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Debeljak, Ž.; Försti, A.; Seiwerth, S.;
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Simple Summary: Lung cancer is a leading cause of cancer-related deaths worldwide, characterized
as a disease usually diagnosed in the advanced stages with limited therapeutic options. Significant
progress in the treatment of lung cancer has been achieved by the application of targeted therapy and
immunotherapy based on the identification of molecular abnormalities of the tumor tissue. However,
only a small proportion of patients is carrying genetic alterations and will benefit from targeted therapy.
Here, we conducted transcriptomic profiling and a comprehensive biostatistics analysis of the squamous-
cell lung carcinoma (SqCLC), a histological subtype of the non-small cell lung carcinoma (NSCLC),
aiming to identify the specific transcriptomic signature of SqCLC and evaluate the functional relevance
of identified genes. This study sheds light on individual SqCLC tumors’ transcriptomic landscape and
discusses the therapeutic and prognostic potential of identified biomarkers.

Abstract: Squamous cell lung carcinoma (SqCLC) is associated with high mortality and limited treatment
options. Identification of therapeutic targets and prognostic biomarkers is still lacking. This research
aims to analyze the transcriptomic profile of SqCLC samples and identify the key genes associated with
tumorigenesis, overall survival (OS), and a profile of the tumor-infiltrating immune cells. Differential
gene expression analysis, pathway enrichment analysis, and Gene Ontology analysis on RNA-seq data
obtained from FFPE tumor samples (N = 23) and healthy tissues (N = 3) were performed (experimental
cohort). Validation of the results was conducted on publicly available gene expression data using TCGA
LUSC (N = 225) and GTEx healthy donors’ cohorts (N = 288). We identified 1133 upregulated and
644 downregulated genes, common for both cohorts. The most prominent upregulated genes were
involved in cell cycle and proliferation regulation pathways (MAGEA9B, MAGED4, KRT, MMT11/13),
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while downregulated genes predominately belonged to immune-related pathways (DEFA1B, DEFA1,
DEFA3). Results of the survival analysis, conducted on the validation cohort and commonly deregulated
genes, indicated that overexpression of HOXC4 (p < 0.001), LLGL1 (p = 0.0015), and SLC4A3 (p = 0.0034)
is associated with worse OS in early-stage SqCLC patients. In contrast, overexpression of GSTZ1
(p = 0.0029) and LILRA5 (p = 0.0086) was protective, i.e., associated with better OS. By applying a
single-sample gene-set enrichment analysis (ssGSEA), we identified four distinct immune subtypes.
Immune cell distribution suggests that the memory T cells (central and effector) and follicular helper T
cells could serve as important stratification parameters.

Keywords: NSCLC; squamous cell lung cancer (SqCLC); profiling; mRNA; biomarkers; survival;
tumor microenvironment (TME); T cells

1. Introduction

Lung cancer is a leading cause of cancer-related mortality, accounting for approxi-
mately 20% of all cancer-related deaths worldwide [1]. Despite recent advances in treatment
options, in terms of immunotherapy and targeted therapy, 5-year survival remains poor.
The highest survival rates of 30% are recorded in developed countries like Japan [2], while
developing and/or low-income countries struggle with survival rates of less than 10% [3].
Lung cancer is traditionally divided into small-cell lung carcinoma (SCLC) and non-small-
cell lung carcinoma (NSCLC). SCLC is less frequent than NSCLC, which accounts for 85% of
all lung cancer cases. Histologically, NSCLC is further classified into adenocarcinoma, squa-
mous cell carcinoma (SqCLC), large-cell carcinoma, and other not-so-common subtypes [4].
Successful treatment of lung cancer is complex and heavily dependent on the stage at the
time of diagnosis, histologic subtype, patient clinical status, and comorbidities [5].

The usage of high-throughput technologies on genomic, transcriptomic, proteomic, or
epigenetic levels has improved our understanding and characterization of the molecular
pathogenesis of cancers, which has led to the identification of specific cancer cell vulner-
abilities and triggered the development of targeted therapeutics. For example, genomic
profiling of lung adenocarcinoma has led to the identification of many targetable alterations
like mutations in the EGFR gene or rearrangements of the ALK gene, which can now
be treated with specific targeted drugs [6–8]. High-throughput sequencing studies on
NSCLC have, therefore, not only revealed the genomic landscape of this disease [9–12]
but also identified genomic differences between the two most common NSCLC subtypes,
adenocarcinoma and SqCLC [13]. Most importantly, targetable mutations identified in
adenocarcinoma are rarely found in SqCLC patients. Despite growing efforts in further
characterization of the genomic landscape of SqCLC, translation of acquired genomic
knowledge into the development of targeted therapeutics for SqCLC has been much slower
than in adenocarcinoma, resulting in only a few approved therapeutics. The discovery of
immune checkpoint inhibitors was the next revolution in the therapy of NSCLC, with the
programmed cell death protein-1/programmed cell death ligand-1 (PD-1/PD-L1) pathway
as the most utilized one. Inhibition of this pathway enables priming and activation of
the anti-tumor activity of cytotoxic T cells [14]. It has been shown that SqCLC patients
can benefit from treatment with immunotherapy if their lung tumors express PD-L1 in
50% of tumor cells [15], while those who are not eligible are most likely to be treated with
platinum-based chemotherapy as a first-line therapy.

In addition to genomic characterization, profiling of the tumor tissue at the transcrip-
tomic level also has led to new insights into the tumorigenesis of this disease. So far,
profiling of SqCLC transcriptome has allowed the identification of several SqCLC sub-
types, based on gene expression level, that differ in biological processes and affect patients’
survival [16,17], indicating its usefulness in prognosis estimation.

