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1 Introduction

Since its inception, general theory of relativity (GR) has proven to be the most successful
theory of gravity. In a wide range of different physical circumstances in which it was tested,
it has prevailed against all challenges. Indeed, the theory has passed many experimental tests
involving diverse astrophysical phenomena ranging from gravitational lensing to compact
binary coalescences. However, the ranges in which gravity was tested so far included mostly
the weak-field, low-speed and linear gravity limits, while the extreme regimes like strong
gravity and high curvature remained largely uninvestigated. The latter could presumably
be accessed by studying the near-horizon region of black holes where energies as large as
the Planck scale are expected to be present.

At this energy scale, the gravitational effects become comparable to quantum effects and
one might expect a modification of GR to be triggered there. This is one of those points
where the gravitational waves come into play. Besides them being one of the most important
predictions of general relativity, gravitational waves appear to play a crucial role in accessing
the behaviour of GR under extreme conditions, i.e. in a regime where GR is not well enough
studied yet. Namely, due to the fact that gravitational waves originate from regions of
spacetime where gravity is extremely strong, just like the near-horizon region of black holes,
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they have emerged as highly suitable candidates for testing GR under such extreme conditions.
In fact, since their recent experimental discovery, gravitational waves have been established
as one of the most powerful tools for studying extreme regimes of relativistic speeds, large
curvature, and strong gravity. In this way, gravitational waves provided a promising way for
exploring spacetime dynamics in regions previously inaccessible to an experimental enquiry
and helped bring them under a direct experimentalist’s gaze.

Gravitational waves as observed by the current ground-based gravitational wave detectors
have been extensively used for testing various aspects of general relativity, but no discrepancies
from the theory have been reported so far [1–3]. As it currently appears, possible deviations
from GR, if anywhere found in the literature, may most likely be attributed to a false
identification of GR violation arising from a series of technical issues such as detector noise,
signal overlaps, gaps in the data, detector calibration, source misidentification or others [4].
This motivates an ongoing and increasingly enthusiastic search for potential deviations in
the field.

However, strong gravity regimes, such as those found in the vicinity of a black hole, may
present a more challenging scenario for general relativity, as its validity could be subjected to
a more rigorous examination in these contexts. As already stated, the region near a black
hole horizon admits access to energies of the order of the Planck scale. As a result, GR may
be potentially modified there, causing that some of its predictions, including gravitational
QNM spectrum of black holes, may be altered too [5–10]. Indeed, the latter scenario receives
significant support within a scope of various quantum gravity theories, which suggest that
strong gravity and high energy regimes like those found in a near-horizon region of black hole
may create environment where the usual point-like structure of spacetime becomes replaced
with certain noncommutative geometry constructs [11, 12] ultimately affecting the relaxation
dynamics of black holes and their related ringdown spectra. Even more striking evidence of
the discrete nature of spacetime and a possible necessity for modifying classical GR might be
found in phenomena like gravitational wave echoes or tidal heating [13]. Alternative theories
of gravity — such as the Einstein-Aether model [14], Einstein-power-Maxwell scenarios [15, 16]
and studies of acoustic black holes [17] — have similarly revealed that deviations from the
classical GR QNM spectra may occur.

The initial steps toward quantifying the black hole ringdown spectrum have been carried
out on the example of the Schwarzschild black hole by Regge and Wheeler for the odd-
parity (axial) perturbations [18] and subsequently by Zerilli for the even-parity (polar)
perturbations [19]. In both cases the problem was shown to reduce to a scattering problem at
a specially devised potential barrier, thus establishing the full analogy between the theory of
scattering of gravitational waves on a background of a black hole and a scattering theory in
quantum mechanics [20, 21]. The outcome of the analysis was a master equation in a form of a
1-dim Schrödinger-like equation in a radial coordinate with a particular effective potential that
came out after separating the angular variables in the wave equation, using tensor spherical
harmonics with angular indices (ℓ,m). Careful study of the master equation revealed that
quasinormal modes in classical general relativity have the property of isospectrality. In
particular, the axial and polar perturbations of the Schwarzschild black hole were shown by
Chandrasekhar and Detweiler to have identical spectra [22].
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In our previous papers [23–25]. we have set up a noncommutative differential geometry
framework sufficiently suited for studying metric perturbations in noncommutative gravity.
This formalism is based on considering a set of deformed diffeomorphisms encompassing the
symmetries of a noncommutative space which conveniently find their description within the
structure of Hopf algebra. In addition, the formalism was applied to obtain noncommutative
corrections to the Regge-Wheeler potential that governs the axial perturbations of the
Schwarzschild black hole.

In the present paper, we continue on our previous work by presenting noncommutative
gravitational perturbations of the Schwarzschild black hole in their entirety, giving a descrip-
tion of metric perturbations in noncommutative gravity for both axial and polar cases. We
do this by first recapitulating the results for axial perturbations obtained previously and then
by extending the analysis to include polar perturbations. Curiously, contrary to the classical
case, we find that these two types of perturbations do not share the same QNM spectra,
yielding a conclusion that the presence of quantum spacetime violates isospectrality.

The plan of the paper is the following. In section 2 we briefly present a formalism of NC
differential geometry and explain how it can be applied to linearized gravitational perturbation
theory. In section 3 we single out the NC corrections to the metric perturbations around the
Schwarzschild black hole and calculate noncommutative corrections to the equation of motion
for axial (i.e. odd-parity) and polar (i.e. even-parity) metric perturbations. In section 3.1 we
discuss the axial sector. Rephrasing the problem in terms of a Schrödinger-type equation
enables us to identify the NC correction to the Regge-Wheeler potential. Section 3.2 is
devoted to an extensive and in-detail analysis of the noncommutative polar perturbations of
the Schwarzschild background. Utilising the classical infinitesimal diffeo-transformations and
a series of field redefinitions, as well as coordinate transformations we were able to determine
the NC correction to the equation of motion governing the NC polar metric perturbations
and to extract the related quantum correction to the Zerilli potential.

In section 4 we gain the first insight into the spectra by applying the WKB, Pöschl-Teller
and Rosen-Morse methods. In section 5 we demonstrate that the isospectrality between two
types of perturbations no longer holds, in contrast to a well-established result in classical
GR. We come to this conclusion by arguing that the two potentials may not be connected
through a Darboux transformation, making the criterion for equivalence between the two
potentials impossible to fulfill. This conclusion has been further corroborated by a detailed
semi-analytic analysis of the QNM spectra in both cases, with the analysis being based on
the WKB method [26] up to 13th order in the calculation. The paper ends with concluding
remarks and 3 appendices where we present some technical details. In appendix A we present
the usual Zerilli gauge for the polar perturbation sector. In appendix B we write out the
coefficients of transformations used for finding the NC corrections to the polar sector. In
appendix C we give the QNM frequencies obtained through the order-optimized WKB method
together with error estimations up to the 13th order.

2 Noncommutative differential geometry

We consider a noncommutative gravity theory constructed using the mathematical framework
of Hopf algebra theory [27–29]. First, we will provide a clear and concise introduction to Hopf
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algebras and their Drinfeld twist deformations. In the second subsection we outline the main
building blocks of NC differential geometry — a theory that arises naturally by imposing
covariance under the Hopf algebra of deformed diffeomorphisms. For a more detailed and
pedagogical introduction to the topic, see [30].

2.1 Hopf algebra and deformed diffeomorphisms

The Lie algebra of vector fields (Ξ, [·, ·]) plays a vital role in differential geometry. It describes
the infinitesimal diffeomorphisms of the manifold M. It acts on tensor fields via the Lie
derivative £. From the Lie algebra (Ξ, [·, ·]), we can create a universal enveloping algebra
UΞ, which we can upgrade to a Hopf algebra. Universal enveloping algebra is a free algebra
on generators of the Lie algebra Ξ with associative product µ : UΞ ⊗ UΞ → UΞ and unit
η : C → UΞ obtained by quotienting the former (the free algebra) by an ideal generated
by relations ab − ba − [a, b] = 0.

To encode the intuitive concepts of Leibniz rule, inverse, and normalization that we
have on the Hopf algebra, we use C-linear maps coproduct ∆ : UΞ → UΞ⊗ UΞ, antipode
S : UΞ → UΞ and counit ϵ : UΞ → C. While ∆ and ϵ are multiplicative maps, the map S

associated with inversion in the corresponding Lie group is antimultiplicative. The object of
interest here is the structure H = (UΞ, µ, η,∆, ϵ, S), known as a Hopf algebra.

A Hopf algebra can be understood as a generalization of the enveloping algebra that
includes three important maps: coproduct ∆, counit ϵ, and antipode S. These maps must
satisfy certain compatibility criteria. To be considered a Hopf algebra, it must meet the
following three conditions for all ξ ∈ H:

(∆⊗ id)∆(ξ) = (id ⊗∆)∆(ξ),
(ϵ⊗ id)∆(ξ) = ξ = (id ⊗ ϵ)∆(ξ),

µ((S ⊗ id)∆(ξ) = ϵ(ξ)1 = µ((id ⊗ S)∆(ξ)).
(2.1)

In summary, the Lie algebra of diffeomorphisms (Ξ, [·, ·]) can be embedded into a Hopf algebra
H = (UΞ, µ, η,∆, ϵ, S). This Hopf algebra is known as the Hopf algebra of diffeomorphisms.
It contains the relevant information on the Leibniz rule (through the coproduct ∆), the
inverse of a diffeomorphism (through the antipode S), and the normalization process (through
the counit ϵ).

Let us present some properties of the Hopf algebra H. One important concept is that of
a Drinfeld twist. A Drinfeld twist refers to an invertible element F ∈ H ⊗H that satisfies
the following two conditions:

(F ⊗ 1)(∆⊗ id)F = (1⊗F)(id ⊗∆)F ,
(ϵ⊗ id)F = 1 = (id ⊗ ϵ)F .

