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Abstract: The comprehensive analysis of spatiotemporal
variations in water quality is crucial for ecosystem man-
agement. This study analyses and maps spatiotemporal
variations in water quality at Vrana Lake, a coastal shallow
lake in Dalmatia, Croatia. We established a monitoring grid
of 20 stations and conducted monthly in situ measure-
ments of seven water quality parameters from July 2023
to June 2024 using multiparameter probe. We measured
electrical conductivity, turbidity, salinity, water temperature,
dissolved oxygen, oxygen saturation, and chlorophyll-a.
We analysed the correlation between these parameters,
water level, and meteorological factors over a year and the
impact of climate change over the 34 years. Additionally, we
evaluated 15 geographic information system (GIS) spatial
interpolation methods for mapping the distribution of water
quality parameters, using root mean square error (RMSE)
and mean error (ME) metrics. The vertical stratification ana-
lysis revealed that the lake’s shallow nature allows effective
assessment through median values. Key findings highlighted
that air temperature, precipitation, and wind significantly
affect water quality dynamics. The Simple Kriging – Trend
emerged as the best GIS spatial interpolation method for
modelling water quality parameters. Overall, this study
enhances the understanding of water quality variations
and their implications for ecosystem health in coastal
shallow lakes.

Keywords: climate change, coastal shallow lake, distribution
map, ecosystem management, GIS spatial interpolation,
in situ measurements, meteorological factors, monitoring
grid, Simple Kriging – Trend, vertical stratification

Abbreviations

AP air pressure
AT air temperature
Chl-a chlorophyll-a
DO dissolved oxygen
EBK Empirical Bayesian Kriging
EC electrical conductivity
GIS geographic information system
MAD median absolute deviation
MASL meters above sea level
ME mean error
PP precipitation
RH relative humidity
RMSE root mean square error
SH sunshine hours
SK Simple Kriging
SO oxygen saturation
WL water level
WS wind speed
WT water temperature

1 Introduction

Water quality monitoring is a vital segment of effective
management and preservation of water ecosystems [1],
particularly in the context of climate change threats to
lake ecosystems [2]. The intergovernmental panel on
climate change (IPCC) [3] anticipates that rising global
temperatures and extreme weather events, such as heavy
precipitation, will affect coastal ecosystems and increase
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local flooding. Climatic factors, such as precipitation (PP),
air temperature (AT), wind speed (WS), and sunshine
hours (SH), are expected to significantly influence lake
water quality [4], with warmer temperatures and heavy
rainfall contributing to nutrient release and pollution [5].
The ongoing issue of eutrophication in lakes has prompted
extensive research into the interplay between climate
change and water quality [4–6].

Numerous models and methods have been developed to
evaluate spatial and seasonal variations in water quality
parameters. Commonly used methods include water quality
index [7–9] and tropic state index [5], alongside multivariate

statistical analysis like principal components analysis [10] and
cluster analysis [11]. Moreover, advancements in data mining
[12] and machine learning methods [4,13] have proven effec-
tive in modelling water quality parameters and identifying
pollution sources. Utilizing spatial data science and geo-
graphic information system (GIS) is essential for addressing
pressing issues such as climate change, as geospatial methods
play a crucial role in comprehending complex environmental
challenges and monitoring [14,15].

The need for a robust and optimizedmonitoring network
is emphasized to monitor water quality trends and inform
environmental management strategies [10,11,16]. Recent

Figure 1: An overview of (a) Vrana Lake position and in situ stations, (b) preparation for measuring vertical profiles, and (c) and (d) in situ monitoring.
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studies also highlight the significance of understanding ver-
tical variability in water quality parameters, which can be
influenced by factors such as nutrients level, light penetra-
tion, and temperature gradients within lakes [1,17,18].

GIS-based spatial interpolation methods are used to esti-
mate water quality parameters in locations lacking direct
measurements. Frequently used methods are inverse dis-
tance weighted [19,20], universal Kriging, and ordinary Kri-
ging methods [21,22]. In addition to water quality studies, GIS
software has been extensively applied in broader geographic
analyses. For instance, Vujović et al. [23] used ArcGIS and
QGIS to analyse geomorphometry in the Ibar River basin,
while Oseke et al. [24] applied GIS and a water quality index
to assess reservoirs affected by water diversion. Aleksova
et al. [25] modelled erosion and mass movements in North
Macedonia using GIS-based multi-hazard assessments, and
Durlević [26] evaluated flood and landslide susceptibility in
Serbia’s Mlava River Basin using similar tools. Recent studies
have focused on comparison between different GIS spatial
interpolation methods for groundwater levels [27] and sedi-
ment distribution in coastal areas [28]. However, there is a
lack of studies comprehensively evaluating the effectiveness
of different GIS spatial interpolation methods specifically for
lake water quality assessment. The study by Ouabo et al. [29]
emphasizes the importance of selecting suitable interpolation
methods, particularly considering the non-normal distribu-
tion of water quality parameters, to avoid biased results [30].