Tumor cells are in constant interaction with the elements of the tumor microenviron-
ment (TME). TME consists of an extracellular matrix and stromal, vascular, endothelial,
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and immune cells. Within TME, cancer cells can reprogram stromal cells infiltrating tu-
mors to promote tumorigenesis [18]. It has been reported that the level of immune cell
infiltration into the tumor depends on the tumor stage [19,20]. Chronic inflammation in
lung cancer can also affect immune cell differentiation [21], which could lead to imbalanced
antitumor activity, tumor evasion [17], or resistance to the therapy with immune checkpoint
inhibitors [22,23]. The level of tumor-infiltrating immune cells also has prognostic value.
For example, increased infiltration levels of B cells, T cells, and dendritic cells have been
associated with a better prognosis for NSCLC. In comparison, increased infiltration levels
of regulatory T cells and tumor-associated macrophages have been associated with a worse
prognosis for NSCLC [24]. A high neutrophil-to-lymphocyte ratio has also been associated
with poor overall survival and progression-free survival in NSCLC [25]. Since it has been
shown that the profile of tumor-infiltrated immune cells could influence the clinical out-
come of NSCLC patients [26], further characterization of the tumor microenvironment in
SqCLC is also needed.

Since SqCLC is a complex disease, it is of crucial importance to enhance our under-
standing of its biology and genetic profile. The results of those studies could be used to
enhance SqCLC management. Despite the growing number of mRNA sequencing studies,
the number of comprehensive analyses of mRNA expression profiles of SqCLC is limited.
Therefore, this study aimed to contribute to the current knowledge of the molecular back-
ground of SqCLC tumorigenesis by analyzing expression profiles of mRNA in SqCLC to
explore the molecular background of SqCLC tumorigenesis.

2. Materials and Methods
2.1. Study Design

The whole transcriptome sequencing of formalin-fixed, paraffin-embedded (FFPE)
SqCLC samples, coupled with FFPE healthy control tissue, was performed. Additionally,
various transcriptomic profile analyses, including the identification of differentially ex-
pressed genes, Gene Ontology, and gene-set enrichment analysis, were performed. The
level of immune cells infiltrating tumor tissue was also estimated. The sequencing results of
the TCGA (The Cancer Gene Atlas)-LUSC and GTEx (Genotype-Tissue Expression) cohorts
were included to validate differentially expressed genes identified in the experimental
cohort. Finally, the impact of expression levels of validated differentially expressed genes
on patients’ overall survival was examined. The systematic workflow of this study is
graphically presented in Figure 1.
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2.2. Patient Samples and Data Collection

Samples of primary SqCLC were collected at the University Hospital Centre Zagreb,
Department of Thoracic Surgery and Department for Respiratory Diseases, Jordanovac,
during surgical resection. A total of 23 tumor samples included in this study were taken
between 2013 and 2019. Demographic and clinical characteristics of the tested population
are summarized in Table 1. In addition, the three healthy control samples were collected at
the Department of Anatomy, Histology, and Pathology, Faculty of Dental Medicine and
Health, University of Osijek. Control tissue was obtained during autopsies of healthy
individuals who had died from accidental deaths and did not have any lung changes,
as confirmed by clinical pathologists. Both healthy and tumor specimens were fixed in
formalin and embedded in paraffin. From each FFPE tumor sample, two 4 µm thick slices
and four 10 µm slices were cut. The 4 µm sections were stained with hematoxylin and
eosin (H&E) and reviewed by the pathologist at the Department of Pathology and Cytology,
University Hospital Centre Zagreb. Study inclusion criteria for FFPE lung tumor specimens
were histologic diagnosis of SqCLC, at least 60% of tumor cells, and not more than 30% of
necrotic tissue in the sample. In addition, clinical data, like smoking status, TNM status,
stage, and survival data, were collected. All raw data generated in this study, including
FASTQ sequencing data and metadata, have been submitted to the NCBI Gene Expression
Omnibus (GEO; https://www.ncbi.nlm.nih.gov/geo/ (submitted on 19 March 2023) under
accession number GSE230089 https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=
GSE190089 (submitted on 19 March 2023).

Table 1. Demographic and clinical characteristics of the tested SqCLC population.

Cohort Experimental Validation

Cases n = 23 n = 225

Age, year (mean) 64 67

Sex (N, %)
Male 18 (78) 163 (72.5)
Female 5 (22) 62 (27.6)

Smoking status (N, %)
Active 75 (33.3)
Ex-smoker 9 (39) 133 (59.1)
Nonsmoker 13 (57) 8 (3.6)
Undetermined 1 (4.) 9 (4)

T stage (N, %)
1 4 (17) 57 (25.3)
2 6 (26) 125 (55.6)
3 10 (43) 34 (15.1)
4 3 (13) 9 (4)

N stage (N, %)
0 13 (57) 157 (69.8)
1 5 (22) 56 (24.9)
2 5 (22) 11 (4.9)
3 0 0
Undetermined 0 1 (0.4)

M stage (N, %)
0 21 (91) 181 (80.4)
1 2 (9) 2 (0.9)
Undetermined 0 42 (18.7)

For validation of our transcriptomic data, we downloaded an expression dataset
named TcgaTargetGtex_gene_expected_count (version 2016-09-03) from the UCSC Toil
RNA-seq recomputed compendium using the UCSC Xena browser. This dataset is com-
posed of uniformly realigned expression data from TCGA (The Cancer Genome Atlas),

https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE190089
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE190089
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TARGET (Therapeutically Applicable Research to Generate Effective Treatments), and
GTEx (Genotype-Tissue Expression) samples [27]. Gene expression RNA-seq data were
downloaded as log2(expected_count+1), together with phenotype data (TcgaTargetG-
TEX_phenotype.txt). We included 513 samples in the validation cohort, 225 squamous
cell lung cancer patients, and 288 healthy controls. To ensure that the validation cohort is
similar to the tested cohort, we set several inclusion criteria. Patients should be Caucasians;
patients should be diagnosed with squamous cell lung cancer; patients should not have
prior treatment; the site of resection or biopsy should be the lung (main bronchus and
overlapping lesion of the lung were removed). Patients who have synchronous malignancy
or had prior malignancy were not included in this study. We also excluded TARGET data
since they are based exclusively on pediatric data, as well as TCGA healthy tumor adjacent
lung samples. A list of all TCGA samples included in this study, together with clinical and
demographic data, can be found in Supplementary Table S1 and is summarized in Table 1.