(2.2)

Notation F = fα ⊗ fα, F−1 = f̄α ⊗ f̄α, where summation over α is assumed, will often be
employed. We further require that F = 1 ⊗ 1 + O(a), where a represents a deformation
parameter, in order to keep the zeroth order (classical limit) unchanged.1 If a Drinfeld twist

1To implement this in practice, we need to extend the underlying field C to a formal power series in
deformation parameter a. For details refer to [30].
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F of the Hopf algebra H is provided, it is well-known that we can build a new Hopf algebra
HF := (UΞ, µ, η,∆F , ϵ, SF ) by twisting the coproduct and the antipode as follows:

∆F (ξ) := F∆(ξ)F−1,

SF (ξ) := χS(ξ)χ−1.
(2.3)

Here, χ := fαS(fα) and χ−1 := S(f̄α)f̄α. Note that fα, fα, f̄α, f̄α are all elements in H.
The twisted Hopf algebra of diffeomorphisms, denoted by HF , raises the question of

whether and in what sense it differs from the original Hopf algebra H. It should be noted
that H is a cocommutative2 Hopf algebra, i.e. ∆cop = ∆. It is easy to show that the
coopposite twisted coproduct (∆F )cop is related to the twisted coproduct ∆F by performing
a conjugation with the help of the element R = F21F−1 ∈ HF ⊗HF for all ξ ∈ HF (where
F21 = fα ⊗ fα and F−1

21 = f̄α ⊗ f̄α), as given by the equation:

(∆F )cop(ξ) = R∆F (ξ)R−1. (2.4)

This element R is called a universal R-matrix and satisfies the quantum Yang-Baxter equation,
giving rise to braiding. We use the notation R = Rα ⊗Rα and R−1 = R̄α ⊗ R̄α (sum over
α assumed) for the R-matrix and its inverse, respectively.

The twisted Hopf algebra of diffeomorphisms HF is generally not cocommutative. This
means that HF differs structurally from the Hopf algebras generated by Lie algebras via the
universal enveloping algebra construction. As a result of this noncocommutative behavior of
HF , we will obtain a noncommutative structure on the spaces that the Hopf algebra acts
on (modules), such as the algebra of functions on the spacetime manifold M.

In the context of noncommutative manifolds, it is important to consider the construction
of scalar, vector, and tensor transformations that are compatible with the twisted Hopf
algebra of diffeomorphisms. Our focus is on the Hopf algebra HF which characterizes the
deformed infinitesimal diffeomorphisms that correspond to the symmetry of a noncommutative
manifold. To illustrate, let us consider the simplest type of tensor field: the smooth and
complex functions C∞(M). This space can be equipped with an algebra structure by
employing the pointwise multiplication (hk)(x) = h(x)k(x), for all h, k ∈ C∞(M). The algebra
A := (C∞(M), ·) is covariant under the Hopf algebra H , meaning ξ▷ · (f⊗g) = · ∆ξ▷ (f⊗g)
for ξ ∈ H, f, g ∈ C∞(M). This is the usual Leibniz rule for the action of the Lie derivative,
or more formally, left H-module algebra property of A.

However, when it comes to nontrivial deformations generated by F , ∆ in the preceding
relation changes to ∆F and algebra A fails to be covariant under HF . To resolve this issue,
we must deform the product in A according to F , transforming A into A⋆ — the algebra
covariant under HF . In other words, the twisted Hopf algebra HF describes the symmetries
of a noncommutative manifold underlying the algebra A⋆ = (C∞(M), ⋆), where the deformed
multiplication, the so-called ⋆-product, is given by:

h ⋆ k := · F−1(h⊗ k) = f̄α(h)f̄α(k), (2.5)
2The Hopf algebra of diffeomorphisms has a unique property called cocommutativity. It means that the

coopposite coproduct of any generic element ξ in H, denoted as ∆cop(ξ) = ξ2 ⊗ ξ1, is equal to the coproduct
∆(ξ) = ξ1 ⊗ ξ2 = ξ ⊗ 1 + 1 ⊗ ξ itself, where we used the Sweedler notation for the coproduct. As a result, the
Hopf algebra H is referred to as a cocommutative Hopf algebra.
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for all h, k ∈ C∞(M). A similar prescription can be used to deform the tensor product from
⊗A to ⊗A⋆ and space of tensors from T to T⋆. It is important to note that as a vector
space A is isomorphic to A⋆ and also T is isomorphic to T⋆, therefore it is only the algebraic
structure which we deform. Property (2.4) of the coproduct is reflected inside the algebra
A⋆ as braided commutativity of A⋆:

f ⋆ g = R̄α(g) ⋆ R̄α(f). (2.6)

To implement noncommutative gravity practically, we require a specific Hopf algebra
of deformed diffeomorphisms. More precisely, for our study, we select a particular twist F ,
known as the Moyal-Weyl twist, and utilize it to twist H. If we consider M = RN and
use xµ (µ = 1, . . . , N) as local coordinate functions on M, then the derivatives ∂µ along
xµ provide a local basis of Ξ. This means that any vector field v ∈ Ξ can be expressed
as v = vµ(x)∂µ, where the coefficient functions vµ ∈ C∞(M). Notably, ∂µ ∈ Ξ are locally
defined vector fields for all µ = 1, ..., N . The Moyal-Weyl twist F is an element in UΞ⊗ UΞ,
and is defined by the following expression:

F = exp (−iΘµν∂µ ⊗ ∂ν) , (2.7)

where Θµν is a constant and antisymmetric matrix.

2.2 Quantum Lie algebras and NC geometry

We can associate a quantum Lie algebra (Ξ, [·, ·]⋆) to HF , similar to how we can associate the
Lie algebra (Ξ, [·, ·]) of vector fields to H. However, this quantum Lie algebra fits naturally
inside another Hopf algebra H⋆, which is isomorphic to HF . Now we describe its construction
in brief, with universal enveloping algebras as the starting point.

First note that (UΞ, µ) is a left H-module algebra via the adjoint action. We deform
this module algebra to (UΞ, µ⋆) by twisting the associative product µ. There is a remarkable
relation between the algebras (UΞ, µ) and (UΞ, µ⋆), as they are isomorphic. The algebra
isomorphism D : (UΞ, µ) → (UΞ, µ⋆) is given by the adjoint action D(ξ) := Adf̄α(ξ)f̄α for all
ξ ∈ UΞ, where Adf̄α(ξ) := µ(1⊗S)∆fα = f̄α

1 ξS(f̄α
2 ). This algebra isomorphism can be lifted

to the Hopf algebra level by introducing H⋆ = (UΞ, µ⋆, η,∆⋆, ϵ, S⋆), which is isomorphic to
HF . The quantum Lie algebra and the R-matrix it carries are of central importance in our
approach; details of the co-algebraic structures of H⋆ can be found in [29, 30].

Since H⋆ and HF are isomorphic Hopf algebras, any representation of HF is also a
representation of H⋆. We perform the H⋆-action by the ⋆-Lie derivative, for all ξ ∈ UΞ,
as follows:

£⋆
ξ := £D(ξ). (2.8)

When acting with the ⋆-Lie derivative on a ⋆-tensor product of tensor fields, we obtain

£⋆
v(τ ⊗A⋆ σ) = £⋆

v(τ)⊗A⋆ σ + R̄α(τ)⊗A⋆ £⋆
R̄α(v)(σ), (2.9)

for all v ∈ Ξ, and for all tensors τ, σ ∈ T⋆. Furthermore, we can construct a quantum Lie
algebra (Ξ, [·, ·]⋆), where the ⋆-Lie bracket [·, ·]⋆ satisfies the deformed antisymmetry property:

[v, w]⋆ = −[R̄α(w), R̄α(v)]⋆, (2.10)

– 6 –
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and the deformed Jacobi identity:

[v, [w, z]⋆]⋆ = [[v, w]⋆, z]⋆ + [R̄α(w), [R̄α(v), z]⋆]⋆, (2.11)

for all v, w, z ∈ Ξ. The quantum Lie algebra (Ξ, [·, ·]⋆) represents the infinitesimal deformed
diffeomorphisms.

In the framework of noncommutative differential geometry, we can introduce the covariant
derivative, torsion, and curvature in a natural way. A ⋆-covariant derivative ∇̂v is introduced
along a vector field v ∈ Ξ. It is a C-linear map ∇̂v : Ξ → Ξ that satisfies the following
conditions:

∇̂v+w z = ∇̂vz + ∇̂wz,

∇̂h⋆v z = h ⋆ ∇̂vz,

∇̂v(h ⋆ z) = £⋆
v(h) ⋆ z + R̄α(h) ⋆ ∇̂R̄α(v)z,

(2.12)

for all v, w, z ∈ Ξ and h ∈ C∞
⋆ (M). When a ⋆-covariant derivative is given, its ⋆-torsion and

⋆-curvature are defined by C-linear maps T̂ : Ξ⊗Ξ → Ξ and R̂ : Ξ⊗Ξ⊗Ξ → Ξ, respectively.

T̂ (v, w) := ∇̂vw − ∇̂R̄α(w)R̄α(v)− [v, w]⋆,

R̂(v, w, z) := ∇̂v∇̂wz − ∇̂R̄α(w)∇̂R̄α(v)z − ∇̂[v,w]⋆z,
(2.13)

for all v, w, z ∈ Ξ. To construct the ⋆-Ricci tensor R̂ : Ξ⊗Ξ → C∞
⋆ (M), we need a local basis

and a contraction covariant under HF .3 In the ⋆-dual basis {dxν} for which ⟨∂µ, dx
ν⟩⋆ = δ ν

µ

holds, the contraction defines the ⋆-Ricci tensor as follows:

R̂(v, w) = ⟨dxµ, R̂(∂µ, v, w)⟩⋆, (2.14)

for all v, w ∈ Ξ. It is independent of the choice of basis. The noncommutative Ricci
tensor (2.14) is not symmetric, due to the fact that the noncommutative Riemann tensor
defined in (2.13) is R-antisymmetric in the first two indices,

R̂(u, v, z) = −R̂(R̄c(v), R̄c(u), z), (2.15)

but not in the last two. For the deformations induced by the Moyal-Weyl twist (2.7), the
Christoffel symbols completely specify the ⋆-covariant derivative as shown below:

∇̂∂µ∂ν = Γ̂ρ
µν ⋆ ∂ρ = Γ̂ρ

µν∂ρ. (2.16)

The last equality follows from the fact that the twist acts trivially on all ∂ρ. In the basis
{∂ρ}, the ⋆-torsion, ⋆-curvature and ⋆-Ricci tensor can be expressed as:

T̂ (∂µ, ∂ν) = T̂ ρ
µν∂ρ =

(
Γ̂ρ

µν − Γ̂ρ
νµ

)
∂ρ,

R̂(∂µ, ∂ν , ∂ρ) = R̂σ
µνρ∂σ =

(
∂µΓ̂σ

νρ − ∂νΓ̂σ
µρ + Γ̂τ

νρ ⋆ Γ̂σ
µτ − Γ̂τ

µρ ⋆ Γ̂σ
ντ

)
∂σ,

R̂(∂ν , ∂ρ) = R̂νρ = ∂µΓ̂µ
νρ − ∂νΓ̂µ

µρ + Γ̂τ
νρ ⋆ Γ̂µ

µτ − Γ̂τ
µρ ⋆ Γ̂µ

ντ .