This study is part of a broader research initiative
aimed at enhancing lake water quality monitoring and
assessment through the integration of in situ measure-
ments, GIS multicriteria analysis, satellite imagery, and
machine learning. In the initial phase of the research
initiative, Batina and Krtalić [31] established a comprehen-
sive framework that includes a theoretical analysis of lake
dynamics, operational data collection, and spatiotemporal

distribution analysis. Building on that work, in this study, we
aimed to investigate the seasonal and spatial variations in
water quality parameters in Vrana Lake in Dalmatia, Croatia,
where eutrophication issues, exacerbated by nutrient influx,
have led to phytoplankton and cyanobacteria growth, causing
the extinction of macrophytes [32]. A study by Trbojević et al.
[33] indicates macrophytes absence in 2020 and 2021 in the
lake, with chlorophyll-a (Chl-a) concentration serving as a key
indicator of this ecological change [2].

In this study, we aim to investigate the seasonal and spa-
tial variability of water quality parameters in Vrana Lake,
Croatia, and to analyse their correlation with water level
(WL) and meteorological factors over a 12-month monitoring
period. Additionally, we assess the long-term impact of climate
change on the lake ecosystem using 34 years of historical WL
and meteorological data spanning from 1990 to 2023. A key
objective is to evaluate and identify the most suitable GIS spa-
tial interpolation method for accurately mapping the distribu-
tion of water quality parameters. This research is significant
for advancing lake monitoring practices, supporting adaptive
management strategies in response to climate change, and
providing a foundation for future studies utilizing GIS multi-
criteria analysis, remote sensing, and machine learning.

2 Methods

2.1 Study area and monitoring

Vrana Lake, located in Dalmatia near the eastern Adriatic
coastline, is the largest natural lake in Croatia (Figure 1a),
covering an area of approximately 30 km2 [34], and is situ-
ated between 43°51′–43°57′N latitude and 15°30′–15°39′E
longitude (WGS84 coordinate system). Its ecological

Figure 2: Comparison of AT, PP, and WL data for the research period of 2023/24 against historical averages.
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characteristics and biodiversity have led to its protection
as a nature park. The lake is characterized by shallow
water that fluctuates seasonally, with higher levels in
winter and spring (highest mean WL was 1.28 m above
sea level (MASL) from 1990 to 2023) and lower levels in
summer and autumn (lowest mean WL was 0.41 MASL
from 1990 to 2023), based on data provided by the Croatian
Meteorological and Hydrological Service (DHMZ) and visua-
lized in Figure 2. The lake’s shallowness and geolocation
make it particularly susceptible to wind influences that pro-
mote water column mixing [35]. In May 2023, heavy rainfall
resulted in unusually high WL in subsequent months (Figure
2), highlighting the importance of considering meteorological
and WL data in understanding water quality [36].

Several factors contribute to the WL dynamics of
Vrana Lake, including its connections to the Adriatic Sea,
freshwater tributaries, brackish submerged groundwater
discharge in the lake, underground karst fissures, and eva-
poration. During periods when WL drops below sea level,
the lake’s salinity increases significantly due to the sea-
water influx through the artificial Prosika canal (Figure
1a). Additionally, the lake is affected by underground karst
fissures along its western edge and the Jugovir brackish
submerged groundwater discharge in the southern part, espe-
cially during strong south winds and high tides [37]. On
the other hand, freshwater from surrounding karst fields

and springs enters the lake through the Kotarka channel
and the Lateral channel in the northern part (Figure 1a).
Rainwater runoff from the northern and eastern hills is
another significant source of water [32].

2.2 Data collection

In this study, we developed a comprehensive monitoring
grid of 20 in situ stations for monthly in situmeasurements
of seven water quality parameters, including electrical con-
ductivity (EC), turbidity, salinity, water temperature (WT),
dissolved oxygen (DO), oxygen saturation (SO), and Chl-a,
from July 2023 to June 2024 [38]. Furthermore, we analysed
correlations between these parameters, WL, and six meteor-
ological factors, such as AT, WS, PP, SH, relative humidity
(RH), and atmospheric pressure (AP), in a 12-month period
to understand their influence on lake ecosystem health. Addi-
tionally, we built upon the work of Rubinić and Katalinić [39]
by analysing 34 years of WL and meteorological data
(1990–2023), including AT and PP, to evaluate the more recent
impact of climate change on the lake. Finally, we evaluated 15
GIS spatial interpolation methods to determine the best
method for mapping water quality parameters, using cross-
validation, root mean square error (RMSE), and mean error
(ME). The flowchart is shown in Figure 3.

