individual organisms (Meyer et  al.,  2023). 
First, the input of high-quality environmental data is crucial, yet these 
data are sometimes not available at the temporal and spatial scales at 
which organisms typically experience their environment. Second, eco-
physiological modelling usually requires general assumptions about 
the ways in which factors like vegetation characteristics, soil proper-
ties and topography shape microclimates, and these assumptions can 
be violated in some situations (Woods et al., 2015). Third, while cur-
rent software packages can model thermal conditions across a range of 
microhabitats, most cannot assess the presence, frequency or spatial 
distribution of these microhabitats in the area of interest without sim-
plifying assumptions, or in areas where high-resolution satellite imag-
ery is not available.

A potentially more tractable approach to quantifying operative 
thermal environments, particularly for small terrestrial vertebrates, 
involves the deployment of temperature data loggers that mimic 
key biophysical properties of the organism of interest (although 
some challenges remain; Alujević et  al.,  2024). These loggers are 
known as ‘operative temperature models’ (OTMs) and they provide 
a measurement of the thermal environment at the organism's spa-
tial scale by integrating conductive, convective and radiative heat 
transfer between the animal and its surroundings (Angilletta, 2009; 
Bakken, 1976; Bakken et al., 1985). While OTMs can provide near-
continuous temporal data (if programmed to record temperatures 
frequently), they can only offer limited spatial coverage. This spatial 
limitation is a problem, as it prevents a spatially explicit understand-
ing of thermal heterogeneity at the site, and research had demon-
strated that this heterogeneity can significantly influence organism 
thermoregulation, movement and energetics (Sears et  al.,  2016; 
Sears & Angilletta, 2015).

Drones offer a promising solution to the challenge of measuring 
thermal environments at biologically relevant scales. Their increas-
ing affordability, versatility and ability to access difficult terrain 
have made them invaluable tools in ecological research (e.g. Aucone 
et al., 2023; Francis et al., 2022; Saunders et al., 2022). Many com-
mercial drone models now come outfitted with thermal imaging 
(thermal infrared or ‘TIR’) cameras, allowing for high-resolution map-
ping of thermal landscapes via photogrammetry (Thiele et al., 2017; 
Webster et al., 2018). Yet aerial thermography and OTMs give largely 
non-overlapping estimates of thermal environments. Although TIR 
drone-based photogrammetry can produce a thermal landscape 
that is comprehensive in its spatial coverage, it remains temporally 
discrete, producing a thermal map for only the time period during 
which the drone was being flown. Moreover, while OTMs integrate 
all the relevant forms of heat transfer present in the environment 
to give estimates of the equilibrium body temperatures that would 
be achieved by the study organism, the temperature sensors on TIR 
drones estimate only the heat energy that is emitted from surfaces. 
Factors such as whether or not the drone was given a warm-up pe-
riod, the distance between the camera and the surface, the angle 
of incidence of the sun, ambient temperature, substrate emissiv-
ity and wind speed (among others) can influence drone-based TIR 
estimates (Faye et  al.,  2016; Jiao et  al.,  2016; Playà-Montmany & 
Tattersall, 2021; Yuan & Hua, 2022). In other words, OTMs give tem-
porally complete, but spatially discrete, distributions of operative 
temperatures, whereas TIR drone photogrammetry gives spatially 
complete, but temporally discrete distributions of emitted surface 
temperatures. To achieve the goal of measuring and predicting spa-
tiotemporally complete distributions of operative temperatures, 
drone-based temperature estimates must be corrected such that 
they describe operative temperatures and then those temperatures 
must be extrapolated to days and times when the drone was not 
flown.

Here, we present a new method that integrates TIR drone pho-
togrammetry with field-deployed OTMs to generate fine-scale, spa-
tiotemporally complete landscapes (maps) of operative temperature 
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for terrestrial organisms. At its core, our method takes biologically 
relevant and temporally continuous, but spatially limited, OTM data 
and extrapolates it to a broad geographic area at high resolution. 
We developed a new R package called throne (‘th’ermal d‘rone’) 
that streamlines our method and renders it accessible to biologists 
and conservation managers by requiring minimum user input to pro-
duce high-resolution operative temperature maps for any day/time 
combination during which OTMs were deployed. Finally, we used 
operative temperature data for the western fence lizard (Sceloporus 
occidentalis) to validate our method at a thermally complex field 
site in the Great Basin Desert of northern Nevada. Our method for 
quantifying and predicting terrestrial thermal environments at high 
spatiotemporal resolution has the potential to increase our under-
standing of how individuals, and thus populations, will respond to cli-
mate warming, habitat conversion and other environmental changes.

2  |  MATERIAL S AND METHODS

2.1  |  throne workflow

The general throne workflow involves the following steps: (1) 
Simultaneously collecting operative and emitted surface tempera-
tures (hereafter, ‘surface temperatures’) using OTMs and a TIR 
compatible drone, respectively; (2) Integrating these datasets and 
applying necessary corrections; and (3) Interpolating corrected data 
across time and space to generate ‘predicted’ thermal landscapes 
(Figure 1). The user first assembles a map of surface temperatures 
of their field site using TIR drone photogrammetry while at the same 
time collecting operative temperatures using OTMs deployed at 
microsites that capture local microhabitat diversity. All subsequent 
steps can be accomplished using our R-package, ‘throne’, available 
on GitHub (https://​github.​com/​ggcos​toya/​throne). These datasets 
are then combined such that the relationship between OTM temper-
atures and drone surface temperatures is assessed and necessary 
corrections are applied. Finally, OTMs are assigned to tiles (unique 
latitude and longitude combinations) with similar thermodynamics 
from the thermal orthomosaic and a high-resolution operative tem-
perature map is then generated for any day and time during which 
the OTMs were logging. The assembly of thermal landscapes is au-
tomated and only requires operative and surface temperature data 
(with corresponding metadata) and a small number of parameters 
(e.g. level of smoothing of temporal thermal profiles and desired 
spatial resolution, date and time for the final thermal landscape; 
Figure 2) as input. We detail each of the steps below.