(2.17)

3Since vector fields and one-forms are dual to each other in differential geometry, we can define a contraction
⟨·, ·⟩ : Ξ × Ω1 → C∞(M). Here, Ω1 represents the space of smooth and complex 1-forms. These contractions
are H-covariant, which means that for all v ∈ Ξ, ω ∈ Ω1, and ξ ∈ H, we have £ξ(⟨v, ω⟩) = ⟨£ξ1 (v), £ξ2 (ω)⟩.
In order to make ⟨·, ·⟩ covariant under HF , we use the inverse twist and define ⟨v, ω⟩⋆ := ⟨f̄α(v), f̄α(ω)⟩, for
all v ∈ Ξ, and ω ∈ Ω1.
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It’s important to note that these equations hold in the case of Abelian twist in the so-called
nice basis [30]. Abelian twist means that vector fields generating the twist commute and
nice basis means that vector fields generating the twist commute with the basis vectors.
For the twist (2.7) this trivially holds since it is composed of derivatives with respect to
a coordinate chart.

To formulate a noncommutative gravity theory, we also need to introduce a metric field
g = gα⊗A⋆ gα ∈ Ω1⊗A⋆ Ω1. We can define the ⋆-inverse metric g−1 = g−1α⊗A⋆ g

−1
α ∈ Ξ⊗A⋆ Ξ

by imposing the following conditions for all v ∈ Ξ and ω ∈ Ω1:

⟨⟨v, g⟩⋆, g
−1⟩⋆ = ⟨v, gα⟩⋆ ⋆ ⟨gα, g

−1β⟩⋆ ⋆ g
−1
β = v,

⟨⟨ω, g−1⟩⋆, g⟩⋆ = ⟨ω, g−1β⟩⋆ ⋆ ⟨g−1
β , gα⟩⋆ ⋆ gα = ω.

(2.18)

In the context of the Moyal-Weyl twist (2.7), the metric field can be expressed as
g = dxµ ⊗A dxνgµν = dxµ ⊗A⋆ dx

ν ⋆ gµν , since the ⋆ symbol reduces to its zeroth order
commutative multiplication when acting on ∂ρ or dxµ. The inverse metric field is given by
g−1 = g⋆µν ⋆ ∂µ ⊗A⋆ ∂ν , where gµν and g⋆µν satisfy the conditions:

gµν ⋆ g
⋆νρ = δ ρ

µ , g⋆µν ⋆ gνρ = δµ
ρ. (2.19)

Specifically, we have [31]

g⋆αβ = gαβ − gγβiΘµν(∂µg
ασ)(∂νgσγ) +O(Θ2). (2.20)

The unique torsion-free, T̂ = 0, and metric compatible,4 ∇̂(g) = 0, NC Levi-Civita connection
is given by [29],

Γ̂ρ
µν = 1

2g
⋆ρσ ⋆ (∂µgνσ + ∂νgµσ − ∂σgµν) . (2.21)

In the next section, we will use this formalism in the context of black hole perturbation theory.

3 Noncommutative perturbations of the Schwarzchild black hole

In this section, our investigation delves into the noncommutative deformation of black hole
perturbations. The metric g̊µν characterizes the background spacetime of a black hole, and
its perturbation is represented by the rank-2 symmetric tensor hµν . The complete metric
is therefore

gµν = g̊µν + hµν . (3.1)

In our calculation, we adopt the Schwarzschild metric as the background metric g̊:

ds2 = g̊µνdx
µdxν = −

(
1− R

r

)
dt2 +

(
1− R

r

)−1
dr2 + r2

(
dθ2 + sin2 θdφ2

)
, (3.2)

where R = 2M denotes the horizon radius, and M is the mass of the black hole.
Conventionally, the perturbation of a black hole in commutative theory is studied by

imposing that the Ricci tensor is zero, Rµν = 0, up to first order in h, following from the
4Covariant derivative of the metric vanishes, but covariant derivative of the metric inverse does not [29].
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linearized Einstein equations.5 Extending the notion of Einstein manifolds to noncommutative
gravity requires careful consideration. Although one might intuitively consider R̂µν = 0 as
a straightforward extension by merely accounting for the correct commutative limit, the
relation R̂νµ = 0, in contrast to the commutative case, will not be satisfied automatically
here. This is because the definition of R̂µν does not guarantee the symmetry property and
therefore imposing R̂µν = 0 leads to contradictions. To navigate this challenge, a recently
proposed approach involves postulating a noncommutative Einstein manifold [23, 24] as

R̂µν = 0. (3.3)

Here, R̂µν is the R-symmetrized Ricci tensor, defined as

R̂µν ≡ 1
2
〈
dxα, R̂(∂α, ∂µ, ∂ν) + R̂(∂α, R̄

A(∂ν), R̄A(∂µ))
〉

⋆
. (3.4)

Note that this proposal, first presented in [23, 24], differs from the one found in [27–30].
As mentioned in the preceding section, we are in pursuit of noncommutative corrections

to gravitational perturbations induced by the Moyal-Weyl twist (2.7). For this type of
deformation, R-symmetrization reduces to the usual symmetrization, i.e.

R̂µν = R̂(µν) ≡
1
2(R̂µν + R̂νµ). (3.5)

In addition, we consider an Abelian twist, a form of the Moyal-Weyl twist where globally
defined vector fields {Xµ} generating the twist commute. This twist has the form

F = exp (−iΘµνXµ ⊗Xν) . (3.6)

It is important to keep in mind that the selection of a specific twist is a matter of quantum-
gravity phenomenology and ideally should be constrained by experiments. In the absence of
such empirical inputs, one must rely on symmetry arguments to make a physically meaningful
choice. The simplest approach in this regard might involve constructing a twist solely
from a basis composed of Killing vectors Kµ of the background g̊µν . However, in the
unperturbed background, it becomes apparent that such a choice would not yield a nontrivial
noncommutative contribution. This is because any solution to the commutative Einstein
equation is also a solution to the NC Einstein equation in cases where the twist is constructed
from the Killing vectors of the nonperturbed background metric since £K g̊ = 0. Similar
arguments apply to the choice of a semi-Killing twist, constructed using a Killing vector Kµ

and an arbitrary basis vector V ν . For more details, see [23, 24, 29, 30]. In the realm of black
hole perturbation studies, our focus is on the perturbed background black hole spacetime
described by the metric g̊µν + hµν . In this scenario, opting for the mere Killing twist seems
to result in non-vanishing NC corrections that are quadratic in the metric perturbation
h. This comes from the fact that £K g̊ = 0 and £Kh ̸= 0, resulting in only a quadratic
leading-order term in noncommutative geometric quantities. In other words, if we want to
respect the full symmetry of the background g̊, then the NC effects are inherently nonlinear

5The components of any covariant tensor τ are defined as τµ1µ2···µn = τ(∂µ1 , ∂µ2 , · · · ∂µn ).
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in perturbation, and we are forced to study quadratic commutative corrections, which would
go beyond the linearized metric perturbation theory.

However, the leading linearized noncommutative metric perturbation term persists if we
opt for a semi-pseudo-Killing twist constructed from the Killing field Kµ of the background
g̊ and an arbitrary vector Xν . We consider a semi-pseudo-Killing twist of the form:

F = e−i a
2

(
K⊗X−X⊗K

)
. (3.7)

In the spherical coordinate basis, two Killing fields, namely ∂t and ∂φ are implemented as
partial derivatives which makes them suitable for constructing the field K:

K = α∂t + β∂φ, X = ∂r, α, β ∈ R. (3.8)

This choice produces the following commutation relations between the coordinates:

[t ⋆, r] = iaα,

[φ ⋆, r] = iaβ.

Both commutators display quantization of the radial coordinate as this is necessary in order
to have noncommutative corrections to perturbations at the linear level. Furthermore, we
introduce the parameter λ as an eigenvalue of the Killing field’s action on the perturbation:

hµν ∝ eimφe−iωt =⇒ £Khµν = iλ hµν , (3.9)
for K = α∂t + β∂φ, λ = −αω + βm. (3.10)

In the calculation of the noncommutative entities, we can use the following linearized ⋆-
product operation following (3.7) and (2.5):

h ⋆ k = hk + i

2a
(
K(h)X(k)−X(h)K(k)

)
+O(a2), (3.11)

where h, k ∈ C∞
⋆ (M) and V (f) := £V f for generic vector field V µ and function f .

The spherically symmetric nature of the Schwarzschild background allows us to decompose
the perturbations hµν into tensor spherical harmonics Y n

ℓm(θ, φ), which can all be expressed in
terms of Yℓm(θ, φ) and their derivatives with respect to θ and φ. Schwarzschild background
allows us to decompose perturbations hµν into scalar, vectorial, and tensorial spherical
harmonics, which are certain derivatives with respect to θ and φ of Yℓm(θ, φ). These
perturbations manifest as axial and polar modes, each displaying distinct behaviors under the
parity transformation r⃗ → −r⃗. Even-parity or polar modes, akin to scalar spherical harmonics
Yℓm(θ, φ), transform as (−1)ℓ, while axial or odd-parity modes transform as (−1)ℓ+1. In the
linear order, these modes are decoupled, facilitating separate treatment.

We will calculate the equations of motion up to linear order in both perturbation hµν and
the NC deformation a. Due to the semi-psuedo Killing form of the twist, the perturbation
and deformation parts are inherently coupled, appearing in pairs.

– 10 –
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3.1 Axial perturbations and noncommutative Regge-Wheeler potential

Here we provide a brief overview of noncommutative axial perturbations [23–25]. The idea
is to mimic the procedure of Regge and Wheeler [18] in the NC setting by deforming the
geometric quantities using methods outlined in the previous section.

Generally, axial perturbations are characterized by three families of radial functions
hℓm

0 (r), hℓm
1 (r), and hℓm

2 (r). However, in the Regge-Wheeler gauge (see appendix A in [24]
for details), one can choose hℓm

2 = 0, resulting in only four non-zero components of the
perturbation metric [32]:

htθ = 1
sin θ

∑
ℓ,m

hℓm
0 ∂ϕYℓm(θ, ϕ)e−iωt,

htϕ = − sin θ
∑
ℓ,m

hℓm
0 ∂θYℓm(θ, ϕ)e−iωt,

hrθ = 1
sin θ

∑
ℓ,m

hℓm
1 ∂ϕYℓm(θ, ϕ)e−iωt,

hrϕ = − sin θ
∑
ℓ,m

hℓm
1 ∂θYℓm(θ, ϕ)e−iωt.