Figure 3: Flowchart illustrating the study’s methodology.
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The lake’s ecological health is further impacted by anthro-
pogenic influence from its tributaries [40] and influx of sea-
water via the Prosika canal, particularly during low WLs. To
address these ecological concerns, we developed a new com-
prehensive monitoring grid designed to provide sufficient data
for remote sensing and machine learning applications in sub-
sequent research. Previously, monitoring efforts were limited
to one station by the Water Institute Josip Juraj Strossmayer
and three stations by the Public Institution Vransko Jezero
Nature Park. We incorporated these existing stations and
added new ones to ensure comprehensive spatial coverage.
The 20 monitoring stations were strategically positioned
(Figure 1a), considering lake’s characteristics, existing moni-
toring stations, the time required to complete the measure-
ments by a vessel, and the hydrological model, including the
lake’s bathymetry, tributaries, and connection to the sea [8].

We delineated the lake boundary using PlanetScope satel-
lite imagery [41] and the Normalized Difference Water Index
[42], focusing on the month of October 2023, when the WL was
at its lowest during our year-long research period (Figure 2).

DHMZprovided historicalmonthly data on average AT and
total PP from 1990 to 2023 for the Biograd na Moru station
(43°56′44.5″N, 15°26′52.8″E, WGS84), along with average WL
data from the Prosika station (43°51′0.3″N, 15°37′45.3″E, WGS84)
(Figure 1a, Table S1). Additionally, they supplied daily meteor-
ological data from the Biograd na Moru and Zadar stations, as
well as WL data from the Prosika station, for our research
period from July 2023 to June 2024 (Table 1 and Table S2). We
analysedmeteorological andWL parameters for eachmeasure-
ment day, except for PP, which we assessed based on the
amount from 3 days prior. We adopted this methodology

because we aimed to conduct in situ measurements on sunny,
non-cloudy days, and we plan to integrate satellite data for
specific measurement dates in our future research.

Researchers fromRuđer Bošković Institute collected in situ
data on seven physicochemical and biological parameters in
the lake (Table 1). Using the YSI EXO2 (YSI, USA) multipara-
meter probe, the team collected vertical profiles on a monthly
basis from July 2023 to June 2024 (Figure 1c and d). These
measurements were conducted between 8:00 and 13:00 at 20
designated monitoring stations (Table S3). Salinity is deter-
mined automatically from the sonde conductivity and tem-
perature readings according to algorithms found in Standard
Methods for the Examination of Water and Wastewater [43].
The use of the practical salinity scale results in values that are
unitless, since the measurements are carried out in reference
to the conductivity of standard water at 15°C [44]. Optical sen-
sors in probes are increasingly important for real-time water
quality assessment in environmental applications [45]. Due to
poor weather conditions, we had to postpone our fieldwork
scheduled for November 2023 to December 4th, and we con-
ducted the December survey on the 19th, while all other mea-
surements were conducted in their respective months.

2.3 Data analysis

2.3.1 Analysis of meteorological and water quality
parameters

We used the Jarque–Bera test to assess the normality of
historical monthly meteorological data, as well as

Table 1: Summary of the dataset and probe specifications

Type Parameter Abbreviation Unit YSI EXO2 [44]

Range Accuracy

Water quality parameters Chlorophyll-a Chl-a μg/L 0–400 μg/L —

Electrical conductivity EC dS/m 0–100 dS/m ±0.5% of reading or 0.001 dS/m
Turbidity — FNU 0–999 FNU 0.3 FNU or ±2% of reading
Salinity — — 0–42 ±0.1
Water temperature WT °C −5 to 35°C ±0.01°C
Dissolved oxygen DO mg/L 0–20 mg/L ±1% of reading or 0.1 mg/L
Oxygen saturation SO % 0–200% ±1% of reading or 1% air sat.

Meteorological station
Meteorological parameters Air temperature AT °C Biograd na Moru

Wind speed WS Beaufort number Biograd na Moru
Relative humidity RH % Biograd na Moru
Atmospheric pressure AP hPa Zadar
Amount of precipitation PP mm Biograd na Moru
Sunshine hours SH h Zadar

— Water level WL m Prosika
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meteorological and WL data for the research period [11].
The test evaluates whether sample data exhibit skewness
and kurtosis consistent with a normal distribution, with
p-values interpreted against a significance threshold of
0.05. For variables that did not meet the normality assump-
tion, a cube root transformation was applied in Excel to
normalize the data.

Furthermore, we used the Jarque–Bera test to assess the
normality of raw water quality parameters such as Chl-a, EC,
turbidity, salinity, WT, DO, and SO [11]. To address deviations
from normality, we applied logarithmic, square root, cube
root, and Box-Cox transformation using Esri ArcGIS Pro 3.2.