2.1.1  |  OTM deployment

OTMs should be built to mimic a key set of biophysical properties 
of the organism of interest (e.g. shape, surface reflectance, con-
ductivity), ensuring that under constant environmental conditions 
they produce an ‘instantaneous’ estimate of the equilibrium body 

temperature that the animal would achieve at the microsites in 
which the OTMs are deployed. OTMs can be built using different 
techniques that have varying degrees of practicality and accuracy, 
although recent advancements in 3D printing can be used to gen-
erate highly accurate and cost-effective OTMs for many species 
(Alujević et  al.,  2024). For our method to work optimally, OTMs 
should be deployed strategically across different microhabitats and 
physiographic features (e.g. substrate types, exposure level, vegeta-
tion types, slopes) within the study area to capture a wide range of 
microclimatic conditions.

2.1.2  |  Drone flights

Thermal photogrammetry data are collected using a drone equipped 
with an IR thermal imaging camera and a GPS unit. A flight plan can 
be programmed into the drone using photogrammetry software, and 
this software sometimes comes with the drone when purchased. For 
our method to be most successful, the following guidelines should 
be followed: (1) Flights should be conducted under weather condi-
tions that maximize thermal heterogeneity (e.g. sunny weather) as 
this increases the ability of throne to match OTMs with tiles of sim-
ilar thermodynamics; (2) Flights should be distributed across differ-
ent days and times to maximize representation of daily temperature 
fluctuations (modern drones are capable of stable flight in moder-
ate wind and light rain, so data collection can be conducted under a 
range of conditions), although nighttime flights are likely not neces-
sary because thermal heterogeneity is typically much lower without 
solar radiation such that flights near dawn and dusk will be sufficient 
to capture these dynamics; (3) To prevent stitching issues, flights 
should be conducted over a slightly larger area than the specific area 
of interest; (4) Flight times should be kept relatively short to ensure 
that all images are captured during similar site-level thermal condi-
tions and within an ecologically relevant window; (5) The resolution 
of the mounted thermal imaging camera should be considered when 
planning flights and choosing flight altitude; (6) The mounted ther-
mal imaging camera should be radiometrically calibrated and pro-
duce thermal images in either TIF or R-JPEG file formats; (7) The 
average emissivity of the site substrate should be assessed to ap-
propriately calibrate the thermal imaging camera; (8) The vertical 
and horizontal percentage of overlap between photos should be set 
to a high value (preferably 90% or greater but no less than 70%). 
Image overlap reduces the measurement error inherent in individual 
IR images; (9) Ground control points (GCPs) should be deployed as 
they help to accurately georeference thermal images and minimize 
processing errors (GCPs should be strategically placed to cover the 
study site's borders and topographical complexity). After collecting 
thermal images, photogrammetry software can be used to process 
images and generate a thermal orthomosaic—a composite snapshot 
of the thermal landscape. Image processing steps will vary by soft-
ware type (for more details on this process see the throne website: 
https://​ggcos​toya.​github.​io/​throne/​), although the resulting raster 
file should be produced in the TIF-file format.
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2.1.3  |  Processing operative temperatures 
from OTMs

After the OTMs are retrieved from the field and the individual OTM 
data are downloaded, the OTM data files are then combined into 
an R data frame, using the rnp_otms_data function in throne. 
This function returns a processed data frame with columns for the 
OTM's identifier, year, day of the year, minute of the day and opera-
tive temperature where each row is a unique operative temperature 

measurement at a given time by a given OTM. Further, rnp_otms_
data incorporates user-specified metadata in the final output, 
including the geographic position where the OTM was deployed 
which, if needed, is projected into Universal Transverse Mercator 
(UTM) coordinates to ensure compatibility with flights data. Next, 
the output of the rnp_otms_data function is processed using the 
gen_otm_spline function to fit smoothing spline models to each 
individual OTM for each day during its deployment in the field using 
the base R native smooth.spline function (R Core Team, 2024). 

F I G U R E  1  General workflow for our method that links thermal infrared (TIR) drone photogrammetry with operative temperature data 
to produce spatiotemporally complete and biologically relevant thermal landscapes. The practitioner or researcher first assembles a map 
of surface temperatures of their field site using TIR drone photogrammetry (a) while at the same time collecting operative temperatures 
using operative temperature models (OTMs) matching the biophysical properties of their study organism and that are deployed across a 
range of microsites that capture a representative sample of local microhabitat diversity (b). All subsequent steps can be accomplished in our 
R package, throne. (c) These datasets are then combined such that the relationship between OTM temperature and drone-based surface 
temperature is assessed and necessary corrections are applied. (d) The thermal dynamics of the OTMs are assigned to tiles from the thermal 
orthomosaic and a high-resolution operative temperature map can then be generated for any day and time during which the OTMs were 
logging.
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Briefly, these models generate a smoothing function that captures 
the essential thermodynamics of each OTM throughout a given day. 
Smoothing minimizes noise from short-term stochastic shifts in op-
erative temperature while capturing fluctuations caused by condi-
tions unique to each day (e.g. sustained changes in cloud cover or 
wind) that may be ecologically relevant. This approach eliminates the 
need to collect additional metadata during OTM deployment (e.g. 
aspect or shade cover) and removes the assumption that within-day 
thermal fluctuations follow a fixed sinusoidal curve in order to in-
form the resulting models. Nonetheless, as the level of smoothing 
may be important in certain systems and may influence the ability 
of throne to match OTMs with orthomosaic tiles, the gen_otm_
splines function incorporates the parameter knot_p. This pa-
rameter determines the percentage of observations recorded by an 
OTM in a given day that are used to determine the number of knots 
in the spline model (fewer knots equate to more smoothing). The 
output of the gen_otm_splines function inherits all metadata in-
formation from the OTM data frame while adding a nested column 

containing the spline model. The resulting data frame contains as 
many rows as there were combinations of unique OTM identifier and 
date as each of these combinations is assigned a fitted spline model.