(3.12)

Similar to the commutative case [18, 33], we obtain only 7 non-zero components of the
equation (3.3). These components are in separable form, resulting in only 3 distinguishable
(mutually distinct) radial components.

From R̂rϕ = 0 we get

4ir4(r −R)ωh0 + 2r2(r −R)
(
r3ω2 − (r −R)(ℓ(ℓ+ 1)− 2)

)
h1 − 2iωr5(r −R)h′0

+ λa
[
2ir3ω(r − 2R)h0 +

(
(2ℓ(ℓ+ 1) + 12)r(r −R)2

− 9(r −R)2R− r4Rω2)h1 + ir4Rωh′0 + 2r(r −R)3h′1

]
= 0,

(3.13)

from R̂tϕ = 0 we get

2r(2R−ℓ(ℓ+1)r)h0+4ir2ω(r−R)h1+2r3(r−R)(iωh′1+h′′0)

+λa
[
(2ℓ(ℓ+1)r+R)h0+irω(4r−3R)h1+r(4r−5R)h′0+r2R(iωh′1+h′′0)

]
=0,

(3.14)

and from R̂θϕ = 0 we get

ir3ω

r −R
h0 +Rh1 + r(r −R)h′1 − λa

[
ir2Rω

2(r −R)2h0 − 3r −R

r
h1 −

1
2Rh

′
1

]
= 0. (3.15)

The radial parts of the linearized equations R̂rθ = 0, R̂θθ = 0, R̂φφ = 0, and R̂tθ = 0
are identical to the above equations. Among the 3 equations (3.13)–(3.15), only 2 are
mutually independent. We are therefore in position to pick any two out of these three
equations to find the solution of the whole system, the easiest choice being first-order
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equations (3.13) and (3.15). Combining these equations eliminates h0 and yields a single
second-order differential equation for h1.

r(r−R)
(
ℓ(ℓ+1)r(R−r)+2r2−6rR+5R2+ω2r4

)
h1+r2(r−R)2

(
(5R−2r)h′1+r(r−R)h′′1

)
+λa

[(
ℓ(ℓ+1)r(r−R)2−6r3+R2 (49r

2−64rR+26R2−ω2r4)
)
h1

+r(r−R)2
(
3(r−2R)h′1+

1
2rRh

′′
1

)]
=0. (3.16)

This can be re-expressed as a Schrödinger-like equation with a field redefinition

h1(r) =
r2

r −R

[
1 + λa

2
(3
r
− 1
r −R

+ 1
R

log r

r −R

)]
ψ(r) (3.17)

and a noncommutative tortoise variable transformation

r̂∗ = r +R log r −R

R
+ λa

2
R

r −R
. (3.18)

Expressions for the tortoise coordinate and field redefinition come from two algebraic condi-
tions that we have to impose in order to fix the Schrödinger form of the equation. Detailed
derivation is given in appendix C of [24]. Finally, we arrive at the differential equation,

d2ψ

dr̂2
∗
+
(
ω2 − V (r)

)
ψ = 0, (3.19)

where V (r) = VRW + VNC represents the noncommutative Regge-Wheeler potential,

V (r) =
(r −R)

(
ℓ(ℓ+ 1)r − 3R

)
r4 + λa

ℓ(ℓ+ 1)(3R− 2r)r +R(5r − 8R)
2r5 . (3.20)

In the limit a → 0, only VRW remains, representing the commutative Regge-Wheeler po-
tential [18, 33], while VNC denotes the noncommutative correction to the Regge-Wheeler
potential. It is noteworthy that in case α = 0, β = 1 in (3.10), VNC is dependent on ℓ and
m, leading to a Zeeman-like splitting as depicted in figure 1. From the figure, it is evident
that two crucial aspects of the potential, namely the peak and the zero, are influenced by
the noncommutative structure of spacetime. This behavior of the NC potential persists for
higher ℓ modes as can be seen from figure 2.

In the commutative case, the potential vanishes precisely at the event horizon r = R.
However, in the noncommutative case, the potential vanishes slightly either inside or outside
the horizon, depending on the sign of λa, i.e., r = R± λa

2 +O(a2). This implies that each
mode m effectively ‘perceives’ a somewhat different position of the horizon. Physically, this
characteristic can be understood as the introduction of a level of fuzziness to the event horizon
in particle scattering. Specifically, particle scattering in the potential (3.20) can be described
as a summation of various modes ψnℓm, i.e., Ψ =

∑
ψnℓme

−iωnt. Since each mode experiences
the position of the event horizon differently, the collective wave packet may perceive a slightly
shifted event horizon instead of a sharply defined one.

The second aspect altered by noncommutativity is the location, width and height of the
peak of the potential. From an astrophysical perspective, this is intriguing as it will modify
the photon sphere radius and the shadow of the black hole. We shall see in the next section
that the noncommutative polar potential exhibits the same properties.
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Figure 1. The figure shows the behavior of the potential for R = 2 (M = 1) and ℓ = 2. Both
noncommutative and commutative cases exhibit similar behavior outside the horizon, particularly
around the peak at r0 ∼= 1.5R and for larger r. The right panel highlights the behavior of the potential
near the peak.

2 4 6 8 10
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0.4

0.6

0.8

Figure 2. Plot of the axial NC potential for R = 2 (M = 1) and ℓ = 2, 3, 4.

3.2 Polar perturbations and noncommutative Zerilli potential

In this subsection we follow the derivation of Zerilli [19] to obtain NC corrections to the polar
perturbations. The procedure outlined there can be adapted to the NC setting by deforming
the geometry according to the rules of the previous section. Similar to the axial case, the
solution of the NC vacuum Einstein equation (3.3) in the end turns out to be completely
governed by the NC Zerilli potential in the Schrödinger equation.

Polar perturbations of the metric are characterized by seven families of functions. However,
by exploiting the invariance of the theory under spacetime diffeomorphisms we can adopt
a specific gauge, namely the Zerilli gauge (refer to appendix A for details). In this gauge,
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the polar perturbations are parameterized by four families of radial functions: Hℓm
0 , Hℓm

1 ,
Hℓm

2 , and Kℓm as described below:

htt = f(r)
∑
ℓ,m

Hℓm
0 (r)Yℓm(θ, φ)e−iωt, htr =

∑
ℓ,m

Hℓm
1 (r)Yℓm(θ, φ)e−iωt, (3.21)

hrr = 1
f(r)

∑
ℓ,m

Hℓm
2 (r)Yℓm(θ, φ)e−iωt, hab =

∑
ℓ,m

Kℓm(r)̊gabYℓm(θ, φ)e−iωt, (3.22)

where f(r) = 1−R/r. Here, the indices a and b represent angular coordinates θ and φ. For this
metric we find the ⋆-inverse metric, connection, curvature and Ricci tensor as defined in the
previous section. Finally, the linearized Einstein equation obtained from the R-symmetrized
Ricci tensor (3.3) gives rise to 10 coupled ordinary differential equations in r due to the
separability of the angular parts. Out of these 10 equations, only 7 are distinguishable.

After separating the angular part, the R̂θφ = 0 equation reduces to the following
algebraic relation,

H0 −H2 + λa

[
R

2r(r −R)H0 +
R

2r(r −R)H2

]
= 0. (3.23)

This equation can be solved for H2 in terms of H0, allowing for the elimination of H2 in
the remaining equations,

H2 = H0 − λa
R

r(R− r)H0. (3.24)

In the commutative limit, this solution simplifies to H2 = H0. The remaining 6 equations
involve only three unknown functions K, H0, and H1.

Equation R̂tt = 0 reduces to

2(r−R)
r2 H ′

0+
(r−R)2

r2 H ′′
0 +

(
ℓ(ℓ+1)(R−r)

r3 −ω2
)
H0+

2iω(r−R)
r

H ′
1

+ iω(4r−3R)
r2 H1+

R(R−r)
r3 K ′−2ω2K

−λa
[
(r−R)
r3 H ′

0+
R(r−R)

2r3 H ′′
0 +

(
(r−R)(ℓ(ℓ+1)r+R)

r5 + Rω2

2r(r−R)

)
H0

+ iωR
r2 H ′

1+
iω(2r−R)

r3 H1+
R(4r−5R)

2r4 K ′+
(
2r4ω2+R(r−R)

)
r5 K

]
= 0.

(3.25)

The R̂tr = 0 equation reduces to

− H0
r

− iℓ(ℓ+ 1)
2r2ω

H1 +K ′ + 1
2

( 1
R− r

+ 3
r

)
K

+ λa

[(
2r2 − 6rR+ 5R2)

4r2(r −R)2 H0 +
iR(R− 2r)
4r3ω(r −R)H

′
1 +

i

4r4ω

(
R2(3R− 4r)
(r −R)2 − 2ℓ(ℓ+ 1)r

)
H1

+K
′

r
+
(
4r2 − 12rR+ 7R2)

4r2(r −R)2 K

]
= 0.

(3.26)
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The R̂rr = 0 equation reduces to

2(r −R)
r2 H ′

0 +
(r −R)2

r2 H ′′
0 +

(
ℓ(ℓ+ 1)(r −R)

r3 − ω2
)
H0 +

2iω(r −R)
r

H ′
1

+ iωR

r2 H1 −
(4r − 3R)(r −R)

r3 K ′ − 2(r −R)2

r2 K ′′

− λa

[(
r2 − 3rR+R2)

r4 H ′
0 +

R(R− r)
2r3 H ′′

0

+2ℓ(ℓ+ 1)r2(R− r) + 3ω2r4R+ 2R(3r − 2R)2

2r5(r −R) H0 −
iωR

r2 H ′
1 +

iωR

r3 H1

+
(
8r2 − 12rR+ 5R2)

2r4 K ′ + 2(r −R)2

r3 K ′′ + R(r −R)
r5 K

]
= 0.

(3.27)

The R̂tθ = 0 equation reduces to

iωH0 +
(
1− R

r

)
H ′

1 +
R

r2H1 + iωK

+ λa

[
iωR

2r(r −R)H0 −
R

2r2H
′
1 −

(
4r2 − 9rR+ 6R2)

2r3(r −R) H1 +
iω

r
K

]
= 0.