2.3.2 Vertical profiles and temporal sensitivity

We conducted two separate measurements in March and
July 2024 to analyse the temporal and depth sensitivity of
seven physicochemical and biological parameters (EC, tur-
bidity, salinity, WT, DO, SO, and Chl-a) at a single station
(Figure 1a – point marked as “Vertical profile,” Figure 1b).
We measured vertical profiles every 30min using the mul-
tiparameter probe, with the March measurement occur-
ring from 9:30 to 12:30 and the July measurement from
11:00 to 13:30. We analysed and visualized the data using
Microsoft Excel, finding patterns in vertical stratification
and mixing within the water column.

2.3.3 Correlation between water quality and
meteorological parameters

We performed Spearman’s rank correlation analysis to
explore the relationships between meteorological and water
quality parameters. This non-parametric test helped us to
evaluate correlations among variables with non-normal dis-
tributions [11]. We calculated the median values for monthly
water quality data from all relevant monitoring stations, as
shown in Table S3, and then subjected these values to Spear-
man’s rank correlation analysis using Excel. We analysed
meteorological and WL data for each measurement day,
while PP was analysed based on the total amount over the
three days leading up to each measurement day.

2.3.4 GIS spatial interpolation methods and spatial
resolution

We classified the GIS spatial interpolation methods into two
categories in our research: deterministic and geostatistical.
Deterministic methods rely on mathematical functions, while

geostatistical methods utilize statistical and mathematical
algorithms [46]. Since our analysis involved non-normally
distributed data collected over several months, we focused
on interpolation methods that do not require normal distri-
bution, excluding Radial Basis Function due to its inability to
handle coincident measurements.

We evaluated 15 GIS spatial interpolation methods (5
deterministic and 10 geostatistical) in Esri ArcGIS Pro 3.2
using the Exploratory Interpolation tool. The methods were
ranked based on cross-validation, RMSE, and ME, to create
accurate spatial distribution maps of water quality para-
meters [19], which are vital for GIS-based multicriteria assess-
ments of water quality in subsequent research. These
methods included Simple Kriging (SK) – Default, SK – Opti-
mized, SK – Trend, SK – Trend and transformation, Ordinary
Kriging – Default, Ordinary Kriging – Optimized, Universal
Kriging – Default, Universal Kriging – Optimized, Empirical
Bayesian Kriging (EBK) – Default, EBK – Advanced, Kernel
(Local Polynomial Interpolation), Inverse Distance Weighted
– Default, Inverse Distance Weighted – Optimized, Global
Polynomial Interpolation – Second order, and Global Polyno-
mial Interpolation – Third order (Table 2). Additional infor-
mation about these methods can be found in “Exploratory
Interpolation (Geostatistical Analyst)” [47]. Our objective was
to determine the best interpolation method for Vrana Lake
using in situ data for each parameter.

We ranked results using two criteria: lowest RMSE and
ME closest to zero. There metrics, implemented in the
Exploratory Interpolation tool in ArcGIS Pro 3.2, are widely
recognized in similar studies [21,28]. RMSE measures the
average deviation between predicted and measured
values, with a smaller value indicating higher prediction
accuracy [48]. RMSE is mathematically expressed by the
formula [48]:

( ( ) ( ))∑⎜ ⎟=
⎛
⎝

−
⎞
⎠=

z s z s nRMSE SQRT ˆ / ,

i

n

i i

1

2 (1)

where ẑ(si) is the predicted value for the ith observation, z
(si) is the actual value for the ith observation, and n is the
number of observations.

ME is the average of cross-validation errors, ideally close
to zero. It indicates model bias: a positive ME suggests over-
prediction, while a negative ME indicates underprediction
[48]. ME is mathematically expressed by the formula [48]:

( ( ) ( ))∑⎜ ⎟=
⎛
⎝

−
⎞
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z s z s nME ˆ / ,

i

n
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where ẑ(si) is the predicted value for the ith observation, z
(si) is the actual value for the ith observation, and n is the
number of observations.
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Grid resolution is a popular format for spatial modelling
due to its ideal properties, such as an orthogonal matrix and
fixed resolution [49]. The placement of monitoring stations in
the lake is not strictly based on a grid system, but rather on a
more random distribution with uneven distance between
monitoring stations due to the existing monitoring stations

and the lake’s characteristics. The formula for calculating the
coarsest legible grid resolution for spatial modelling based on
random sampling is [49]:

( )= ×p A N0.25 SQRT / , (3)

where A is the surface of the study area in m2 and N is the
total number of observations.

3 Results

3.1 Temporal trends of meteorological
factors

The Jarque–Bera test confirmed that all historical monthly
meteorological data exhibited a normal distribution
annually, with p-values consistently exceeding the signifi-
cance level of 0.05. Consequently, we used mean values to
derive key annual metrics.