2.1.4  |  Processing surface temperatures from drone 
flights

Drone flight orthomosaic .tif files generated using photogramme-
try software are converted into an R data frame using the function 
rnp_flights_data. File .tif format is a standard for thermal ras-
ter images, containing pixel-wise temperature values generated from 
radiometrically calibrated sensors (in our case Zenmuse XT2's built-in 
radiometric calibration; note that file formats like JPEG are not suit-
able inputs for our approach as they do not preserve the absolute 
temperature data needed for accurate thermal predictions). The 
rnp_flights_data function first reads the .tif file as a spatRaster 
within the R environment using functionality from the package 

F I G U R E  2  The throne R-package workflow. Sources of input data are represented by yellow cylinders for databases and yellow 
tilted squares for single datasets. Green ovals denote software tools external to throne. Squares with red font represent user-specified 
parameter values. Purple rectangles denote embedded functions.
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terra (Hijmans,  2020). Second, the function summarizes the data 
to the desired spatial resolution via the argument resolution. The 
resolution argument determines the area covered (in m2) by each of 
the orthomosaic tiles of the final output and it can be set to any value 
≥0.5 m2. Lastly, the function adds user-specified metadata to the pro-
cessed flight dataset including values for year, day-of-year and minute 
of the day at which the flight started and ended. The final output is a 
data frame with columns for geographic position indicated by an ‘x’ 
and ‘y’ coordinate within the UTM zone where the flight took place, 
time (year, day-of-year, minute of the day at which the flight started 
and ended) and surface temperature. In this data frame, each row 
corresponds to the surface temperature in a given tile (unique x-y 
combination) of an individual flight.

2.1.5  |  Integrating OTM and drone data

Due to the fundamental differences in the physical properties of 
surface (IR-based) and operative (OTM-based) temperature meas-
urements, the data frames representing thermal maps obtained via 
the rnp_flights_data function need to be corrected such that 
they represent operative temperatures. To achieve this, throne in-
cludes the correct_flights_data function. First, the function 
identifies all tiles within the study area that contained OTMs, and 1) 
gathers all the temperature measurements of those tiles collected 
across multiple flights, and 2) estimates the temperature experi-
enced by all OTMs at the exact set of dates and times when each 
of the flights took place using the spline models obtained via the 
gen_otm_splines function. Second, the function estimates the 
average bias between surface and operative temperature measure-
ments for each flight (Figures S5 and S6) and subtracts this bias from 
all surface temperature measurements. This first correction step is 
needed because the magnitude of the difference between the OTM 
and surface temperatures can vary systematically between days 
and by time-of-day due to the difference in the way these differ-
ent measurements respond to ambient temperature, solar angle, 
overall light availability, etc. However, the function offers users the 
ability to choose which metric they prefer as the basis for surface 
temperature correction (average, median or mode), or the option to 
skip the correction step entirely. Lastly, the function inspects the 
relationship between surface temperature (which the user may or 
may not have chosen to correct for date and time-of-day) and opera-
tive temperature by fitting a simple linear regression between these 
variables. If temperature measurements collected by the drone were 
perfectly unbiased estimates of operative temperature, the relation-
ship between these two variables would be 1:1 (intercept = 0 and 
slope = 1). To achieve this 1:1 relationship, the function applies a sec-
ond correction following the equation:

where ST and OT are surface and operative temperatures, respectively, 
and � and � are the intercept and slope of the relationship between 

ST and OT across all tiles where OTMs were deployed. To give fur-
ther control over how this correction step is performed, correct_
flights_data also offers users the possibility of applying this step 
while accounting for day- and time-specific relationships. In this case, 
the correction is applied via the equation:

where �1 is the effect of OT on ST (same parameter as � in the previ-
ous equation) while �2 and �3 are the effects of day of the year (DOY) 
and median minute of the day when the flight took place (MOD), 
respectively.

2.1.6  |  Predicting thermal landscapes

The last step of the throne workflow is generating a thermal land-
scape for a specific time of interest. This is achieved via the match_
data and predict_thermal_landscape functions. First, the 
match_data function matches each tile in the thermal orthomosaic 
with an OTM based on the similarity in their thermodynamics. For 
each tile, the function calculates the average absolute difference be-
tween the temperatures recorded in that tile across multiple flights 
(previously corrected through the correct_flights_data func-
tion), and the temperatures extracted from all OTM splines at the 
same time the flight took place. OTMs do not need to have logged 
temperatures at the exact time the flight took place as the operative 
temperatures are predicted from the date-specific OTM spline func-
tion (gen_otm_splines). To assign a match to a tile, the match_
data function chooses the OTM that minimizes the absolute 
difference between temperature measurements. For some tiles, it 
is possible that their thermodynamics are still notably different from 
those of the OTM that best describes it among the OTMs deployed 
(i.e. that the average absolute error is substantially large). To account 
for that, users can specify the maximum error they are willing to 
tolerate for a tile's thermal profile to be included in their final output 
by setting the error_max parameter (if the minimum error is larger 
than error_max, the pixel is not assigned an OTM). If it is not speci-
fied, error_max will default to 100, a sufficiently large number to 
permit any match, which in turn allows users to explore the quality 
of their matching (Figure S13) and perform any diagnostics or quality 
control efforts they see fit. The resulting output of the match_data 
function is a data frame where each tile is associated with a charac-
ter indicating the identifier of the OTM that best describes its ther-
modynamics. Finally, the predict_thermal_landscape function 
takes the output of the data frame obtained through match_data 
and calculates the predicted operative temperature in each tile at 
a user-specified date and time using the OTM and date-specific 
cubic spline models fitted through the gen_otm_splines function. 
Through this approach, users can predict a thermal landscape for 
any date and time (minute of the day) within the general period when 
OTMs were logging (i.e. for all days in which there are fitted spline 
models). The final output is a data frame with six columns, indicating 

OT =
ST − �

�
,

OT =
ST − � − �2DOY − β3MOD

�1
,
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the year, day of year, minute of the day, x and y UTM coordinates and 
predicted operative temperature for that specific tile.