(3.28)

The R̂rθ = 0 equation reduces to

(
1− R

r

)
H ′

0 +
R

r2H0 + iωH1 +
(
R

r
− 1

)
K ′

+ λa

[
R

2r2H
′
0 −

(
4r2 − 9rR+ 3R2)

2r3(r −R) H0 +
iωR

2r(r −R)H1 −
(r −R)
r2 K ′ − 2(R− r)

r3 K

]
= 0.

(3.29)
The R̂θθ = 0 equation reduces to

2(R− r)H ′
0 − 2H0 − 2iωrH1 + (4r − 3R)K ′ + r(r −R)K ′′ +

(
−ℓ(ℓ+ 1) + r3ω2

r −R
+ 2

)
K

− λa

[(r +R)
r

H ′
0 +

(3R− 4r
r2 + 2

r −R

)
H0 +

iω(r +R)
r −R

H1 +
1
2RK

′′ + 2K ′

− 1
2r2

(
−2(ℓ(ℓ+ 1) + 2)r + ω2r4R

(r −R)2 + 6R
)
K

]
= 0.

(3.30)
In the limit a→ 0, the linearized equations of motion derived from the condition R̂µν = 0

coincide with the equations obtained by Edelstein and Vishveshwara (eq. (9b)− (9g) in [33]).
The linearized equations R̂tφ = 0, R̂rφ = 0, and R̂φφ = 0, in their radial part correspond
identically to R̂tθ = 0, R̂rθ = 0 and R̂θθ = 0, respectively. The combination

R̂rr −
(
1 + λa

R

r(r −R)

)
R̂tt −

(
−2(r −R)

r3 − λa
(2r −R)

r4

)
R̂θθ = 0 (3.31)
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reduces the three second-order differential equations to a first-order relation

− 4(r−R)2

r3 H ′
0+

2(ℓ(ℓ+1)−2)(r−R)
r3 H0−

8iω(r−R)
r2 H1+

2
(
2r2−3rR+R2)K ′

r3

+
(
4ω2− 2(ℓ(ℓ+1)−2)(r−R)

r3

)
K

−λa
[(

6r2−6rR+R2)
r4 H ′

0+
(
−2ℓ(ℓ+1)r3+2(ℓ(ℓ+1)+10)r2R−28rR2+9R3)

r5(r−R) H0

+ iω
(
4r2+2rR−5R2)
r3(r−R) H1+

R(R−2r)
r4 K ′+

(
(4r−3R)(ℓ(ℓ+1)r−2R)

r5 − 4ω2

r−R

)
K

]
=0.

(3.32)
The first-order terms in the above expression can be removed by employing the first-order
equations (3.26), (3.28) and (3.29), resulting in an algebraic relation

(
−ℓ(ℓ+1)−3R

r
+2
)
H0+

(
2irω− iℓ(ℓ+1)R

2r2ω

)
H1

+
(
−2(ℓ(ℓ+1)−2)r2+2(ℓ(ℓ+1)−3)rR+4r4ω2+3R2)

2r(R−r) K

−λa
[(

ℓ(ℓ+1)−1
r−R

+ 3R
2r2 −

8
r

)
H0+

i
(
−ℓ(ℓ+1)r(5r−4R)(r−R)+2r4ω2(r−3R)+R3)

2r4ω(r−R) H1

+
(
(18−4ℓ(ℓ+1))r3+7(ℓ(ℓ+1)−7)r2R+(47−3ℓ(ℓ+1))rR2+4r5ω2−15R3)

2r2(r−R)2 K

]
=0.

(3.33)
The above derivation demonstrates that any of the second-order equations in (3.25)–(3.30)
can be derived from the three first-order equations, provided the algebraic relationship (3.33)
holds. Therefore, it suffices to concentrate on the first-order equations to obtain the complete
solution for the system of equations (3.25)–(3.30). However, one can prove that one equation
among the three is redundant — the algebraic equation eliminates H0 from the first-order
equations, leaving three equations in two functions K and H1. The dependence of the three
equations can be proved in a similar way to appendix B of [24].

Solving the system therefore amounts to solving for K and H1 from (3.26) and (3.28).
Rearranging these equations, while eliminating H0 with the aid of algebraic relation, yields
two first-order equations (with redefinition, 6 L = H1/ω):

K ′ =
[
α0(r) + α2(r)ω2

]
K +

[
β0(r) + β2(r)ω2

]
L,

L′ =
[
γ0(r) + γ2(r)ω2

]
K +

[
δ0(r) + δ2(r)ω2

]
L,

(3.34)

6This redefinition is introduced to yield a system of equations that does not involve powers of ω higher
than 2, corresponding to at most second-order equations in time.
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where α(r), β(r), γ(r), and δ(r), with the abbreviation ℓ(ℓ+ 1) = 2Λ + 2 are given below:

α0(r)=
R((Λ−2)r+3R)

r(r−R)(2Λr+3R)

−λa
[(

4(Λ−2)Λr4+4
(
4−5Λ2)r3R+(Λ(12Λ−17)−56)r2R2+15(Λ+3)rR3−9R4)

2r2(r−R)2(2Λr+3R)2

]
,

α2(r)=− 2r3

(r−R)(2Λr+3R)−λa
[

2r2((7−3Λ)r2+(5Λ−11)rR+9R2)
(r−R)2(2Λr+3R)2

]
,

β0(r)=
2i(Λ+1)(Λr+R)

r2(2Λr+3R)

−λa
[

i
(
−10Λ(Λ+1)r4+(Λ+1)(13Λ−8)r3R+(13−5(Λ−2)Λ)r2R2−(8Λ+3)rR3−3R4)

r4(r−R)(2Λr+3R)2

]
,

β2(r)=
2ir

2Λr+3R
−λa

[
i
(
2(6Λ−7)r2+(31−16Λ)rR−27R2)

(r−R)(2Λr+3R)2

]
,

γ0(r)=− ir(8Λr(r−R)+R(8r−9R))
2(r−R)2(2Λr+3R)

−λa
[

i

4(r−R)3(2Λr+3R)2

(
32Λ2r4+16Λr4−48Λ2r3R+96Λr3R−32r3R+16Λ2r2R2

−188Λr2R2+166r2R2+72ΛrR3−225rR3+81R4
)]
,

γ2(r)=
2ir5

(r−R)2(2Λr+3R)+λa
[

ir4(14r2+4ΛrR−13rR+9R2)
(r−R)3(2Λr+3R)2

]
,

δ0(r)=− R(3Λr+r+3R)
r(r−R)(2Λr+3R)

−λa
[
− 1

2(r2(r−R)2(2Λr+3R)2)

(
36Λ2r4+20Λr4−68Λ2r3R+32Λr3R+16r3R

+32Λ2r2R2−131Λr2R2+r2R2+73ΛrR3−66rR3+42R4
)]
,

δ2(r)=
2r3

(r−R)(2Λr+3R)−λa
[

2r2(3Λr2−7r2−5ΛrR+11rR−9R2)
(r−R)2(2Λr+3R)2

]
.

(3.35)

To cast the coupled differential equations (3.34) in a form resembling the Schrödinger
equation, we introduce a field redefinition

K = f̂(r)K̂ + ĝ(r)L̂,
L = ĥ(r)K̂ + l̂(r)L̂,

(3.36)

accompanied by a coordinate transformation dr/dr̂∗ = n̂(r). Our aim is to find the functions
f̂ , ĝ, ĥ, l̂ and n̂ such that the following conditions hold:

dK̂

dr̂∗
= L̂,

dL̂

dr̂∗
= (V − ω2)K̂, (3.37)
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which, when combined, form the Schrödinger equation for K̂,

d2K̂

dr̂2
∗

+ (ω2 − V )K̂ = 0. (3.38)

The system (3.34) expressed in terms of K̂ and L̂ is

dK̂

dr̂∗
=
[
α̂0(r) + α̂2(r)ω2

]
K̂ +

[
β̂0(r) + β̂2(r)ω2

]
L̂,

dL̂

dr̂∗
=
[
γ̂0(r) + γ̂2(r)ω2

]
K̂ +

[
δ̂0(r) + δ̂2(r)ω2

]
L̂.

(3.39)

The requirement (3.37) imposes the following specific constraints on the coefficient functions:

α̂0(r) = α̂2(r) = β̂2(r) = δ̂0(r) = δ̂2(r) = 0, β̂0(r) = 1, γ̂2(r) = −1. (3.40)

Our requirement involves seven conditions for five unknowns: the coefficients f̂(r), ĝ(r),
ĥ(r), l̂(r) and the tortoise coordinate n̂(r). Fortunately, the additional degrees of freedom
coincide, allowing the system to admit a solution. Moreover, the solution reduces to the
commutative result in the limit a → 0. The exact functional forms of the coefficients of
the transformation equation (3.36) are complicated and are provided in appendix B. The
solutions we obtained have the form

f̂(r) = f(r)− λa f̃(r), ĝ(r) = g(r)− λa g̃(r),
ĥ(r) = h(r)− λa h̃(r), l̂(r) = l(r)− λa l̃(r),

(3.41)

where {f(r), g(r), h(r), l(r)} are the commutative components and {f̃(r), g̃(r), h̃(r), l̃(r)}
denote the noncommutative corrections. The NC tortoise coordinate of the transformation
is given by

r̂∗ = r +R log r −R

R
− λa

 (2Λ + 7)R
2(2Λ + 3)(r −R) −

4(Λ + 3) log
(

r
R − 1

)
(2Λ + 3)2 −

9 log
(

2Λr
R + 3

)
Λ(2Λ + 3)2


(3.42)

where we used the abbreviation ℓ(ℓ + 1) = 2Λ + 2. Similar to the axial case, the tortoise
coordinate and field redefinition come from the two conditions (3.37) that we impose in order
to fix the Schrödinger form of the equation. Note that the noncommutative part of the
tortoise coordinate differs from that of axial perturbation (see ref. [24]) since it depends on
both ℓ and m. The resulting Schrödinger-like form of the equation (3.38) features an effective
potential expressed as V = VZ + VNC, where VZ denotes the commutative Zerilli potential,
and VNC represents the noncommutative correction. The explicit forms of these potentials are

VZ=
(r−R)

(
8Λ2(Λ+1)r3+12Λ2r2R+18ΛrR2+9R3)

r4(2Λr+3R)2 ,

VNC= λa

4r5(2Λr+3R)3

[
32Λ2(2Λ2+7

)
r5−8Λ2(2Λ(6Λ−13)+121)r4R

−12Λ(2Λ(15Λ−58)+59)r3R2−2(Λ(440Λ−741)+162)r2R3−3(316Λ−207)rR4−387R5
]
.