2.3. RNA Isolation, Library Preparation, and RNA-seq Analysis

For the transcriptome profiling analysis of SqCLC and healthy control tissues, we
extracted total RNA, prepared libraries, and performed RNA-seq. Total RNA was extracted
from 2× 10 µm FFPE tissue slices with an RNEasy FFPE kit (Qiagen, Hilden, Germany),
according to the manufacturer’s instructions. RNA integrity and quality were assessed
using RNA Nano 6000 BioAnalyzer chips (Agilent, Santa Clara, CA, USA), with DV200
measurement setup (the percentage of fragments >200 nucleotides). Samples with DV200
values >30% were included in this study. The TruSeq RNA Exome kit (Illumina, Cambridge,
UK) was used for library preparation, according to the manufacturer’s protocol, excluding
the fragmentation step. Sizes and concentration of final libraries were estimated with High
Sensitivity DNA chips on BioAnalyzer (Agilent, Santa Clara, CA, USA). Prepared libraries
were sequenced on the Illumina HiSeq4000 platform to obtain 100-bp paired-end reads. The
quality of sequenced reads was checked with the FASTQC application on the Base Space
Sequence Hub cloud (Illumina, Cambridge, UK). Reads were then aligned to the human
genome (NCBI GRCh38 Decoy) with the RNA-Seq Alignment App (Illumina, Cambridge,
MA, USA).

2.4. Differential Gene Expression Analysis

In differential expression analysis, 23 SqCLC and 3 healthy samples were included,
with a count depth of >40 million reads. Differentially expressed genes (DEGs) of SqCLC
compared to healthy controls were determined using RNA-Seq Differential Expression
Application (Illumina) that uses the DESeq2 tool. Differentially expressed genes were
determined based on|log2FC|≥1 and adjusted p < 0.05, according to Benjamini and
Hochberg’s method. To validate the results obtained on the experimental cohort, consisting
of a relatively small number of tissue samples, expression profiling was also conducted
on a validation cohort. We performed differential gene expression analysis using TCGA
LUSC cohort (n = 225) and GTEx healthy controls (n = 288) from UCSC Toil RNA-seq data
collection. Differential expression analysis on the validation cohort was performed in R
using the DESeq2 package. For comparison of gene expression levels between two cohorts,
we set |log2FC|≥ 1. A Venn diagram was plotted for visualization in the R using the Venn
diagram package.

2.5. Gene Ontology (GO) Analysis and Gene Set Enrichment Analysis (GSEA)

The biological significance of differentially expressed genes was explored using Gene
Ontology analysis. This analysis was performed using the web-based tool available at
http://geneontology.org/ and PANTHER complete annotation sets for biological process
(BP), cellular component (CC), and molecular function (MF) categories (GO Ontology
database released 1 July 2022). We performed two separate GO analyses, one for upregu-
lated and the other for downregulated genes. For statistical analysis purposes, we chose
the Fisher’s Exact test, coupled with false discovery rate correction. GO terms with FDR

http://geneontology.org/
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q-values < 0.05 were considered significant. Results are presented as bar charts created
in the R program (v. 3.6.2.) with the ggplot2 package. Gene set enrichment analysis of
gene expression data was performed with desktop tool GSEA (v4.0.3) and MSigDB C2,
all canonical pathways gene set collection. Analysis was run as a weighted pre-ranked
list, based on log2 FC values, with 1000 permutations, max size = 500, and min size = 10.
Results are presented as bar charts created in the R program with the ggplot2 package.

2.6. Survival Analysis

We performed a survival analysis to investigate the correlation of the patient’s overall
survival (OS) with expression levels of commonly dysregulated genes in both cohorts. Since
the experimental group is relatively small, for survival analysis, we used nonmetastatic
patients’ data from the validation cohort. Death was considered an event of interest, and
data for patients who did not die during follow-up were censored. Analysis was performed
using the Xena browser. For each gene of interest (commonly dysregulated in both cohorts),
patients were stratified into two groups based on the gene expression level (high or low
expression). Cut-off values for allocating patients to either group were derived from the
median expression level of corresponding genes. The Kaplan–Meier and log-rank tests
were used to evaluate the difference in survival rates between the two groups. A p-value of
less than 0.05 was considered significant.

2.7. Estimation of Tumor-Infiltrating Immune Cells

These analyses aimed to better define the tumor microenvironment in the context of
the tumor-infiltrating immune cells. For an initial approximation of the level of tumor-
infiltrated immune cells, we used the ESTIMATE algorithm (Estimation of Stromal and
Immune cells in Malignant Tumors using Expression data) in the R estimate package.
ESTIMATE is based on the single-sample gene-set enrichment analysis (ssGSEA) method
that uses gene signatures related to stromal tissue and immune cells and outputs stromal
score (SS), immune score (IS), and combined SS and IS as ESTIMATE score for each sample
in analysis. To gain better insight into immune cell types that infiltrate the tumor, we
performed an additional analysis, GSVA (Gene Set Variant Analysis), as described here [28],
using 16 immune cell populations representing adaptive and innate immune systems. We
included gene set signatures from Bindea et al. [29] for B cells, mast cells, macrophages,
immature and activated dendritic cells, Neutrophils, NK dim, NK bright, T effector cells,
T central memory cells, T helper, T follicular helper cells, and Cytotoxic cells. Gene sets
representing cytotoxic cells included combined genes over-expressed in activated CD8+
T cells, T gamma delta cells, and NK cells. For CD8+ T cells, T gamma delta cells, and
T regulatory cells, we used genes from Charoentong et al. [30]. A list of the genes used
for GSVA enrichment can be found in Supplementary Table S2. Using GSVA scores of
16 immune cell populations and cytotoxic cells, coupled with hierarchical agglomerative
clustering (Euclidian distance and Ward’s linkage), immune subtypes were identified. For
both algorithms, rlog-transformed expression profiles were used as input. The immune
cell infiltration analysis was not performed on the TCGA data because we did not have
access to the FASTQ files of the selected samples, and, therefore, we found it inappropriate
to directly compare identified subtypes in different sets of data.