2.2  |  Validation

To validate our approach to mapping operative thermal environ-
ments, we tested (1) whether the predicted thermal landscape 
outputs by throne are accurate for microsites where OTMs were 
not deployed and (2) the sensitivity of the method to different user 
choices (e.g. number of drone flights, number of OTMs, level of spline 
smoothing). To accomplish this, we conducted two validations where 
we compared the operative temperatures predicted by throne with 
those recorded by OTMs that had been withheld from the workflow. 
With our validations we demonstrate how changing the number of 
flights conducted, OTMs deployed, and spatial and temporal scale 
affect the accuracy and utility of our method. Here, we present the 
methods and results for validation 1, which was conducted over a 
76-day period and for a ~33,000 m2 study area, with 10 flights and 
73 OTMs. Validation 2 took place over 3 days within a smaller area 
(600 m2) but involved a higher frequency of flights (34), and we pre-
sent detailed methods and results for this validation in Supporting 
Information. Our methodology was approved by the University of 
Nevada, Reno Institutional Animal Care and Use Committee (pro-
tocol 21-02-1129) and the Nevada Department of Wildlife (permit 
number 41066). For each validation, we executed the complete 
throne pipeline with different combinations of parameters (sub-
set of flights, subset of OTMs and knot_p values). Below, we detail 
how we collected data to conduct validation 1 in the context of our 
study system (for the list of best practices and recommendations 
see Box S1 in Supporting Information and throne website: https://​
ggcos​toya.​github.​io/​throne/​).

2.2.1  |  OTM deployment

We deployed 73 OTMs on April 15th, 2023, across a 33,000 m2 
area southwest of Pyramid Lake in Washoe County, Nevada, USA 
(39.865 N, 119.624 W). This site is in the Great Basin Desert and is 
characterized by a thermally complex array of ridges and rocky out-
crops (Figure  S1). The vegetation community is dominated by big 
sagebrush (Artemisia tridentata), saltbush (Atriplex gardneri), pinyon 
pine (Pinus monophylla) and juniper (Juniperus osteosperma). We 3D 
printed our OTMs using acrylonitrile butadiene styrene (ABS) for 
studies of the thermal ecology of the western fence lizard (Sceloporus 
occidentalis; Figure S2), a species that is abundant at our field site, 
and for which we previously validated 3D printed OTMs against live 
lizards in the field (Alujević et al., 2024; for general recommenda-
tions on building OTMs and ensuring that OTM mimics the species 
of interest also see Dzialowski,  2005). We centrally suspended a 
temperature logger (iButton, accuracy of 0.5°C, Embedded Data 
Systems, Lawrenceburg, KY) inside each model and set each logger 
to record temperature every 50 min (~29 measurements/day). We 

obtained operative temperature measurements from the loggers 
for 119 days from April 16 to August 19, excluding June 11, 12 and 
27–29 (these were days when we had to retrieve OTMs to down-
load data due to the limited storage capacity of iButtons). This time 
period and geographic area encompassed significant seasonal and 
spatial thermal variation (Figure  S3). We distributed OTMs across 
microhabitats that are typical of this site (for detailed descriptions 
of these microhabitats see Table  S1) and at different orientations 
to capture a range of ecologically relevant microsites based on our 
previous experience working with this species in this environment. 
For each OTM, we recorded its position in a World Geodetic System 
projection (WGS; i.e. latitude and longitude) using a high accu-
racy (<1 m2 resolution) Trimble Geo7x handheld GPS unit (Trimble, 
Westminster, CO).

2.2.2  |  Drone flights

We created a flight mission using DJI Pilot software (v 1.1.5; DJI, 
Shenzhen, China) that was larger (52,000 m2) than the area covered 
by our OTMs to ensure that the central area of interest was fully 
covered by the drone transects. We placed four GCPs within the 
borders of the OTM deployment area, covering approximately the 
highest, middle and lowest elevation (Agüera-Vega et al., 2017). We 
recorded each GCP's position in WGS projection using the same 
Trimble Geo7x handheld GPS unit. The flight altitude was set at 
100 m above ground level (AGL), resulting in a ground sample dis-
tance (GSD) of 13.08 cm/pixel. The mission flight speed was 5.3 m/s, 
with a 70% side to 80% frontal image overlap ratio. Thermal and 
RGB images were collected simultaneously in-flight using a FLIR 
Zenmuse XT2 infrared camera (focal length = 13 mm, TIR resolu-
tion = 640 × 512, spectral range = 7.5–13.5 μm, accuracy = <0.05°C 
@ f/1.0, file format = TIFF/R-JPEG/JPEG and emissivity = 1.0) 
mounted on a DJI Matrice 200 Series V2 quadcopter. Thermal and 
RGB data were captured in R-JPEG and JPEG formats, respectively. 
We conducted 10 mission flights between 8:30 AM and 7:45 PM in 
the period between May 15 and July 29, 2023 (Table S2). General 
conditions before each flight were recorded using a Kestrel 3000 
weather meter. The average wind speed (±SD) across all flights was 
3.9 ± 4.3 m/s and the average air temperature was 23.5 ± 11.5°C. 
We flew 8 of these missions under sunny and/or clear conditions 
whereas two occurred during light cloud cover, conditions that are 
representative of the typical weather experienced at our field site 
during summer months.

We processed all drone imagery using the Thermal Camera 
processing template in Pix4Dmapper (version 4.8.4; Pix4D; Prilly, 
Switzerland). We included both thermal and RGB images in the tem-
plate with the following changes to the default settings for thermal 
image processing: The Point Cloud Point Density was set to ‘high’ 
and the orthomosaic was generated as a GeoTIFF with ‘merge tiles’ 
enabled. We georeferenced all images using GCPs to ensure max-
imum accuracy. We successfully generated 34 orthomosaic raster 
images and created a .tif file for each of the processed flights, with 
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a Root Mean Square error (the difference between the initial and 
computed positions of the GCPs) of 0.0475 ± 0.0063 m (mean ± SD) 
and an average orthomosaic GSD of 4.44 ± 0.474 cm/pixel. To test 
for the effect that using GCPs had on the accuracy of the final ther-
mal landscape output of throne, we generated an alternative set of 
orthomosaic raster images during which we skipped the georefer-
encing step.