(3.43)
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Figure 3. Plot of the potential for R = 2 (M = 1) and ℓ = 2 for a wider range of r and V (r) is on
the left. Near-horizon region is shown on the right.

The potential V = VZ + VNC is illustrated in figure 3(a). Similar to the axial case,
the noncommutative structure of spacetime influences two significant characteristics of the
potential: its peak and zero. In the commutative scenario, the polar potential precisely
vanishes at the horizon. However, in the noncommutative case, the polar potential either
vanishes slightly inside or outside the horizon, depending on the sign of the correction term.
This phenomenon, as discussed in the axial case, can be attributed to the fuzziness introduced
by noncommutativity around the black hole horizon. The behavior of the polar potential
around its peak is depicted in figure 3(b). Similar to the axial case, deviations observed around
the peak of the potential, at approximately r0 ≈ 1.5R, can be interpreted as Zeeman-like
splitting in case of pure r − φ noncommutativity (α = 0, β = 1 =⇒ λ = m). Contrasting
figure 1(b) with 3(b), we see that polar perturbations seem to alter the width of the potential
by a larger margin. The same goes for the height, although the difference is less prominent.

It is worth noting that a similar splitting of the potential and the corresponding QNM
spectrum was observed in [34, 35] in the context of NC charged scalar field probing a
background of the Reissner-Nordström black hole. This property reminiscent of Zeeman-like
splitting, along with a distinct peak around r0 ∼= 1.5R persists for higher multipoles as
well, as illustrated in figure 4. Additionally, figure 4 demonstrates that the shifting of the
potential near the horizon follows a consistent trend across all modes. Interestingly, zeros of
the potential (and the position of the peak) are translated oppositely relative to the axial
case. This is visible from the ordering of blue and red lines in figures 1(b) and 3(b).

4 Noncommutative corrections to quasinormal modes

In this section, we will employ semi-analytical methods to compute the quasinormal frequencies
of both noncommutative axial and polar perturbations. By analyzing the results of these
calculations, we aim to assess the stability of the black hole spacetime under perturbation
and how the presence of noncommutativity affects the QNM spectra.
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Figure 4. Plot of the polar NC potential for R = 2 (M = 1) and ℓ = 2, 3, 4.

4.1 The WKB method

One of the most elegant methods for calculating quasinormal modes in black hole perturbation
theory is the WKB (Jeffreys-Wentzel-Kramers-Brillouin) approximation. This method was
initially introduced in the context of black hole scattering theory by Schutz and Will [26].
The key concept in this approach involves matching the solutions at spatial infinity and
the black hole horizon using a Taylor expansion in the vicinity of the maximum of the
potential barrier through the two turning points. Here, the Schrödinger-like equation is
reformulated into the form,

d2Ψ
dx2 +Q(x)Ψ(x) = 0, (4.1)

where x = r∗ and Q(x) = ω2 − V . Since −Qmax(x) ≪ Q(±∞), the solution near the peak
of the potential can be approximated by the Taylor series,

Q(x) = Q0 +
1
2Q

′′
0(x− x0)2 +O((x− x0)3), (4.2)

where x0 is the location of the maximum with the function value Q0 = Q(x0) and second
derivative Q′′

0 is with respect to x at the peak. The Q′
0 term does not appear in the series

expansion as it vanishes at the maximum. Substituting (4.2) into (4.1) results in a parabolic
cylinder differential equation, known as the Weber equation. At first order, the solution to
this equation reads (in terms of the effective potential),

ω2 = V0 − i
√
−2V ′′

0

(
n+ 1

2

)
. (4.3)

Here, n denotes the harmonic or overtone number. While the analytical expression for the
quasinormal mode frequency is derived, obtaining an analytical expression for x0 or the
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tortoise coordinate at the peak of the potential is not always feasible. Thus, the WKB
approach is considered semi-analytical in this regard.

To enhance precision, the WKB method has been extended to the third order by Iyer
and Will [36]. The third-order formula for QNM frequencies is given by

ω2 =
[
V0 +

√
−2V ′′

0 Λ1

]
− iν

√
−2V ′′

0 [1 + Λ2], (4.4)

where

Λ1 = 1√
−2V ′′

0

1
8

(
V

(4)
0
V ′′

0

)(1
4 + ν2

)
− 1

288

(
V

(3)
0
V ′′

0

)2 (
7 + 60ν2

) , (4.5a)

Λ2 = − 1
2V ′′

0

 5
6912

(
V

(3)
0
V ′′

0

)4 (
77 + 188ν2

)
− 1

384
V

(3)2
0 V

(4)
0

V ′′3
0

(
51 + 100ν2

)
(4.5b)

+ 1
2304

(
V

(4)
0
V ′′

0

)2 (
67 + 68ν2

)
+ 1

288
V

(3)
0 V

(5)
0

V ′′2
0

(
19 + 28ν2

)
− 1
288

V
(6)

0
V ′′

0

(
5 + 4ν2

)]
,

with ν = n + 1/2, and V
(j)

0 denoting the jth derivative of the potential evaluated at its
peak in tortoise coordinate. Subsequently, the method was extended to the sixth order
by Konoplya [37], resulting in even greater accuracy. The expression for QNM frequencies
is given by,

i(ω2 − V0)√
−2V ′′

0

−
6∑

i=2
Λ̃i = n+ 1

2 . (4.6)

The higher-order corrections Λ̃i involve complicated functions of derivatives of potential up
to V (12)

0 , with explicit expressions available in [37]. Furthermore, the WKB method has been
developed up to the thirteenth order by Matyjasek and Opala [38]. However, it is noteworthy
that higher-order WKB does not always lead to superior approximations due to the fact that
WKB expansion is an asymptotic series [39]. The optimal order for minimizing the error in
QNM frequency calculation depends on the specific effective potential. The error is estimated
by comparing the solution of two consecutive orders using the formula [39]

∆k = |ωk+1 − ωk−1|
2 , (4.7)

where for the sake of comparison, one usually takes fundamental mode frequency. To obtain
the numerical values for the frequencies for the noncommutative potentials (3.20) and (3.43),
we must specify the exact kind of twist. This amounts to specifying constants α, β and a in
the equation (3.8). WKB analysis turns out to be simpler for the twist α = 0, β = 1, to which
we stick from now on. In that case, the only nontrivial commutator is the one between the
radial and angular coordinate, [φ ⋆, r] = ia and all occurences of λa in the previous section can
be replaced by am as per (3.10). This noncommutative space was analyzed in [23], where the
NC-corrected axial potential was presented, and the axial QNM frequencies were calculated
using the third-order WKB method. In that work, it was referred to as ¯q-space, where ¯q
plays the role of noncommutativity parameter a in the case of pure r − φ twist.
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Figure 5. The comparison between the noncommutative correction ∆c and the relative error ∆k in
the optimal WKB order is illustrated. Left: Axial case. Right: Polar case.

For commutative axial and polar potentials, the sixth-order WKB approximation usually
yields the optimal result for the ℓ = 2 mode (see table 6 in appendix C). However, noncommu-
tative QNM frequencies are optimized for different WKB orders (see table 7–23). We select
the optimal frequencies for each am value (see table 1–2). In order to gauge the relative
error inherent in the WKB method compared to the noncommutative (NC) correction, we
introduce the absolute NC correction, denoted as ∆c,

∆c = |ωNC − ωC |, (4.8)

where again ω refers to fundamental mode frequency. This absolute NC correction has been
computed across a spectrum of am values for both axial and polar cases and is compared
with the relative error ∆k inherent in the optimized WKB order, as shown in figure 5. It is
evident that for ℓ = 3 (and similarly for higher ℓ values), the error is negligible compared to
the ℓ = 2 case. The error ∆k becomes comparable with the NC correction ∆c after a certain
value of am the positive/negative side of am axis for axial/polar modes is reached, with
this claim being valid for both types of perturbation and all angular momentum channels
analyzed. Within the domain of am where the WKB approximation proves effective, the
impact of the noncommutative parameter on QNM frequencies surpasses the error in the
WKB approximation. However, for positive am values where the WKB analysis breaks
down, we can obtain the NC correction using other semi-analytic methods. We calculate
the QNM frequencies using the Pöschl-Teller and Rosen-Morse methods in the next section,
thereby validating the corrections obtained from the WKB approach within the admissible
domain of am.

4.2 Pöschl-Teller and Rosen-Morse method

The method of deriving quasinormal modes from the knowledge of bound states of the inverted
potential has been widely utilized in black hole perturbation studies. The Pöschl-Teller
potential was originally introduced as a solvable potential for which the Schrödinger equation
has exact solutions [40]. This method has been adapted for black holes by approximating the
more complex black hole potentials with the Pöschl-Teller potential [41–44]. This approach
involves approximating the effective potential in the Schrödinger-like equation, derived from
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a m WKB Order Pöschl-Teller Rosen-Morse

ℓ = 2
-0.2 0.3775(61)− 0.0883(97)i 6 0.382049− 0.090320i 0.38335− 0.08924i
-0.1 0.3755(14)− 0.0887(70)i 6 0.380114− 0.090466i 0.38057− 0.09008i
-0.01 0.3738(07)− 0.0888(92)i 6 0.378454− 0.090521i 0.37855− 0.09044i
-0.001 0.3736(38)− 0.0888(91)i 6 0.378294− 0.090520i 0.37838− 0.09044i
0 0.3736(19)− 0.0888(91)i 6 0.378276− 0.090520i 0.37837− 0.09044i

0.001 0.3736(01)− 0.0888(91)i 6 0.378258− 0.090520i 0.37838− 0.09042i
0.01 0.3734(33)− 0.0888(88)i 6 0.378099− 0.090518i 0.37836− 0.09030i
0.1 0.3715(87)− 0.0889(38)i 4 0.376562− 0.090455i 0.37756− 0.08961i
0.2 0.36(8345)− 0.08(8195)i 4 0.375007− 0.090238i 0.37611− 0.08930i

ℓ = 3
-0.2 0.602768− 0.092381i 8 0.605558− 0.093206i 0.60880− 0.09161i
-0.1 0.600920− 0.092632i 10 0.603847− 0.093344i 0.60489− 0.09283i
-0.01 0.599573− 0.092706i 8 0.602548− 0.093361i 0.60271− 0.09328i
-0.001 0.599456− 0.092703i 8 0.602432− 0.093358i 0.60257− 0.09329i
0 0.599443− 0.092703i 8 0.602420− 0.093358i 0.60257− 0.09328i