3. Results
3.1. Study Populations

In our study, we used biological FFPE samples (gathered in the experimental cohort) to
analyze the transcriptome profile of SqCLC. To validate our results, we included a validation
cohort made of patients with similar clinical data to those in the experimental cohort.
Demographic and clinical data of all patients involved in our study show that patients
in both groups are of similar age (64 and 67 years, respectively) and are predominantly
men. Smoking habits are also similar in both cohorts since the majority of patients in
both groups are ex-smokers, with a similar percentage of current smokers in both cohorts.
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It is important to say that the majority of patients in both cohorts were diagnosed as
nonmetastatic (experimental cohort (91%) and validation cohort (80%)). All available
demographic and clinical data of the SqCLC patients in the experimental and validation
cohorts are presented in Table 1.

3.2. Functional Characterization of Differentially Expressed SqCLC-Specific Genes

To gain insight into the gene expression profile contributing to the SqCLC pheno-
type in the experimental cohort, we conducted a comprehensive differential gene expres-
sion analysis using the DESeq2 tool. In this analysis, we identified a total of 2887 differ-
entially expressed genes, comprising 1620 upregulated genes and 1267 downregulated
genes in SqCLC tumors when compared to healthy controls (Figure 2A). The most signifi-
cantly upregulated genes were MAGEA9B (log2 FC = 22.82, q-value = 1.7−7), STAG3L3
(log2 FC = 22.07, q-value = 1.13−12), CSAG1 (log2 FC= 21.68, q-value = 2.35−8), MAGED4
(log2 FC= 11.52, q-value = 6.26−9), CST1 (log2 FC = 10.83, q-value = 4.28−5), CACNA1B
(log2 FC = 10.75, q-value = 1.09−7), MAGEA6 (log2 FC = 9.75, q-value = 2.26−3), PRAME
(log2 FC = 9.58, q-value = 2.13−8), POU6F2 (log2 FC = 9.53, q-value = 2.66−6), and ZIC2
(log2 FC = 9.37, q-value = 4.54−7). The most significantly downregulated genes were
DEFA1B (log2 FC = −14.21, q-value = 2.94−7), CEACAM8 (log2 FC = −9.9, q-value = 7.17−3),
DEFA1 (log2 FC = −9.89, q-value = 1.06−3), S100A12 (log2 FC = 9.21, q-value = 3.3−6),
MMP8 (log2 FC = −9.08, q-value = 9.54−7), MS4A3 (log2 FC = −9.03, q-value = 3.16−8),
CELA3A (log2 FC = −8.99, q-value = 4.71−3), DEFA3 (log2 FC = −8.98, q-value = 8.03−3),
MYL2 (log2 FC = −8.35, q-value = 1.11−2), and CYP1A1 (log2 FC = −8.32, q-value = 3.65−4).
A detailed list of all differentially expressed genes in the experimental cohort (up and
downregulated) can be found in Supplementary Tables S3 and S4.

Next, we conducted a Gene Ontology analysis (GO) to gain more insight into the
biological functions associated with the differentially expressed genes. The GO functional
annotations provided valuable insights into which biological processes (BP), molecular
functions (MF), and cellular components (CC) were enriched in SqCLC. Our analysis
revealed that among the upregulated genes, there was an over-representation of genes
primarily associated with the regulation of the cell cycle and proliferation (BP) (cell cy-
cle (GO:0051276, q-value = 6.34−25), cell cycle process (GO:0007049, q-value = 6.24−24),
regulation of cell cycle process (GO:0048285, q-value = 2.4−16), regulation of cell cycle
(GO:0006259, q-value = 1.09−14), regulation of transcription factors (MF)(DNA-binding
transcription activator activity (GO:0001216, q-value = 2.99−3), DNA-binding transcription
activator activity, RNA polymerase ii-specific (GO:0001228, q-value = 3.66−3), and compo-
nents related to the chromosomal/nuclear region of the cell (CC) (chromosome GO:0005694,
q-value = 3.42−18), chromosomal region (GO:0098687, q-value = 1.58−13), chromosome, cen-
tromeric region (GO:0000775, q-value = 5.11−12), and condensed chromosome (GO:0000793,
4.55−9) (Figure 2B). Among the downregulated genes, the over-representation was mainly
linked to immune system functions (Response to stimulus (GO:0050896, q-value = 3.31–21);
Response to external stimulus (GO:0009605, q-value = 9.09–18); defense response (GO:0006952,
q-value = 8.46–16); immune system process (GO:0002376, q-value = 5.58–15), including
leukocyte activity (myeloid leukocyte activation (GO:0002274, q-value = 2.79−9), and cellu-
lar secretion processes (BP), regulation of receptor activity (MF), and components of the
extracellular space, plasma membrane, and vesicles (CC) (Figure 2C). Detailed results for
all Gene Ontology categories can be found in Supplementary Tables S5 and S6.

To gain deeper insights into the underlying biological processes associated with dys-
regulated genes and to retrieve the phenotypic differences and the pathways they are
involved in, we performed a Gene Set Enrichment Analysis (GSEA). The results of the
GSEA analysis revealed an over-representation of pathways related to the keratinization
(q-value < 0.001), NP63 pathway (q-value = 4.2−4), activation of ATR in response to replica-
tion stress (q-value = 5.25−4), FOXM1 pathway (q-value = 7.05−4), cell cycle checkpoints
(q-value = 9.13−4), PLK-mediated pathways (q-value = 0.004), and AUROA B pathway
(q-values = 0.004). Conversely, under-representation was observed in immune-related
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pathways such as the TLR signaling pathway (q-value < 0.001), neutrophil degranula-
tion pathway (q-value < 0.001), triggering of the complement regulation of the NFκB
activation (q-value = 0.008), immunoregulatory interactions between lymphoid and non-
lymphoid cells (q-value = 0.017), and the leukocyte transendothelial migration pathway
(q-value = 0.016). The overview of the most significant enriched pathways is shown in
Figure 2D, and a detailed list of all identified pathways is listed in Supplementary Table S7.
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Genes significantly differentially expressed in SqCLC compared to healthy controls are highlighted in
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colors indicating higher significance.
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3.3. Validation of DEGs on TCGA SqCLC Cohort