2.2.3  |  Data processing

After the iButtons were retrieved from the field, we downloaded 
the data using OneWireViewer software (Analog Devices, Inc., 
Wilmington, MA) and ran the data through the throne workflow. 
We used the rnp_otms_data function to process all raw OTM data 
into a single data frame, which we later used to fit OTM and date-
specific cubic splines using the gen_otm_splines functions. To 
test how the choice of smoothing parameter (knot_p) affected the 
accuracy of our predictions, we fitted cubic splines with three differ-
ent knot_p values (see below). Flight-specific orthomosaic .tif files 
(both GCP-referenced and not) were imported into R and converted 
into data frames using the function rnp_flights_data. For the 
latter function, we set the resolution to 1, resulting in a spatial 
resolution of 1 m2 for the thermal landscape, an area that is ecologi-
cally relevant to western fence lizards based on their body size and 
home range as determined by our research group previously (unpub-
lished data) and by studies in other populations in the western USA 
(Davis & Ford, 1983; Sheldahl & Martins, 2000).

2.2.4  |  Predicting thermal landscapes

To validate that the final thermal landscapes produced by our method 
can accurately estimate operative temperature in areas of field sites 
where OTMs were not deployed (Garcia-Costoya, unpublished data), 
we generated a predicted thermal landscape from a subset of our 
deployed OTMs and then compared predicted operative tempera-
tures to actual (observed) operative temperatures for the tiles that 
contained the remaining OTMs. We examined how three parameters 
influenced throne's predictive accuracy: number of drone flights, 
number of OTMs deployed and the knot_p smoothing parameter. 
We assessed the number of flights and OTMs required to produce 
accurate thermal landscapes as these factors are likely the most im-
portant from a logistical and budgetary standpoint and therefore 
may reduce the usefulness of our method for some practitioners. 
We were also interested in examining the effect of knot_p as this 
parameter will determine the sensitivity of our method to short-term 
fluctuations and thus our ability to accurately predict highly tempo-
rally variable landscapes. To examine how variation in these param-
eters affects the accuracy of the final predicted thermal landscape, 
we ran the entire throne workflow a total of 52 times, predicting 
operative temperature landscapes using different numbers of drone 
flights (3, 5 or 10), OTMs deployed (10, 30 or 70) and knots for the 

spline models (0.25, 0.5 or 1 which are equivalent to 0.3, 0.6 and 
1.2 knots/h). The individual drone flights and OTMs used to evalu-
ate each combination of parameters were randomly sampled and we 
replicated the test 10 times per combination of parameters. In the 
case of the drone flights, they were separated between being con-
ducted in the morning (before 10:00), middle of the day (between 
10:00 and 16:00) and evening (after 16:00) and sampled evenly 
across these three categories. For each combination of parameters, 
we calculated the differences between the actual OTM measure-
ments and the predicted operative temperatures from the thermal 
landscapes for 100 random combinations of dates and times for the 
period during which OTMs were deployed.

3  |  RESULTS

3.1  |  Integration of OTM and drone data

Raw surface temperatures obtained from the drone (whether or not 
images were georeferenced using GCPs) were positively and signifi-
cantly correlated with operative temperatures obtained from OTMs 
(p < 0.001 for both cases). However, the relationship between sur-
face and operative temperatures obtained from non-georeferenced 
images was noticeably worse (intercept = −0.28, slope = 0.9, 
R2 = 0.562, df = 341) than that obtained from georeferenced im-
ages (intercept = −0.14, slope = 0.87, R2 = 0.62, df = 351; Figure S4). 
The correction process implemented via the correct_flights_
data function (including correcting for day and time-of-day bias; 
Figure S5) resulted in further improvement of the fit between OTM 
and surface temperatures while minimally impacting the form of the 
relationship (intercept = 0, slope = 1, R2 = 0.61, df = 351; Figure S4).

When using all flights and OTMs, and a knot_p value of 0.5 
(equivalent to 0.6 knot/h at a sampling rate of 1.2 OTM measure-
ments per hour) to predict the full thermal landscape, half of the 
thermal variability across our field site was explained by as few as 
five OTMs, with 22 OTMs explaining 90% of the overall thermal vari-
ability (Figure 3). OTMs that were deployed at similar orientations 
(e.g. those deployed on surfaces that faced a particular cardinal di-
rection) tended to be matched with spatially aggregated clusters of 
tiles which were in the parts of the habitat that faced those direc-
tions (Figure 3). We show predicted thermal landscapes generated 
for our study site in Figure S7.

3.2  |  Predictive accuracy

When we used 70 OTMs, 10 flights and set knot_p to 1 (i.e. 1 knot/h) 
to generate the predicted thermal landscape, the mean predictive 
error (the difference between predicted and observed operative tem-
perature) was 0.187 ± 0.594°C (mean ± SD). When only 10 OTMs and 
3 flights were used to generate the predicted thermal landscape (also 
with knot_p set to 1), the mean predictive error was −0.388 ± 0.411°C. 
In all cases, the 95% confidence interval around the mean predictive 
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error overlapped with zero. The accuracy of our method did not dif-
fer between the two validations; a full list of mean predictive errors 
(±SD) for both validations and all combinations of flight number, OTM 
number and number of knots per hour are presented in Table 1 and 
Tables S3–S5 (reported as both relative and absolute predictive error). 
Frequency distributions of predictive errors across different combina-
tions of parameters are shown in Figures S8–S12.

4  |  DISCUSSION

The traditional approaches to measuring terrestrial thermal environ-
ments and predicting how they will change in the future face chal-
lenges due to limited availability of high-resolution environmental 
data. Our method, which integrates drone infrared imaging with 
in  situ OTM measurements, is a tractable approach to measuring 

F I G U R E  3  A small number of operative temperature models (OTMs) described most of the thermal variation within our field site, 
whether we used our method to predict operative temperatures over a longer span of time (76 days) and a larger geographic area (33,000 m2; 
validation 1; a, b) or over a shorter span of time (3 days) and a smaller geographic area (600 m2; validation 2; c, d). The solid lines in the panels 
on the right show the cumulative thermal variation explained by a given number of OTMs. Twenty-two OTMs described more than 90% of 
the thermal variation for the larger area (b), whereas 15 OTMs described the same amount of thermal variation for the smaller area (d).