0.001 0.599431− 0.092702i 8 0.602407− 0.093358i 0.60259− 0.09327i
0.01 0.599318− 0.092696i 12 0.602295− 0.093355i 0.60272− 0.09315i
0.1 0.5983(44)− 0.0924(52)i 4 0.601353− 0.093234i 0.60302− 0.09241i
0.2 0.59(6979)− 0.09(1480)i 4 0.600761− 0.092919i 0.60246− 0.09208i

ℓ = 4
-0.2 0.812255− 0.093889i 11 0.814338− 0.094360i 0.81927− 0.09259i
-0.1 0.810458− 0.094097i 12 0.812664− 0.094503i 0.81421− 0.09394i
-0.01 0.809279− 0.094166i 12 0.811533− 0.094537i 0.81175− 0.09446i
-0.001 0.809188− 0.094164i 12 0.811442− 0.094535i 0.81163− 0.09447i
0 0.809178− 0.094164i 12 0.811433− 0.094535i 0.81163− 0.09446i

0.001 0.809169− 0.094164i 12 0.811423− 0.094535i 0.81167− 0.09445i
0.01 0.809084− 0.094159i 12 0.811338− 0.094533i 0.81191− 0.09433i
0.1 0.8085(45)− 0.0939(66)i 4 0.810770− 0.094427i 0.81302− 0.09361i
0.2 0.808(397)− 0.093(169)i 4 0.810860− 0.094128i 0.81311− 0.09332i

Table 1. Table of NC axial QNMs for n = 0, M = 1 (R = 2), and ℓ = 2, 3, 4, computed using the
WKB higher-order method, Pöschl-Teller (PT) method, and Rosen-Morse method. Order stands for
the optimal WKB order. The estimated error of the WKB method is provided in parentheses.

the radial perturbation equation, with the well-known Pöschl-Teller potential. Consequently,
the master wave equation can be rewritten as

∂Ψ
∂r2

∗
+
[
ω2 − V0

cosh2 α(r∗ − r̄∗)

]
Ψ = 0, (4.9)

where

α2 = − V ′′
0

2V0
(4.10)
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a m WKB Order Pöschl-Teller Rosen-Morse

ℓ = 2
-0.2 0.3(80198)− 0.0(83646)i 3 0.382642− 0.097531i 0.38379− 0.09648i
-0.1 0.37(4735)− 0.09(1148)i 4 0.380292− 0.093609i 0.38178− 0.09230i
-0.01 0.3738(64)− 0.0892(07)i 5 0.378475− 0.090866i 0.37890− 0.09050i
-0.001 0.3736(58)− 0.0889(67)i 5 0.378308− 0.090622i 0.37845− 0.09050i
0 0.3736(36)− 0.0889(40)i 5 0.378290− 0.090595i 0.37839− 0.09051i
0.001 0.3736(13)− 0.0889(14)i 5 0.378272− 0.090567i 0.37836− 0.09049i
0.01 0.3734(13)− 0.0886(75)i 5 0.378109− 0.090322i 0.37821− 0.09023i
0.1 0.3718(88)− 0.0861(75)i 6 0.376612− 0.088102i 0.37741− 0.08744i
0.2 0.3711(29)− 0.0836(58)i 7 0.375215− 0.085959i 0.37794− 0.08379i

ℓ = 3
-0.2 0.60(4367)− 0.09(2871)i 3 0.605859− 0.096241i 0.60775− 0.09528i
-0.1 0.600(941)− 0.093(756)i 4 0.603790− 0.094691i 0.60594− 0.09361i
-0.01 0.599571− 0.092828i 9 0.602530− 0.093487i 0.60308− 0.09321i
-0.001 0.599456− 0.092716i 10 0.602430− 0.093377i 0.60263− 0.09328i
0 0.599443− 0.092703i 10 0.602419− 0.093365i 0.60257− 0.09329i
0.001 0.599431− 0.092690i 10 0.602408− 0.093353i 0.60255− 0.09328i
0.01 0.599324− 0.092577i 10 0.602314− 0.093235i 0.60248− 0.09315i
0.1 0.598589− 0.091402i 9 0.601588− 0.092150i 0.60286− 0.09153i
0.2 0.598402− 0.090106i 8 0.601184− 0.091006i 0.60541− 0.08897i

ℓ = 4
-0.2 0.813(422)− 0.094(494)i 3 0.814702− 0.096084i 0.81716− 0.09519i
-0.1 0.8104(89)− 0.0947(78)i 4 0.812601− 0.095290i 0.81527− 0.09432i
-0.01 0.809269− 0.094238i 10 0.811514− 0.094611i 0.81218− 0.09437i
-0.001 0.809187− 0.094171i 12 0.811440− 0.094548i 0.81170− 0.09445i
0 0.809178− 0.094164i 12 0.811432− 0.094541i 0.81163− 0.09447i
0.001 0.809170− 0.094156i 12 0.811424− 0.094534i 0.81161− 0.09447i
0.01 0.809097− 0.094088i 12 0.811357− 0.094463i 0.81158− 0.09438i
0.1 0.808733− 0.093367i 11 0.810973− 0.093790i 0.81270− 0.09317i
0.2 0.808973− 0.092531i 10 0.811068− 0.093024i 0.81676− 0.09100i

Table 2. Table of NC polar QNMs for n = 0, M = 1, and ℓ = 2, 3, 4, calculated using the WKB
higher-order method, Pöschl-Teller (PT) method, and Rosen-Morse method. Order stands for the
optimal WKB order. The estimated error of the WKB method is provided in parentheses.

and r̄∗ denotes the point where the effective potential reaches its maximum value in tortoise
coordinate, and V0 = V (r̄∗) is the value of the potential at this point. A semi-analytical form
for the quasinormal mode (QNM) frequencies can be obtained by transforming equation (4.9)
into hypergeometric form and analyzing the asymptotic behavior of the solutions [45]. The
formula for the frequencies of QNMs is given by

ω = ±

√
V0 −

α2

4 − iα

(
n+ 1

2

)
. (4.11)
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From the above expression, it is clear that both the real and imaginary parts depend on V0
and V ′′

0 , similar to the WKB method. However, only the imaginary part of the quasinormal
mode (QNM) is influenced by the overtone number n. Thus, this method is not recommended
for determining the real part of QNM, except in specific cases such as the eikonal limit
(ℓ → ∞) or for the fundamental mode (n = 0) [45].

The effectiveness of this approach in approximating the effective potential can be enhanced
by selecting a more accurate potential model to describe the black hole potential (see [46]
for an extensive list of potential options for QNM calculations). Here, we opt for a specific
potential known as the Rosen-Morse potential [9, 47], which introduces a correction term to
add asymmetry to the Pöschl-Teller potential, resulting in a better correlation with the black
hole effective potential. The Rosen-Morse potential function is defined as [48]

VRM = V0

cosh2 α(r∗ − r̄∗)
+ V1 tanhα(r∗ − r̄∗), (4.12)

where V1 adds asymmetry to the potential. By substituting this into the master wave
equation and employing the appropriate boundary conditions, the resulting QNM frequencies
are given by

√
ω2 + V1 +

√
ω2 − V1

2 = ±

√
V0 −

α2

4 − iα

(
n+ 1

2

)
. (4.13)

When V1 = 0 this reduces to (4.11). The obtained QNM frequencies using the Pöschl-Teller
and Rosen-Morse potentials are presented alongside the WKB method in table 1 and table 2.
These methods supplement our findings on noncommutative corrections calculated using
the WKB method.

5 Axial vs polar perturbations — violation of classical isospectrality

An important characteristic of quasinormal modes in classical general relativity is their
isospectrality. For the commutative Schwarzschild black hole, axial and polar mode pertur-
bations share identical spectra, despite being described by different master equations. This
characteristic also extends to Reissner-Nordström, Kerr, and Kerr-Newman black holes (to
linear order in rotation) in the commutative case [49, 50]. Chandrasekhar and Detweiler
demonstrated for the commutative Schwarzschild case that the master equations of axial
and polar perturbations are related by a specific transformation [22]. This transformation
was later identified as a subclass of the Darboux transformation [51] (see refs. [52–54] also).
Isospectrality remains valid even in spacetimes including a cosmological constant for uncharged
and non-rotating black holes [55]. However, the physical origin of this property remains
unclear, and it is uncertain whether isospectrality is a generic feature or a mere coincidence
for classical black holes. Efforts to understand isospectrality in black hole perturbation remain
intriguing, particularly since this property holds only for very specific black hole spacetimes.

Notably, in classical general relativity, there are cases where isospectrality is broken in
black hole perturbations [56–59]. Isospectral breaking is also observed in beyond general
relativity theories [60–67]. In fact, parameterization approaches have shown that the isospec-
tral property between even- and odd-parity quasinormal mode spectra is quite fragile [68].
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Therefore, any observational indication of isospectrality breaking would strongly suggest new
physics beyond general relativity [69]. From a quantum gravity perspective, it has even been
suggested that isospectral breaking could potentially signal quantum gravity observables
in current experiments [70].

Classically, the isospectrality can be understood as follows. The master equations are
of the form

d2ψ

dr∗
+
(
ω2 − V±(r)

)
ψ = 0,

where + and − correspond to the polar (even) and axial (odd) perturbations respectively,
governed by the commutative Zerilli and Regge-Wheeler potentials,

V+(r) = VZ(r) =
(r −R)

(
8Λ2(Λ + 1)r3 + 12Λ2r2R+ 18ΛrR2 + 9R3)

r4(2Λr + 3R)2 ,

V−(r) = VRW (r) = (r −R)(2r(1 + Λ)− 3R)
r4 ,

with the unique tortoise coordinate given by

r∗ = r +R log r −R

R
.

The criterion to test whether two potentials are equivalent via the Darboux transformation
is given by [51]

d
dr∗

(V+ + V−)
V+ − V−

=
∫
dr∗(V+ − V−),

where the potentials should be expressed using the standard tortoise coordinate r∗ = r +
R log r−R

r . This condition is satisfied for the V+ and V− in the commutative case. One of the
requirements of the Darboux transformation is that initially, neither the polar nor the axial
equations contain first derivative terms and that they have the same tortoise coordinate. In
the noncommutative case, tortoise coordinates r̂∗ differ for axial and polar modes as can be
seen from equations (3.18) and (3.42). Trying to express one tortoise coordinate in terms
of the other in any of the two equations (3.19) and (3.38) spoils their Schrödinger form by
introducing a first derivative term in one of the equations. It is therefore impossible to relate
them through the Darboux transformation since initial requirements cannot be satisfied,
hinting at breaking of the classical isospectrality. The isospectrality violation is evident from
the numerical values of QNM frequencies. In the commutative case (am = 0), the QNM
frequencies are identical for both the axial and polar cases (table 3).