The WL values were historically low in 1990, 2008, and
2012, with measurements of 0.28, 0.32, and 0.31 m, respectively
(Table S1, Figure 4). These low WL values corresponded with
low PP levels in 1989, 2007, and 2011, measured at 555.50,
516.30, and 435.90mm, respectively (Table S1, Figure 4). The
analysis of WL and PP historical data over 34 years revealed
an increasingWL trend of 3.12mm per year and an increasing
PP trend of 2.28mm per year (Table S1, Figure 4). Average AT

Table 2: List of GIS interpolation methods

Grouping of interpolation
method

GIS spatial interpolation
method

Geostatistical EBK – Advanced
EBK – Default
Ordinary Kriging – Default
Ordinary Kriging – Optimized
SK – Default
SK – Optimized
SK – Trend
SK – Trend and transformation
Universal Kriging – Default
Universal Kriging – Optimized

Deterministic Global Polynomial Interpolation –

Second order
Global Polynomial Interpolation –

Third order
Inverse Distance Weighted –

Default
Inverse Distance Weighted –

Optimized
Kernel (Local Polynomial
Interpolation)

Figure 4: Annual average and trends of AT, PP, and WL during 1990–2023.
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increased by 1.54°C during the same period, with a yearly
increase trend of 0.05°C since 1990 (Table S1, Figure 4).

During our research period, elevated WL prevented
significant interchange between sea and lake water, with
the lowest monthly average measured at 0.69 MASL
(Figure 2). WL values were higher than historical averages
due to heavy rainfall in May 2023 and subsequently
dropped below historic averages in January and February
2024, which we attributed to lower monthly PP at the end
of 2023 and the beginning of 2024. This downward trend
continued into early spring 2024, leading to further
decreases in WL during May and June. Throughout the
research, average monthly AT remained consistently
higher than historic averages (Figure 2).

3.2 Assessing vertical and temporal
variability in water column data

We collected vertical profiles at the northern lake station
(Figure 1a – point marked as “Vertical profile” at 15°30′40″E,
and 43°55′41″N, WGS84) on March 15th and July 19th, 2024.
On March 15th, we measured a water depth of 2.95m with
a WL of 1.41 MASL, while on July 19th, the depth decreased
to 2.12m with a WL of 0.58 MASL (Figure S1). We also
observed the temporal sensitivity of parameters at the
same monitoring site at 30 min intervals (Figure S2). Despite
the difference in water depth and time frame of the two
measurements, we found that the readings from both dates
were comparable in relative units, indicating temporal sen-
sitivity with change per hour and vertical variability with
change per meter.

We observed that salinity and EC remained stable
across all depths and time throughout our campaigns,
with negligible differences of ≤0.01 in their respective units
between the lowest and highest values for each parameter.
We observed a slight increase in DO over time, with rates
of 0.04 mg/L per hour in March and 0.12 mg/L per hour in
July, while depth had little effect on it (decrease of 0.02mg/L
per meter in March and decrease of 0.07mg/L per meter in
July). WT and SO decreased with depth, showing a decrease
of 0.44°C per meter for WT and 1.11% per meter for SO
in March and a decrease of 0.17°C per meter for WT and
1.15% per meter for SO in July. However, both parameters
increased over time due to changes in AT, with an increase
of 0.31°C per hour for WT and 1.20% per hour for SO in
March and increase of 0.21°C per hour for WT and 1.73%
per hour for SO in July. We also recorded fluctuations in
Chl-a and turbidity, with Chl-a increasing by 0.45 µg/L per
meter in March and 0.35 µg/L per meter in July. Turbidity

experienced an increase of 0.52 FNU per meter inMarch and
0.49 FNU per meter in July, with gradual decline over time
(decrease of 0.10 FNU per hour in March and 0.03 FNU per
hour in July).

3.3 Seasonal and spatial variations in water
quality parameters and their correlation
with meteorological data

During the research period, all meteorological and WL
data, except PP, exhibited normal distribution based on
the Jarque–Bera test (Table S2). We transformed the PP
variable using a cube root to achieve a normality. All water
quality parameters had p-values below the 0.05 signifi-
cance threshold, indicating non-normal distribution.
While various transformations yielded marginal improve-
ments, only the Chl-a parameter gained normal distribu-
tion following a square root transformation. Due to the
predominance of non-normal distributions, we conducted
our analysis of monthly water quality data using median
values. We employed the median absolute deviation
(MAD) to assess variation, as it is less sensitive to outliers
compared to standard deviation [30]. Table S3 presents a
comprehensive overview of the data distribution, pre-
senting mean and median values alongside standard
deviation and MAD. Our calculations were based on a
maximum of 20 monitoring stations in the lake per
date, and the quantity of measured data stations per
date varied (Table S3).