Validation 1 knot_p (knot/h)

N flight N OTM 0.25 (~0.3) 0.5 (~0.6) 1 (~1.2)

3 10 0.52 ± 0.455 0.033 ± 0.578 −0.388 ± 0.411

30 0.419 ± 0.421 0.398 ± 0.261 −0.097 ± 0.312

70 0.474 ± 0.262 0.207 ± 0.263 0.792 ± 0.388

5 10 0.725 ± 0.95 0.392 ± 0.261 −0.666 ± 0.292

30 0.827 ± 0.69 0.127 ± 0.436 −0.158 ± 0.263

70 0.909 ± 0.824 −0.159 ± 0.383 −0.259 ± 0.25

10 10 0.582 ± 0.745 0.382 ± 0.479 −0.003 ± 0.439

30 0.472 ± 0.417 −0.318 ± 0.385 0.452 ± 0.716

70 0.704 ± 1.243 0.679 ± 1.064 0.187 ± 0.594

TA B L E  1  Mean predictive error 
(±SD) for validation 1, presented as 
the relative difference between the 
observed (from operative temperature 
models [OTMs]) and predicted (from 
the final thermal landscape output by 
throne) temperatures across different 
combinations of number of drone flights, 
number of OTMs and knot_p values 
(magnitude of smoothing of raw OTM 
data; knots per hours are given in the 
brackets) used to generate the final 
thermal landscape. All comparisons were 
done for data collected during daytime 
hours (7 AM to 7 PM).
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terrestrial thermal environments at high spatiotemporal resolution. 
Importantly, our method generates thermal maps that are biologi-
cally relevant to the study species, at least to the extent that OTMs 
are properly designed and calibrated for the organism of interest. 
We have made our method accessible to researchers and practi-
tioners by developing an R package, throne, which streamlines the 
necessary corrections to raw drone data and produces operative 
thermal landscapes with minimal input and technical expertise re-
quired by the user. This approach should enhance the accuracy and 
accessibility of detailed and biologically relevant thermal landscapes 
for species around the globe and improve the quality of the baseline 
data that are required for understanding the responses of organisms 
to environmental change.

Our method works by linking temporally continuous (but spa-
tially discrete) OTM thermal profiles to spatially continuous (but 
temporally discrete) thermal orthomosaics generated from drone 
photogrammetry to generate spatiotemporally comprehensive op-
erative temperature maps (i.e. thermal landscapes). We confirmed 
that our approach can produce accurate thermal landscapes by 
comparing the predicted temperatures from the throne output to 
real operative temperatures measured with OTMs that we deployed 
in the field. Our method produced estimates of operative thermal 
landscapes that can be considered accurate based on the thermal 
ecology of Sceloporine lizards (Andrews et al., 1999; Lemos-Espinal 
et al., 2001; Plasman et al., 2024). Indeed, despite the temporal or 
spatial scale over which we made predictions, the average predictive 
error of final daytime thermal landscapes was <0.5°C, and 95% of 
the tile values within the landscapes were within 2°C of the true 
value. This accuracy further increases when nighttime temperatures 
are included (as there is much less thermal heterogeneity at night). 
Nonetheless, the accuracy and thus utility of our method depends 
on the optimization of several factors.

First, successful implementation of this method depends on 
obtaining accurate in situ operative temperature data using field-
deployed data loggers (OTMs). In the field of thermal ecology, 
OTMs are designed in inconsistent ways and often are not prop-
erly calibrated (Dzialowski,  2005). However, recent advances in 
3D printing provide opportunities to build affordable and accurate 
OTMs for a wide range of species (Alujević et al., 2024). Since our 
method involves correlating the thermal profiles of OTMs with 
tiles in the drone-acquired orthomosaics, it is crucial to deploy 
OTMs across diverse microhabitats, encompassing various sub-
strates, vegetation types and topographical features. This ensures 
a comprehensive range of options for linking OTM thermal pro-
files to tiles. The selection of microhabitats for OTM deployment 
should be informed by the ecology of the species under study. 
In our investigation, we strategically deployed OTMs with the 
goal of comprehensively sampling the microhabitats available to 
our study species. This allowed us to test the sensitivity of our 
method to OTM coverage in the thermally heterogeneous envi-
ronment of the Great Basin Desert. Irrespective of whether we 
were predicting thermal landscapes across smaller or larger geo-
graphic areas, or over shorter or longer time periods, fewer OTMs 

than we expected were required to describe the thermal dynamics 
of the site. For an area of 33,000 m2 and over a 76-day period 
(validation 1), we found that only five OTMs were required to ac-
curately describe half of the thermal variation at our site, while 
only 22 OTMs were required to accurately describe 90% of the 
thermal variation. This promising result suggests that, as long as 
OTMs are deployed strategically to capture key microhabitat and 
physiographic features of the site, researchers may not need to 
deploy large numbers of OTMs for optimal implementation of our 
method, especially in environments that are less thermally hetero-
geneous than a rocky desert. Regardless, decisions on how many 
OTMs to deploy at a given site will be system specific.

A second consideration is the appropriate smoothing factor (i.e. 
the number of knots per hour; Figure S14) to generate daily thermal 
profiles for each OTM. This decision depends on two factors: the 
frequency at which OTMs recorded operative temperatures and the 
biophysical ecology of the study organism. While it is essential to 
capture accurate thermal profiles of specific microsites, excessive 
precision in these profiles will introduce noise that is irrelevant to 
the study organism and might negatively impact the quality of the 
match between the thermodynamics of OTMs and tiles from the 
drone data. What counts as ‘excessive precision’ will be system-
dependent. For example, in an environment where abrupt changes 
in weather (e.g. gusts of wind, brief cloud cover, etc.) result in rapid 
and reversible shifts in temperature that are unlikely to influence the 
behaviour of the organism (because the particular organism has rel-
atively high body mass and therefore relatively high thermal inertia, 
for example), smoothing improves the quality of the final estimated 
thermal landscape. This was generally the case for our focal popula-
tion of the western fence lizard (average adult mass >20 g), and we 
therefore opted to use 4 knots/h, which smoothed OTM measure-
ments at 15-min intervals. However, for smaller-bodied organisms 
that are more susceptible to short-term changes in abiotic conditions 
(e.g. lizards or insects under 5 g in mass), one might increase the 
number of knots in order to capture shorter-term thermal fluctua-
tions in the environment.