Since the experimental cohort utilized in this study was relatively small in size,
we sought to validate our findings on a larger sample set. Therefore, we conducted a
validation analysis using the TCGA-LUSC cohort (N = 225) and healthy controls from
the GTEx dataset (N = 228). To compare gene expression levels between these two co-
horts, we established a criterion of |log2FC|≥ 1. First, we analyzed differentially ex-
pressed genes (DEGs) in the validation cohort, and we identified that 5678 genes were
upregulated, while 3992 genes were downregulated (Figure 3A). The most prominent
upregulation was observed for KRT16 (log2 FC = 11.65, q-value < 1.0−300), LINCO1206
(log2 FC = 11.53, q-value < 1.0−300), KRT6B (log2 FC = 11.33, q-value < 1.0−300), CALML3
(log2 FC = 11.23, q-value < 1.0−300), DSG3 (log2 FC = 11.12, q-value < 1.0−300), PADI3
(log2 FC = 11.03, q-value < 1.0−300), MAGEA9B (log2 FC = 10.63, q-value < 1.0−300),
UGT1A7 (log2 FC = 10.60, q-value < 1.0−300), S100A7 (log2 FC = 10.41, q-value < 1.0−300),
and TMPRSS11D (log2 FC = 10.28, q-value < 1.0−300) genes. On the other side, the most
prominent downregulation was observed for DEFA1B (log2 FC = −8.95, q-value < 1.0−300),
DEFA3 (log2 FC = −8.74, q-value < 1.0−300), DEFA1 (log2 FC = −8.57, q-value < 1.0−300),
DEFA4 (log2 FC = −8.08, q-value = 5.41−298), PRTN3 (log2 FC = −7.79, q-value < 1.0−300),
IL1RL1 (log2 FC = −7.15, q-value < 1.0−300), ELANE (log2 FC = −6.99, q-value < 1.0−300),
ADAMTS7P3 (log2 FC =−6.75, q-value < 1.0−300), MYH7 (log2 FC =−6.68, q-value < 1.0−300),
and AMY2A (log2 FC = −6.59, q-value = 4.05−147) genes. A detailed list of all DEGs,
both up- and downregulated in the TCGA-LUSC cohort, are provided in Supplementary
Tables S8 and S9. Next, we analyzed commonly dysregulated genes specific to both tested
cohorts and found that 1133 genes were consistently upregulated in both cohorts, while
644 genes were downregulated (Figure 3B). The most prominent upregulation in both
cohorts, experimental and validation, was observed for MAGEA9B (log2 FC = 22.82 vs.
log2 FC = 10.63), MAGED4 (log2 FC = 11.52 vs. log2 FC = 3.88), CST1 (log2 FC = 10.83 vs.
log2 FC = 9.93), CACNA1B (log2 FC= 10.75 vs. log2 FC = 6.61), PRAME (log2 FC = 9.58
vs. log2FC = 9.32), POU6F2 (log2 FC = 9.53 vs. log2 FC = 7.01), ZIC2 (log2 FC = 9.37
vs. log2 FC = 7.04), B4GALANT4 (log2 FC = 9.30 vs. log2 FC = 4.41), and CALML3
(log2 FC = 9.21 vs. log2 FC = 11.23) genes. The most prominent downregulation in
the experimental and validation cohort was observed for DEFA1B (log2 FC = −14.21 vs.
log2 FC = −8.95), CEACAM8 (log2 FC = −9.9 vs. log2 FC = −6.10), DEFA1 (log2 FC = −9.89
vs. log2 FC = −8.57), S100A12 (log2 FC = −9.21 vs. log2 FC = −2.56), MMP8 (log2 FC = −9.08
vs. log2 FC = −3.19), MS4A3 (log2 FC = −9.03 vs. log2 FC = −5.09), DEFA3 (log2 FC = −8.98
vs. log2 FC = −8.74), MYL2 (log2 FC = −8.35 vs. log2 FC = −5.63), CYP1A1 (log2 FC = −8.32
vs. log2 FC = −4.33), ALB (log2 FC = −8.25 vs. log2 FC = −3.62), APOA2 (log2 FC = −8.16
vs. log2 FC = −1.55), and DEFA4 (log2 FC = −8.04 vs. log2 FC = −8.08) genes. The common
DEGs found in both cohorts are provided in Supplementary Tables S10 and S11.

Gene Ontology (GO) analysis showed that the upregulated genes in the TCGA cohort
were predominantly associated with the regulation of cell cycle signaling tissue development
(anatomical structure development (GO:0140014), q-value = 3.17−12, tissue development
(GO:0051983), q-value = 9.24−11, DNA replication (GO:0051301, q-value = 1.36−12), chromo-
some segregation (Nuclear chromosome segregation (GO:1903047, q-value = 1.92−18), chromo-
some segregation (GO:0098813, q-value = 6.07−18), sister chromatid segregation (GO:0010564,
q-value = 1.01−15), cell division (Mitotic cell cycle (GO:0022402), q-value = 1.86−22, mitotic cell
cycle process (GO:0000278, q-value7.79−19), nuclear division (GO:0007059, q-value = 6.22−18)
(BP), protein binding, transmembrane signaling receptor activity, molecular transducer
activity (MF), and membrane-enclosed lumen, protein-containing complex, membrane-
bounded organelle and cytoplasm (CC). GO analysis for downregulated genes in the
validation cohort revealed a predominant association with the regulation of the cellu-
lar component movement (GO:0051270, q-value = 8.93−18), cell migration (regulation of
cell migration (GO:0030334, q-value = 1.14−17), regulation of cell motility (GO:2000145,
q-value = 1.41−17), regulation of locomotion (GO:0040012, q-value = 6.62−17), regulation of
response to stimulus (GO:0048583, q-value = 7.18−16), surface receptor signaling pathway