We observed that Chl-a varied from 0.15 μg/L in April
2023 to 2.39 μg/L in November 2023, with a mean value
of 0.94 ± 0.39 μg/L and median value of 0.90 ± 0.24 μg/L
(Table S3). The range of Chl-a levels was 2.24 μg/L, with
the maximum and minimum values differing almost 2.5
times the median. In June 2024, we measured the lowest
EC value of 2.66 dS/m, which peaked in November 2023 at
4.80 dS/m, showing a gradual decrease by the end of our
research period (Table S3, Figure 5). The mean and median
EC measurements were 3.96 ± 0.65 dS/m and 4.19 ± 0.49 dS/
m, respectively, with a range differing by 2.14 dS/m. This
range represents 45 and 51% of the highest value and
median value, respectively. The mean and median in situ
values for salinity were 2.10 ± 0.36 and 2.22 ± 0.28, respec-
tively, with values ranging from 1.37 in June 2024 to 2.58 in
November 2023 (Table S3, Figure 5). The salinity values
showed a 1.21 variation, accounting for 47 and 55% of the
highest and median values, respectively.

We measured the turbidity levels ranging from 0.73
FNU in July 2023 to 15.93 FNU in August 2023, with a
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mean value of 5.76 ± 3.96 FNU and median value of 3.85 ±
1.63 FNU. Over this 12-month period, we observed a range
of turbidity values of 15.20 FNU, which accounts for 95% of
the maximum value and 395% of the median value. In July
2023, we measured the highest WT (30.22°C), which
declined to 4.47°C in January 2024, with a mean of 16.98
± 7.87°C and a median of 17.16 ± 7.33°C. The WT data exhib-
ited a fluctuation of 25.75°C, representing 85 and 150% of
the maximum and median values, respectively.

We observed that DO levels ranged from 7.60 mg/L in
August 2023 to 12.60 mg/L in January 2024, with a mean
value of 10.33 ± 1.15 mg/L and a median of 10.35 ±

0.85 mg/L. During this period, DO values fluctuated within
a range of 5 mg/L, which represented 40 and 48% of the
maximum and median values, respectively. We observed
that SO decreased to 93.46% in December 2023 after
reaching a high of 143.28% in July 2023. A mean of SO is
106.70 ± 8.85% and a median is 103.64 ± 4.95%, while the SO
values ranged from 49.82%, which is equivalent to 35% of
the highest value and 48% of the median value.

Spearman’s correlation analysis revealed that the daily
vertical movement of phytoplankton (Figure S1), influenced
by factors like SH, WS, water column mixing, and PP, leads
to changes in Chl-a concentrations (Figure 6a). Notably, we
observed higher Chl-a levels in November compared to July
(Figure 5), but we found no significant correlation between Chl-
a and DO levels (Figure 6b), likely due to unpredictable fluctua-
tions from factors such as the absence of macrophytes and
phytoplankton accumulation. Our study revealed that EC, sali-
nity, and turbidity significantly impact the Chl-a values across
the lake (Figure 6b). We found that factors such as WT, total
dissolved solids, PP,flooding, evaporation, andwaterflowhave

an impact on EC and salinity levels. Increased water volume
and level can reduce EC and salinity (Figure 6a).

We found that turbidity can lead to increased WT and
decreased DO levels (Figure 6b). We recognized that factors
such as PP and WS can further impact turbidity by
increasing stream volume and resuspending settled sedi-
ments (Figure 6a). Turbidity will often spike annually due
to spring rains (Figure 5) and snowmelt. Sunlight and AT
primarily influence WT in Vrana Lake (Figure 6a). We
measured higher WT during summer, autumn, and spring,
and lower temperatures during colder months (Figure 5).
Warmer waters have higher EC, but colder waters can hold
more DO and have lower levels of SO (Figure 6b).

Aeration sources such as wind, AT (Figure 6a), photo-
synthetic activity, and oxygen consumption by aquatic
organisms influence the levels of DO in waterbodies. DO
levels can vary based on WT (Figure 6b), water pressure,
and salinity, with fluctuations occurring due to microbial
breakdown and limited air contact. DO levels are higher in
winter and lower in summer (Figure 5). SO levels are
around or slightly exceed 100% throughout the year (Table
S3 and Figure 5).

3.3.1 Spatial distribution

According to equation (3), we found that the coarsest grid
resolution is approximately 300 m when considering 20
unevenly distributed monitoring stations in an area of
approximately 30 km2. The comparison of 15 GIS spatial
interpolation methods revealed that the Global Polynomial
Interpolation – Second order method achieved the lowest

Figure 5: Median values of water quality parameters from the dataset (Chl-a, EC, turbidity, salinity, WT, DO, SO).
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RMSE for Chl-a, while SK – Optimized achieved the lowest
RMSE for EC, salinity, DO, and SO (Table S4, Figure S3). EBK
– Advanced had the lowest RMSE for turbidity, and SK –

Default had the lowest RMSE for WT (Table S4). Generally,
Kriging methods outperformed deterministic interpolation
methods regarding RMSE values, with EBK – Advanced and
all SK methods ranking in the top five for average rank
across all parameters. Overall, SK – Optimized ranked as
the best for lowest RMSE using equation (1) across all para-
meters (Table S5). We calculated ME values using equation
(2), and both Inverse Distance Weighted methods and EBK
– Default consistently scored 0, indicating the highest accu-
racy (Table S4). However, when we considered the ranking
of all GIS spatial interpolation methods, we found that SK –

Trend emerged as the most suitable method for modelling
all parameters (Table S5). We used this method to create
distribution maps demonstrating the variability of water
quality parameters (Figure 7).