A third factor that we thought would influence the quality of the 
thermal landscapes produced by throne was the number of drone 
missions flown over the field site. Although we had assumed that a 
larger number of flights would be advantageous as it would provide 
more time points to correlate OTM thermal profiles with tile dynam-
ics, our results show that a relatively small number of flights is prob-
ably sufficient for most applications. Regardless of whether thermal 
landscapes were generated using 3 randomly selected flights or 
34, and whether operative temperature predictions were made for 
longer or shorter time periods, or over larger or smaller geographic 
areas, the accuracy of throne's output was similar (Table 1). This 
result is likely robust as we tested our method in the highly hetero-
geneous environment of a high-elevation, temperate desert. This is 
a notable advantage of throne, as the researcher or practitioner 
will only have to fly their drone a moderate number of times to accu-
rately capture the temporal thermal dynamics of their field site. This 
should increase the number of missions or size of the field site that 

 2041210x, 2025, 8, D
ow

nloaded from
 https://besjournals.onlinelibrary.w

iley.com
/doi/10.1111/2041-210X

.70096 by C
ochrane C

roatia, W
iley O

nline L
ibrary on [02/09/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



1698  |    ALUJEVIĆ et al.

can be measured under the same drone battery power, which can be 
an important rate-limiting factor in drone-based studies.

Finally, it is important to consider the spatial resolution of 
drone-based surface temperatures that is necessary to capture 
thermal variation at a scale that is relevant to the study organism. 
There are two parameters to consider: (1) the resolution that can 
be attained by the specific brand and model of TIR camera being 
used and (2) the resolution of the resulting thermal landscapes that 
are produced with throne (Figure S15). TIR cameras typically pro-
duce images with a lower digital resolution than standard cameras 
(the Zenmuse XT2 thermal camera that we used has a resolution 
of 640 × 512 pixels). Flight altitude is also important to consider as 
it affects both the spatial resolution captured by the thermal cam-
era (the size of the pixel on the ground represented by the GSD) 
and the amount of atmospheric interference between the ground 
and the sensor (Playà-Montmany & Tattersall, 2021). Users should 
adjust the flight altitude to generate thermal orthomosaics with a 
GSD that will ultimately generate a map with a resolution relevant 
to their focal organism. For example, at a flight altitude of 40 m, the 
centre distance between two adjacent pixels in our thermal photos 
was 5.23 cm (each pixel was 0.027 m2 in area). A flight conducted at 
lower altitude could be needed for small organisms such as insects. 
However, using drone temperature data with an extremely low 
GSD might introduce noise that reduces the predictive capacity of 
the model. The spatial resolution of the final thermal landscape can 
also be modulated in throne with the argument resolution in 
the rnp_flights_data function. Although it would seem logical 
to always maximize the resolution such that 1 tile represents the 
smallest possible area (0.5 m2), increased spatial resolution requires 
greater computing power and time (especially during the tile-to-
OTM matching step), which may not be available to some users. 
Despite these considerations, our approach will allow researchers 
to generate thermal landscapes for their study organisms with sub-
stantially higher resolution than those commonly used in climate 
models (e.g. the WorldClim 2 dataset; https://​www.​world​clim.​org/​; 
Fick & Hijmans, 2017).

Major benefits of the throne package are that the expertise re-
quired to model thermal landscapes at nearly unprecedented levels 
of spatiotemporal detail is relatively low, the equipment required is 
relatively affordable, and the thermal landscape model produced is 
based on real operative temperatures collected at the specific site of 
interest. While ecophysiological models are invaluable for simulat-
ing body temperatures at broader geographic scales, our approach 
allows for spatially explicit, high-resolution mapping of operative 
temperatures that are relevant to individual organisms without the 
need for assumptions or separate measurements of microhabitat 
frequencies and distributions. Further, our method is applicable to 
a wide range of open and semi-open environments that occur over 
broad swaths of the planet.

We have designed throne to be user-friendly in that it requires 
minimal analytical expertise; users can simply input their raw data 
and a few boundary parameters, and throne will generate pre-
dicted thermal landscapes for any day/time combination during 

which OTMs were logging temperatures in the field. To generate 
the input data, some training and expertise is required, but we do 
not think this will be insurmountable for most researchers. Thermal 
biologists have been building and deploying OTMs for decades 
(Angilletta,  2009; Bakken,  1992; Dzialowski,  2005), and modern 
commercially available drones with TIR cameras are both relatively 
affordable and easy to operate. Drones equipped with thermal sen-
sors are rapidly becoming more affordable; the model used in this 
study was priced at ~USD 8000 in 2019 and the thermal sensor had 
to be purchased separately (~USD 13,000). Only a few years later, 
drones with similar capabilities and built-in thermal sensors have 
become much smaller and more portable, with options like the DJI 
Mavic 3 Thermal now available for as little as USD 5000. Although 
the photogrammetry software used in this study (Pix4D) requires 
a licence, there are several equivalent products that are now avail-
able for free (e.g. OpenDroneMap online software: https://​www.​
opend​ronem​ap.​org/​ ). Despite this, some researchers (especially 
some of those in developing nations) may find our method too ex-
pensive or impractical, perhaps until drone and sensor prices de-
cline further. Regardless, we see the accessibility of our method 
as a significant advance in the field because it will enable many 
researchers, practitioners or conservation managers to precisely 
characterize the thermal environment of interest in a way that is 
both spatiotemporally comprehensive and relevant to the biology 
of their study organism.