Cancers 2024, 16, 720 10 of 19

(GO:0007166, q-value = 2.88−14), cell adhesion (GO:0007155, q-value = 1.78−13), cell com-
munication (BP) (GO:0007154, q-value = 4.03−13), nucleic acid binding, signaling receptor
binding, immune receptor activity, DNA and RNA binding, cytokine binding (MF), and
components of the plasma membrane, cell periphery, nucleolus, extracellular matrix, secre-
tory granule, immunoglobulin complex, and intracellular protein-containing complex (CC)
(Figure 3C,D). Detailed results for all Gene Ontology categories are listed in Supplementary
Tables S12 and S13. When we analyzed functional annotations of commonly dysregulated
genes in both cohorts, we observed a similar pattern of consistently up- and downregulated
genes and impacted pathways. Also, we did not perform GSEA for the validation cohort.
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3.4. Survival Analysis

Given the high mortality rate of the patients diagnosed with SqCLC and lung cancer
patients in general, it is extremely important to identify prognostic biomarkers for those
patients. In our pursuit to predict if the DEGs could serve as prognostic biomarkers for
overall survival (OS) in the SqCLC patients, we conducted a survival analysis on genes that
were consistently upregulated in both cohorts. Aiming to identify prognostic biomarkers
associated with OS for early-stage SqCLC patients, only patients diagnosed with non-
metastatic disease were included. We assessed the impact of genes with a log2FC ≥ |1|
on patients’ prognosis, specifically focusing on OS. Utilizing the online platform Xena and
the TCGA validation cohort, we employed the Kaplan–Meier survival analysis and the
log-rank test. Based on median expression levels, we categorized samples into either high-
or low-expression groups. A significance level of p-value less than 0.05 was considered sta-
tistically significant. Our analysis revealed that 36 differentially expressed genes exhibited a
significant correlation with patients’ OS. Among these, 20 genes were associated with worse
OS, while 16 genes were associated with better OS, i.e., could be considered protective.
Identified genes, indicated as associated with worse/better OS, are listed in Supplemen-
tary Table S14. Among the genes associated with worse OS, several exhibited a highly
significant impact on patients’ OS (p-value < 0.01). Notably, HOXC4 (p-value = 0.0001),
LLGL1 (p-value = 0.0015), SLC4A3 (p-value = 0.0034), RNFT2 (p-value = 0.0047), and CEP72
(p-value = 0.0063) demonstrated the most pronounced effects (Figure 4A). Overexpression
of these genes was associated with poor overall survival. Overexpressed genes associ-
ated with better/prolonged OS (p-value≤ 0.01) were GSTZ1 (p-value = 0.0029), ENTPD3
(p-value = 0.001), DEPDC1 (p-value = 0.0019), and GRHL3 (p-value = 0.0023) (Figure 4B).
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(B) Kaplan–Meier curve analysis for the genes associated with a better impact on patients’ overall
survival (p < 0.01). Patients were grouped by the median gene expression level. Red lines represent
expression higher than the median, and blue lines represent gene expression lower than the median.
P-value was calculated using a log-rank test; KM plots were generated using the Xena platform.

3.5. Estimation of Immune Cell Infiltration Level in SqCLC

Our results on differentially expressed genes indicated that the downregulation of the
most prominent genes is associated with the regulation of the immune response. As already
mentioned in the introduction part of the manuscript, immune cells are an important
component of the TME. Therefore, we decided to elucidate TME in the context of the
immune cell profile. For initial TME exploratory analysis, we choose ESTIMATE since it
gives a general overview of immune cells infiltrating tumor tissue. Our results showed that
there is a difference in tumor-infiltrating immune-cell levels among tested tumor samples
(Figure 5A). Since initial TME analysis showed a difference in the level of immune cells
infiltrating the tumor tissue, we performed an additional analysis, GSVA, to investigate
specific types of immune cells that are infiltrating the tumor tissue. Based on calculated
GSVA enrichment scores, we grouped our SqCLC samples into four immune subtypes
(Figure 5B). Out of 23 SqCLC samples, 8 were clustered in subtype 1 (34%), 7 were clustered
in subtype 2 (30%), 3 were clustered in subtype 3 (13%), and 5 were clustered in subtype 4
(21%). Considering the main characteristics of the immune cells that dominantly infiltrate
individual subtypes and the level of infiltration, it was shown that subtypes 1 and 2 could
be described as less immunogenic, in contrast to subtypes 3 and 4, designated as more
immunogenic. The stratification criteria were established based on the identified cell-
specific markers (see Materials and Methods section). Less immunogenic samples exhibit
decreased levels of infiltration with NKbright and CD8+ T cells, while more immunogenic
samples exhibit higher levels of infiltration with central memory T cells, effector memory
T cells, and follicular helper T cells compared to subtypes 1 and 2. Detailed immune cell
profiles are presented in Figure 5C.

Figure 5. Estimation of immune cell infiltration in experimental cohort. (A) Estimation of immune
cell infiltration and stroma presence in SqCLC samples using ESTIMATE algorithm. Grey color
represents lower calculated values; pink color represents higher calculated values. (B) Identification
of immune subtypes (S1–S4) using GSVA on 16 immune-related gene sets and hierarchical clustering.
(C) Violin-plot presentation of different levels of immune cells infiltrating tumor in identified immune
subtypes. p-values < 0.05 were considered significant. * p = 0.05–0.01; ** p = 0.01–0.001.
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4. Discussion

Since the molecular-targeted approach in the diagnosis and treatment of SqCLC is very
limited in clinical settings, an increasing number of studies are focused on the identification
of specific diagnostic and therapeutic biomarkers. Due to the genomic heterogeneity of
individual SqCLC tumors, it is extremely important to characterize the biological features of
as many individual samples of SqCLC as possible, both at the genomic and transcriptomic
levels and thus contribute to a better understanding of the mechanistic background of the
disease and support development of the new therapeutic solutions. Our study aimed to
analyze expression profiles of mRNA in SqCLC tumor samples, with the ultimate goal of
identifying the key genes and pathways associated with tumorigenesis and prognosis.