We observed that Chl-a concentrations peak in the north-
western region of the lake, particularly near the Kotarka
channel, which serves as the main freshwater tributary
(Figure 7a). Conversely, we found that the eastern part of
the lake, being the shallowest (Figure 1a), consistently main-
tained lower Chl-a levels throughout the year (Figure 7a).
Turbidity was the highest in the northwestern part of the
lake, near the Kotarka channel, while the southeastern part
exhibited the lowest turbidity levels (Figure 7c).

There was a strong correlation between EC and sali-
nity in the lake, with both parameters exhibiting similar
distribution patterns. The southern region, connected to

the sea through the Prosika canal, experienced seawater
intrusion, especially during warmer months with lower
WL. This resulted in higher EC and salinity in the south
and lower EC levels in the north (Figure 7b and d).

We monitored the lake in a counterclockwise direction,
starting at station 4 and ending at station 2 (Figure 1a), which
took us approximately 3 h. During this process, WT and SO
levels gradually increased, influenced by AT (Figure S2). This
resulted in higher WT at later monitoring stations and in shal-
lower areas on the northern and eastern sides of the lake
(Figure 7e). DO levels were highest in the southern, deepest
part of the lake near the Prosika canal and lowest in the
northern area near the freshwater tributary Lateral channel
(Figure 7f). Similarly, SO levelswere highest in the deepwestern
part of the lake and lowest in the shallow northeastern region
(Figure 7g).

4 Discussion

4.1 Impact of climate change on Vrana Lake

Historical data indicate rising global temperatures and
extreme weather events, including heavy precipitation. Our
study confirms the growing trend of overall AT from the early
1990s till 2020s (2.11°C in 34 years) anticipated by IPCC [3],
impacting ecosystems and affecting lake water quality. PP
levels exhibit significant variability from average values,
reflecting the occurrence of extreme weather events

Figure 6: Spearman’s coefficient of determination between: (a) WL, meteorological (AT, WS, RH, AP, PP, SH), and water quality parameters (Chl-a, EC,
turbidity, salinity, WT, DO, SO) and (b) in-between water quality parameters (Chl-a, EC, turbidity, salinity, WT, DO, SO).
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throughout the years, such as drought years and flooding
years. Rising WL trend may be influenced by the Adriatic
Sea’s mean sea level rise of +2.6mm/year from 1993 to 2019,
as reported by Pandžić et al. [50]. Given Vrana Lake’s connec-
tion to the sea through the Prosika canal, it is especially
vulnerable to sea-level changes – a trend also observed in
other coastal lakes, such as those in the Netherlands [51]. Our
trend analysis, based on the work of Rubinić and Katalinić
[39], which covers the period from 1961 to 2010, indicates a
similar increase in AT and lake WL.

4.2 Vertical stratification and water quality
dynamics

Vertical profiles revealed a very well-mixed water column
with minimal or no stratification. This aligns with findings

by Holgerson et al. [52], who reported that shallow lakes
over 4 ha in surface tend to experience frequent mixing
driven by wind and convection, preventing sustained stra-
tification. In Vrana Lake, we measured slightly elevated
Chl-a and turbidity at greater depths with lower light avail-
ability, a pattern also observed by Girdner et al. [53].
Similar to the observations in Lake Taihu [54] and Siombak
Lake [55], where vertical WT differences were typically
within 1°C and showed no significant variation in DO
across the water column, we observed that Vrana Lake
also exhibits very limited vertical WT gradients and
minimal variations in DO, confirming its classification as
a shallow, well-mixed system. Likewise, the stability of
salinity throughout the water columnmirrors observations
in shallow saline Lake Shunet in Russia [56], where salinity
remains stable to depths of 5 m. Given the shallow nature
of Vrana Lake, we find that vertical variations are not
significant and can be disregarded, allowing us to use

Figure 7: SK – Trend interpolation showing parameter distributions: (a) Chl-a, (b) EC, (c) turbidity, (d) salinity, (e) WT, (f) DO, and (g) SO.
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median values from vertical profiles as reference mea-
sures for each monitoring station.