Although our approach offers numerous benefits, there will be 
contexts in which it may not be the most appropriate method for 
quantifying operative thermal landscapes. First, it relies on in  situ 
operative temperature measurements to convert drone-based sur-
face temperatures to temperatures that are biologically appropriate 
for the study species. This means that throne can only be ap-
plied during the time period that operative temperatures are being 
logged by field-deployed OTMs. In this study, we used OTMs that 
had Thermocron iButton temperature loggers suspended inside. 
However, even high-capacity iButtons can only record a few thou-
sand temperature measurements. To create thermal landscapes for 
many months or the entire year, we would have had to retrieve the 
temperature loggers, download the data and redeploy them several 
times. This process might not be feasible in other systems where 
accessing the OTMs is challenging or data storage capacity is limited. 
Finally, our approach is ideal for environments that are at least mod-
erately open (e.g. deserts, grasslands, open woodlands, etc.). This 
is because drone thermal imagery can, by its nature, only capture 
temperatures of surfaces below the flight path. In habitats with fully 
enclosed canopies, this approach would not be suitable as the drone 
sensors would be unlikely to penetrate to the understory except in 
cases where there were canopy gaps (but see alternative approach 
in Higgins et al., 2024). Nonetheless, our drone-based approach to 
mapping thermal environments is probably unnecessary in these 
types of highly buffered, thermally homogeneous environments as 
the deployment of a small number of temperature loggers usually 
captures the operative thermal dynamics in these habitats (Cox, 
Alexander, et al., 2020; Nicholson et al., 2022; Williams et al., 2022). 
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Furthermore, in addition to its primary application for high-
resolution operative thermal mapping, throne could also be imple-
mented using  .tif format datasets from satellite-derived surface 
temperature products, such as those from VIIRS, Copernicus or 
MODIS, which offer coarser spatial resolution but can cover broader 
geographic regions. While this may not capture fine-scale thermal 
variability, it could still provide valuable insights for large-area stud-
ies when combined with ground-based OTMs.

The accurate mapping of terrestrial thermal environments has 
direct implications for predicting organismal responses to rapid 
environmental change. Inaccurate or low-resolution estimates 
of operative temperature can reduce our ability to quantify con-
straints on thermoregulatory capacity, which generates inac-
curacies and biases in our predictions for how organisms might 
respond to changing environments. Our drone-based framework 
for quantifying operative thermal environments offers a straight-
forward approach that produces accurate and precise spatiotem-
poral operative temperature distributions. The broad adoption of 
this approach should deepen our understanding of how organisms 
interact with their environments, how they have adapted to these 
environments in the past, and how climate change is likely to im-
pact ecosystems in the future.
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SUPPORTING INFORMATION
Additional supporting information can be found online in the 
Supporting Information section at the end of this article.
Figure S1. Our study site in the Great Basin Desert, NV, USA (GPS 
39.868 N, 119.627 W).
Figure S2. Western fence lizard (Sceloporus occidentalis) on the left 
and OTM on the right.
Figure S3. Fluctuation in operative temperature over the validation 
1 period.
Figure S4. Correlation between operative temperatures and 
surface temperatures before applying corrections (left panel), after 
correcting for GCPs (middle panel), and after correcting for GCPs 
and the correct_flights_data function of the throne package 
(right panel) for validation 1 (top) and validation 2 (bottom).

Figure S5. Temperature bias observed for validation 1 (A) and 
validation 2 (B) expressed as a difference between operative and 
drone surface temperatures as a function of time of day.
Figure S6. Temperature bias observed for validation 1 is expressed 
as a difference between operative and drone surface temperatures 
as a function of day of the year.
Figure S7. Predicted thermal landscape generated for our study 
site in Northern Nevada generated for four Julian dates at five time 
points of the day.
Figure S8. Daily frequency distribution of error (predicted-observed 
temperature) across different combinations of knot_p parameters, 
numbers of OTMs and drone flights for validation 1.
Figure S9. Daily frequency distribution of error (predicted-observed 
temperature) across different combinations of knot_p parameters, 
numbers of OTMs and drone flights for validation 2.
Figure S10. Daytime only frequency distribution of error 
(predicted-observed temperature) across different combinations 
knot_p parameters, numbers of OTMs and drone flights for 
validation 1.
Figure S11. Daytime only frequency distribution of error 
(predicted-observed temperature) across different combinations 
knot_p parameters, numbers of OTMs and drone flights for 
validation 1.
Figure S12. Prediction error as a function of time of day across 
different combinations of knot_p parameters, numbers of OTMs 
and drone flights for validation 1.
Figure S13. Matching error between tiles and the OTMs that best 
describe them for validation 2.
Figure S14. Example of a cubic spline (orange) fitted to OTM 
measurements (black) that logged every 2 min across 24 h using 1, 
2, 4 and 30 knots/h.
Figure S15. Results of processing the same flight at a spatial 
resolution of 0.5, 1 and 4 m2.
Table  S1. List of microhabitats where OTMs were deployed with 
corresponding descriptions and numbers of OTMs deployed (N) for 
validation 1 and 2.
Table S2. Flight metadata for validation 1 and 2.
Table  S3. Mean predictive error (±SD) for validation 2, presented 
as the relative difference between the observed (from OTMs) and 
predicted (from the final thermal landscape output by throne) 
temperatures across different combinations of number of drone 
flights, number of OTMs, and knot_p values (magnitude of smoothing 
of raw OTM data; knots per hours are given in the brackets) used to 
generate the final thermal landscape.
Table  S4. Mean predictive error (±SD) for validation 1 and 2, 
presented as the absolute difference between the observed (from 
OTMs) and predicted (from the final thermal landscape output by 
throne) temperatures across different combinations of number 
of drone flights, number of OTMs, and knot_p values (magnitude 
of smoothing of raw OTM data; knots per hours are given in the 
brackets) used to generate the final thermal landscape.
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Table  S5. Mean predictive error (±SD) for validation 1 and 2, 
presented as the relative difference between the observed (from 
OTMs) and predicted (from the final thermal landscape output by 
throne) temperatures across different combinations of number 
of drone flights, number of OTMs, and knot_p values (magnitude 
of smoothing of raw OTM data; knots per hours are given in the 
brackets) used to generate the final thermal landscape.
Appendix S1. Methodology for Validation 2.
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