Analysis of differentially expressed genes, commonly deregulated in both experimen-
tal and validation cohorts, and their functional annotation (characterization) demonstrate
several interesting results. The most upregulated genes belong to the MAGE gene family
(MAGEA9B, MAGED4), emphasizing their relevance in SqCLC. The melanoma antigen
gene (MAGE) protein family is a group of proteins normally expressed only in reproductive
tissues, while their abnormal expression is observed in various types of tumor tissues. Due
to their unique immunogenic nature and expression restricted to tumor tissues, they have
been suggested as diagnostic biomarkers [31]. Overexpression of MAGE genes has been
associated with poor outcomes, like decreased survival in NSCLC patients [31]. In contrast
to other members of the MAGE family, MAGED4 demonstrates low expression levels in
many tumor tissues, while its expression in NSCLC is relatively high and significantly
higher in SqCLC than in adenocarcinoma [32]. All these results demonstrate the importance
of further research on the MAGE family, both as a prognostic and therapeutic biomarker.

In our cohorts, significant enrichment of the genes involved in the keratinization
and the formation of keratinized layers in tumor tissue (KRT5, KRT6A-C, KRT13-KRT17,
KRT19) and genes associated with the regulation of cell division (FOXM1, p63) was iden-
tified. It is known that keratin filaments play a role in forming the protein structural
framework within the epithelial cells and protecting them from different types of stres-
sors [33]. Keratins are also a characteristic feature of early-stage SqCLC, while reduced
in lung adenocarcinoma [34], and are extensively used as specific diagnostic markers for
different tumor types, including squamous cell carcinomas, which are characterized by
keratinocyte hyperproliferation [35]. Another interesting finding is FOXM1 overexpression,
a transcription factor that plays a critical role in normal lung development, affecting the
differentiation and function of lung epithelial cells. FOXM1 is also important for cell cycle
regulation as it controls the transition from the G1 to S phase, G2 to M phase of the cell
cycle, and progression through the M phase of the cell cycle. Several critical regulators
of mitosis, such as Skp2, cyclin A and B, Cdc25A, Cdc25C, AURKB, BIRC5, and CENPA,
are under the transcriptional control of the FOXM1 gene [36], and all these genes were
overexpressed in our tested cohorts, as also shown by others [37,38]. Furthermore, our
GO analysis identified that upregulated genes that participated in the DNA repair are
highly enriched. They play a crucial role in genome integrity control and protection, and
their deregulation is a hallmark of tumor aggressiveness. There are several mechanisms
associated with DNA repair, and our results indicated excessive activation of the several
genes responsible for maintaining genome integrity. For example, E2F transcription factors
are involved in cell cycle control by regulating genes responsible for the transition from
G1 to the S phase, showing increased expression in our cohorts. Based on the results of
several studies, E2F subtypes, including E2F8, can be considered oncogenes contributing to
the development of the squamous subtypes of lung tumors [39–41]. Our results confirm
the findings of these studies, showing that E2F8 is overexpressed in both cohorts and
emphasizing its potential role in SqCLC progression.

Significantly downregulated genes detected with DEG analysis were associated with
the regulation of immune response. We identified defensins, like DEFA1B, DEFA1, DEFA3,
and DEFA4, among the most significantly downregulated genes that are involved in the
regulation of immune response [42]. In general, defensins are small proteins with strong
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antimicrobial and immunomodulatory functions. They are expressed predominantly in
neutrophils and epithelial cells, exhibiting strong cytotoxic activity directed to cancer
cells. All these characteristics make them potential chemotherapeutic targets [43,44]. The
DEFA1B gene belongs to the α-defensin subgroup, which is known to promote tumor
cell proliferation, contributing to tumor progression and invasiveness [45], as well as
influencing tumor microenvironment due to their chemotactic properties (CD4+, CD8+,
immature DC, monocytes) [46]. They also exhibit strong effector activity by triggering
degranulation of the polymorphonuclear cells, including neutrophils, suggesting that they
have a role in tumor-directed immune activity. Interestingly, we identified significantly
reduced neutrophil degranulation. Neutrophils are among the first immune cells recruited
to the site of inflammation, and their abundance in tumor tissue usually correlates with a
worse prognosis [47]. Evidence shows that neutrophils can act as partners of tumor cells
in cancer progression, making them interesting anticancer targets. It is worth mentioning
that the plethora of genes that potentially could participate in the degranulation process
was downregulated in our study. For example, CXCR1 and CXCR2 are receptors expressed
on neutrophils. They can be activated with different cytokines and chemokines expressed
by tumor or endothelial cells, resulting in either recruitment of the neutrophils to the
tumor tissue or pro-angiogenic processes [48,49]. It has been shown that pharmacological
inhibition of CXCR1 or CXCR2 leads to the promotion of the antitumor T cell response as a
consequence of the limited neutrophil tumor infiltration [50]. Also, ELANE, a neutrophil
elastase, a major anticancer protein enabling neutrophils to specifically kill tumor cells, was
downregulated [42].

Tumor microenvironment (TME) is becoming an increasingly interesting niche for
discovering new predictive and prognostic biomarkers, as well as new mechanisms for
tumor therapy development [51]. The profile of the cells infiltrating the TME, which
obviously could be influenced by the expression profile of tumor tissue cells, was also in
the scope of our study. We identified four subgroups of patients based on the profile of
immune cells infiltrating tumor tissue. Considering the predominantly infiltrated type of
cells, subtypes 1 and 2 were categorized as less immunogenic due to the lower levels of the
NK cells (NKbright cells subtype) and follicular helper T-cell infiltration (Tfh). The degree
of infiltration of tumor tissue with NK cells is associated with survival in patients with
solid tumors, but the data are not consistent—presence in many solid tumors is considered
favorable, while in some others not, very likely due to their functional impairment by
soluble modulators secreted in TME [52]. NKbright cells represent a subset of NK cells,
stratified based on CD56 expression level, preferentially recruited to the tumor site but
exhibit poor cytolytic function [53]. However, it has been found that better postoperative
OS in SqCLC patients is associated with an increased number of infiltrated NK cells [54].
Furthermore, Tfh cells function as an essential helper in B cell activation for effective
antibody-mediated immune response. It is well described that in most solid, nonlymphatic
tumors, increased infiltration of the Tfh cells correlates with a better immune response
against cancer and improved clinical outcomes [55]. On the other side, tumors classified
into subtypes 3 and 4 exhibit higher infiltration of CD8+ T lymphocytes in general, as well
as effector and central memory T cells, and were considered more immunogenic. The higher
estimated degree of infiltration of these cells suggests potentially stronger antitumor activity.
Memory T cells persist longer and are capable of vigorous proliferation [56]. Effector T
cells are important mediators of tumor protection; however, they are not sufficient for
tumor rejection because of apoptosis-induced clonal contraction. Several clinical and
preclinical studies indicate that memory cells could be more important in cancer curative
immunity [57]. A recently published study showed that an insufficient number of central
memory T cells in NSCLC cannot induce an adequate antitumor immune response and kill
tumor cells, which may partially explain the development of refractory tumors [58].