4.3 Seasonal and spatial variations in water
quality and meteorological influences

The spatial distribution of water quality parameters is
important for understanding changes in water quality
across a lake. Our findings indicate a slight increase in
Chl-a concentrations outside the vegetation period, parti-
cularly during autumn and winter. This is consistent with a
study by Kong et al. [57], in which it was found that phyto-
plankton growth in winter is particularly sensitive to light
and temperature changes, making it vulnerable to the
impacts of climate change.

According to the legislation in The Official Gazette [58],
our 12-month study of Vrana Lake shows that it is meso-
trophic (classified as “very good” based on eutrophication
indicators for mean annual Chl-a values). This differs from
the 2021 measurements from Hrvatske vode, which classified
the lake as mesotrophic/eutrophic (classified as “good”) [40].
We acknowledge that the reliability of Chl-a measurements in
our study is uncertain due to the use of the multiparameter
probe without spectrophotometric analysis of water samples.
A study by Zolfaghari et al. [45] shows that the connections
between sonde and laboratory measurements of Chl-a
depend on the site and the methods used in the laboratory.

Salinity concentrations in Vrana Lake rise due to eva-
poration and the entry of seawater, particularly during the
summer (Figure 5), as demonstrated by recent findings in
another coastal lake in Croatia [59]. While the Lateral channel
remains fresh, heavy rainfall can introduce slightly saline
water into the Kotarka channel due to the spring from Vrana
polje in the north [35]. Seasonal changes, such as reduced
seawater influx during colder periods and potential salinity
changes in the Kotarka channel, further affect water quality.

Turbidity levels in Vrana Lake are influenced by fac-
tors like nutrient and water flow from tributaries, with
warmer months leading to increased turbidity due to lower
WLs and active vegetation periods. Contributing sources
include soil erosion, seasonal variations, local geology,
and algal blooms, which can negatively impact water
quality and aquatic life [60]. Additionally, higher turbidity
level in the northwestern part of the lake may be linked to
the anthropogenic influence, as reported by Silva et al. [61],
including nearby road network and industries.

WT is affected by AT and SH, showing higher tempera-
tures in shallow parts of the lake, as found by Anamunda and
Lamtane [62]. WT variations have effect on the DO and SO

levels, biological activities, and other parameters, as reported
by Wang et al. [63] and Khouni et al. [19]. Areas with higher
Chl-a concentrations generally have elevated DO levels, which
inversely correlate with WT and AT, as found by Saturday
et al. [64]. In shallow lakes like Vrana Lake, higher DO levels
are typically associated with increased SO concentrations,
and SO levels typically remain near 100% or slightly above,
sustained by photosynthesis, aeration, and shallow mixing
[65], as found by Allesson et al. [66].

5 Conclusion

Our study of Vrana Lake reveals significant impacts of cli-
mate change onwater quality and ecosystem dynamics. Long-
term trends show increasing AT, PP, and WL, suggesting a
complex interaction influenced by rising sea levels from the
Adriatic Sea. Due to the lake’s shallow nature and minimal
vertical stratification, median values from vertical profiles
are sufficient for station-level monitoring.

We observed seasonal variability in turbidity, EC, and
Chl-a, with a shift frommesotrophic/eutrophic tomesotrophic
conditions, emphasizing the need for continuous monitoring.
Additionally, we identify the SK – Trend method as the most
effective GIS spatial interpolation method for modelling
water quality parameters, based on RMSE and ME rankings.

Limitations of our study include exclusive use of the
YSI EXO2 multiparameter probe and the absence of water
sampling for laboratory analysis. In the absence of macro-
phytes, Chl-a measurements accuracy could be improved
through spectrophotometry and phytoplankton identifica-
tion. While we found turbidity to be a useful water quality
indicator, incorporating a Secchi disk for assessing water
clarity would have been advantageous. The expanded
monitoring network supports subsequent remote sensing
and machine learning analyses; however, selecting a
subset of optimal stations based on GIS multicriteria ana-
lysis in future studies could improve cost-efficiency.

We recommend that future research on Vrana Lake
addresses these limitations, identifies specific phytoplankton
and macrophyte species, and prioritizes vertical stratification
analysis and water quality dynamics before modelling water
quality. Given the strong correlation between EC and salinity,
and the fact that salinity is derived from EC measurements
using the EXO2 probe, we recommend using EC as the pri-
mary parameter in similar studies.

Overall, our findings underscore the complex environ-
mental interactions shaping Vrana Lake’s ecosystem and the
necessity for adaptive management in response to climate
change. Our findings are particularly relevant to institutions
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responsible for monitoring Vrana Lake, including the Water
Institute Josip Juraj Strossmayer and the Public Institution
Vransko Jezero Nature Park. They may also benefit other
authorities and researchers engaged in future studies on
Lake Vrana and other coastal shallow lakes. Our research
lays the groundwork for future studies using GISmulticriteria
analysis, remote sensing, and machine learning to improve
lake management and address ecological challenges.
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