As part of our study, the association between gene expression levels and the overall
survival of SqCLC patients was also examined in nonmetastatic patients. Our analysis
revealed that 36 overexpressed genes were correlated with patients’ OS. HOXC4 over-
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expression exhibits the highest effect on patients’ OS. Homeobox (HOX) genes encode
transcription factors, and their aberrant expression affects the processes involved in tu-
morigenesis, such as proliferation, apoptosis, migration, and invasiveness [59]. In pediatric
glioma tissues, overexpression of HOX genes in general is associated with favorable prog-
nosis, higher immune infiltration, and better response to immunotherapy [60]. Abnormal
overexpression of HOXC4 in different types of cancer (pancancer study), including SqCLC,
suggests that HOXC4 may function as an oncogene and could be used as a diagnostic and
prognostic biomarker [61]. Finally, we have identified the GSTZ1 gene to be associated
with better OS in SqCLC patients. GSTZ1 is a member of the glutathione transferases (GST)
superfamily. GST exhibits multiple biological activities, including cell protection against
oxidative stress and involvement in the resistance to anticancer drugs. In cancer cells, they
are often upregulated and may contribute to cell detoxification [62]. GSTZ1 is an enzyme
that participates in phenylalanine/tyrosine catabolism and is frequently deregulated in
cancers; however, its role in tumorigenesis is largely unknown. Li et al. found that GSTZ1
was downregulated in hepatocellular carcinoma (HCC) and associated with poor prognosis,
indicating that GSTZ1 serves as a tumor suppressor in HCC [63]. We were not able to find
any published data referring to the association of GSTZ1 and OS in lung cancer patients of
any subtype. Therefore, our results of the GSTZ1 association with SqCLC nonmetastatic
patient’s OS are novel and interesting.

Finally, due to the clear limitations of our study, our results should be cautiously
interpreted. First, this study included a small number of samples (experimental cohort)
and did not allow us to perform a satisfactory statistical analysis. We tried to compensate
for this limitation by introducing a validation cohort. However, we did not further test
any of our results in vitro; hence, the results may lead to false interpretation. Therefore,
our study could be interpreted/considered as a proof of principle study. Furthermore,
we did not use paired “healthy tissues” for disease-specific differential gene expression
analysis but autopsy-obtained healthy lung tissues. We are aware that this approach is less
common, but it has been found that cancer can systematically influence gene expression
of the neighboring tissue. Several systematic molecular differences have been identified
as related to immune cell activation, p38 signaling, autophagy, and reorganization of
extracellular matrix, and even more interesting, molecular targets of many cancer drugs
were shown to be either over- or under-represented [64]. Therefore, we found it more
appropriate to include autopsy-obtained controls, although we were aware that a smaller
number of controls would contribute to the variability of the results.

5. Conclusions

We identified a set of up- and downregulated genes specific for the SqCLC tumors
and determined their functional annotations—upregulated genes mainly participate in the
processes involved in the control of the cell cycle. In contrast, downregulated genes are
mostly involved in the regulation of the immune response. Our study brings additional
information about the transcriptomic landscape of SqCLC, uncovering potential therapeutic
biomarkers and pathways. We confirmed that already recognized potential therapeutic
biomarkers, MAGEA9B and MAGED4, could be interesting new targets for SqCLC. The
validation across cohorts strengthens the findings, providing a foundation for future
investigations. The identified genes associated with OS, HOXC4 (poor OS), and GSTZ1
(better OS), hold promise for prognostic stratification in SqCLC patients, fostering a more
personalized approach to treatment. Further functional studies should elucidate which
of the indicated biomarkers is present in circulation and suitable for detection by liquid
biopsy, especially in the context of disease follow-up and early recurrence detection.

Supplementary Materials: The following supporting information can be downloaded: https://
www.mdpi.com/article/10.3390/cancers16040720/s1, Supplementary Tables S1: Table S1. List of
the available clinical and demographic data for TCGA LUSC cohort.; Table S2. List of the cell types
analyzed for the infiltration in the tumor tissue and gene sets used for GSVA analysis.; Table S3. List
of up-regulated genes in the experimental cohort.; Table S4. List of down-regulated genes in the
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experimental cohort.; Table S5. Results of the Gene Ontology analysis performed for up-regulated
genes in the experimental cohort.; Table S6. Result of the Gene Ontology analysis for down-regulated
genes in the experimental cohort.; Table S7. Results of the Gene Set Enrichment Analysis (GSEA)
performed on experimental cohort.; Table S8. List of Up-regulated genes in TCGA LUSC cohort.; Table
S9. List of down-regulated genes in TCGA LUSC cohort.; Table S10. List of commonly up-regulated
genes in tested cohorts.; Table S11. List of commonly down-regulated genes in tested cohorts.; Table
S12. Results of the Gene Ontology analysis performed on up-regulated genes from TCGA LUSC
cohort.; Table S13. Results of the Gene Ontology analysis performed on down-regulated genes from
TCGA LUSC cohort.; Table S14. List of the potential prognostic biomarkers/genes in the early-stage
squamous cell lung cancer (SqCLC).
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