As we introduce noncommutativity with a small value, such as am = −0.001, the breaking
of isospectrality becomes apparent in higher ℓ modes 4.

As we further increase the strength of noncommutativity, for instance to am = −0.01, the
breaking of isospectrality becomes more pronounced, being manifest even in the fundamental
mode ℓ = 2 (see table 5).

The increasing effect of isospectral breaking continues to appear for all negative values
of am, and it also becomes evident on the positive side of am. We assess the degree of
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ℓ = 2 ℓ = 3 ℓ = 4

Axial 0.3736(19)− 0.0888(91)i 0.599443− 0.092703i 0.809178− 0.094164i
Polar 0.3736(36)− 0.0889(40)i 0.599443− 0.092703i 0.809178− 0.094164i

Table 3. QNM frequencies calculated using the WKB method for commutative case (am = 0) with
n = 0, M = 1 (R = 2).

ℓ = 2 ℓ = 3 ℓ = 4

Axial 0.3736(38)− 0.0888(91)i 0.599456− 0.092703i 0.809188− 0.094164i
Polar 0.3736(58)− 0.0889(67)i 0.599456− 0.092716i 0.809187− 0.094171i

Table 4. QNM frequencies calculated using the WKB method for the noncommutative case am =
−0.001 with n = 0, M = 1 (R = 2).

ℓ = 2 ℓ = 3 ℓ = 4

Axial 0.3738(07)− 0.0888(92)i 0.599573− 0.092706i 0.809279− 0.094166i
Polar 0.3738(64)− 0.0892(07)i 0.599571− 0.092828i 0.809269− 0.094238i

Table 5. QNM frequencies calculated using the WKB method for the noncommutative case am =
−0.01 with n = 0, M = 1 (R = 2).

isospectral breaking as follows [70],

∆ωR,I = 100×
ωaxial

R,I − ωpolar
R,I

ωpolar
R,I

. (5.1)

The results are shown in figure 6. Firstly, it is visible that the real part of the QNM
frequency is affected similarly in both axial and polar cases, with deviations appearing at
larger parameter values where the precision of the WKB method starts to decrease. Secondly,
the negative imaginary part of QNM, ωI , is influenced by am in the reverse order compared
to the real part. However, it should be noted that in the axial case, ωI is less influenced
by noncommutativity. These observations imply that the effects of noncommutativity on
oscillation frequencies and damping times differ in magnitude for axial and polar modes. The
∆ωR,I depicted in the figure shows that the imaginary part experiences a more pronounced
isospectral breaking effect than the real part.

The fact that polar modes are significantly influenced by the noncommutativity stemming
from the twist defined in (3.8) can be qualitatively analyzed as follows. Axial perturbations,
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Figure 6. The figures depict the breaking of the isospectrality caused by noncommutativity. The left
panel corresponds to ℓ = 2, while the right panel corresponds to ℓ = 3. In the top row, the variation
of the real part of the QNM (ωR) with am is shown. In the middle row, the variation of the imaginary
part of the QNM (ωI) with am is depicted. In the bottom row, the relative deviation between the
two modes, ∆ωR,I , is illustrated. The parameters fixed in these plots are n = 0, and M = 1 (R = 2).
In each case, the QNM values corresponding to the optimal WKB order are chosen.
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which parameterize the off-diagonal components of the perturbation matrix, describe the
twisting of spacetime around the black hole. These typically represent the gravitational
waves that could be generated by the rotating or spiraling motion of matter in the vicinity
of the black hole.

In contrast, polar perturbations impact the scalar and spherical components of the metric,
modifying distances while preserving the overall spherical symmetry. These perturbations
include changes in the radial and temporal components of the metric, representing the
expansion and contraction of spacetime, or the ‘breathing-like’ modes of the black hole.

Given that polar perturbations predominantly relate to the radial direction, and consider-
ing that it is the radial coordinate that is quantized by the field X = ∂r in the twist (3.8), it
is understandable why polar perturbations are more sensitive to the coordinate quantization
induced by the twist.

Polar modes exhibit both higher and lower imaginary QNM frequencies compared to
axial modes, as seen in figure 6. Specifically, for negative values of am, the polar modes have
larger imaginary frequencies (implying stronger damping), while for positive values of am,
they have smaller imaginary frequencies (weaker damping). This could lead to a more striking
statistical data output on the polar modes side recorded at the gravitational wave detector,
provided that the detector can distinguish between the polar and axial modes. Similarly, if
the detector is able to distinguish azimuthal numbers of the waves and measure that m and
−m have different damping times, this could hint at r − φ quantization.

Expressions for the tortoise coordinate and effective potential become similar for non-
commutative axial and polar modes when ℓ → ∞:

r̂∗ = r +R log r −R

R
± λa

2
R

r −R
, V̂ (r) = ℓ2(r −R)

r3 ± λa

2
ℓ2(3R− 2r)

r4 , (5.2)

where + corresponds to axial and − to polar perturbations. A natural question to ask is
whether the spectrum corresponding to these potentials differs from the commutative one.
Consider the limit a → 0 of the expressions above:

r∗ = r +R log r −R

R
, V (r) = ℓ2(r −R)

r3 . (5.3)

Replacing r → r ± λa/2 here and expanding up to first order in a turns the r.h.s. parts of
these relations into r.h.s. parts in the equations (5.2). Consequentially, solutions of (5.2) can
be obtained as translated solutions of (5.3), provided boundary conditions are translated
accordingly. Therefore the noncommutative QNM spectrum, up to the first order in a,
becomes identical to the commutative one in the eikonal limit.

The physical significance of breaking isospectrality is profound. In the context of
gravitational wave observations, differing QNM frequencies can serve as a tool to distinguish
between different gravitational theories. For instance, if future gravitational wave detections
from black hole mergers reveal discrepancies in the expected QNM frequencies between axial
and polar modes, it could indicate the presence of new physics beyond general relativity. Such
observations may provide empirical tests of modified theories of gravity and offer insights into
the fundamental nature of spacetime. Consequently, experimental bounds on isospectrality
are directly tied to a possibility of deviating from general relativity. Detecting any such
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deviations in gravitational wave observations would provide critical information about the
underlying quantum gravity effects, thus paving the way for new theoretical developments
and a deeper understanding of the universe’s structure.

6 Outlook and discussion

A generic black hole can be described completely by a small number of intrinsic parameters
such as the mass, charge and spin of a black hole and in the case of somewhat more general
theoretical framework such as that of beyond Einsteinian gravity, this description may include
some additional parameters characterizing the theory.

When disturbed, a black hole tends to go back to its equilibrium characterized by a
nonperturbed black hole solution. In turn, a response of a black hole to external perturbation is
characterized by a discrete set of quasinormal mode frequencies which can also be described by
a small set of intrinsic parameters of the theory. This turns QNMs into preferable instrument
for accomplishing at least two important tasks: to reveal the information about parameters
of the black hole in the ringdown phase resulting from a binary black hole merger [71] and to
test theories of gravity beyond Einstein, as these vibration frequencies exhibit a universal
part of the gravitational wave signals and above all can be measured [71, 72].

In this paper, we have examined a specific type of Einstein gravity modification based
on the framework of noncommutative geometry and quantization methods implemented
by the Drinfeld twist. This approach takes into account that the geometry of spacetime
acquires a granular structure at the Planck scale distances and is particularly well suited
for implementing this feature into a formalism.

The analysis has been made in a bottom-up approach, implying that the equation of
motion is obtained by carefully revising the basic notions of differential geometry, such as
the vector field, Lie derivative, covariant derivative, etc, rather than from some anticipated
overruling/paramount action principle. In particular, a deformation quantization by a
Drinfeld twist operator has been applied to a linearized gravitational perturbation theory.
After developing a general perturbation theory up to linear order in both the deformation
parameter and metric perturbation, we have applied it to a fixed Schwarzschild background in
order to analyze the corresponding axial as well as polar type of gravitational perturbations.
In this way, we have derived the noncommutative generalizations of the Regge-Wheeler and
Zerilli potentials, respectively. It should be noted that equations leading up to effective
potential are valid for two sources of noncommutativity (and their linear combinations): r−φ
and r − t. The analysis of the spectrum has been carried out only for the r − φ case.

The Abelian Drinfeld twist results in noncommutativity of Moyal type, which features
simplicity, generality, and versatility at low-energy regimes, where it reflects general features
of NC spacetime. Specifically, the semi-Killing form of the twist introduced non-trivial NC
corrections in the perturbations around Schwarzschild spacetime while ensuring separability
of equations. Alternative coordinate choices, involving non-constant functions, can still
be expressed in a Moyal form when suitably adapted, thus emphasizing the versatility of
Moyal twist-based approaches. Ultimately, our selected twist demonstrates explicitly how
noncommutativity could modify gravitational wave signals, providing a specific, testable
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prediction and an important starting point for future experimental and theoretical inquiries
into NC gravitational physics.

For both potentials QNM spectrum has been calculated to a high precision in WKB,
which has enabled us to investigate possible isospectrality breaking. Namely, isospectrality
between even- and odd-parity perturbations of a Schwarzschild black hole and some more
general geometries is a well-known property of classical general relativity. We have shown
that this property becomes violated when the quantum structure of spacetime is assumed.
This is consistent with other findings in the literature that were inferred for some effective
models originating in loop quantum gravity [66, 73, 74]. Interestingly however, isospectrality
appears to be restored in the eikonal limit of large angular momentum.

A deeper insight into the spectrum and nature of the noncommutative metric perturba-
tions can be gained by employing more robust methods, such as Leaver’s continued fraction
method or direct integration, and by considering the time profile of the perturbations. It
has been recently shown that even small perturbations to the spectrum can lead to instabil-
ity [75]. We plan to address this in a future work. Preliminary steps have already been taken
in [76], where we showed that another radial coordinate can be used to make the behaviour
of the tortoise coordinate and effective potential more similar to commutative case in the
near-horizon region, which is a necessary starting point for these more advanced methods.

The way how a black hole responds to external perturbation is of essential importance,
as these response patterns influence the gravitational wave emission. As a consequence, they
are generally measurable. In this paper, we have studied the linear response of a black hole
to small perturbations, as described by the quasinormal mode frequencies, which describe
how a black hole relaxes back to the Schwarzschild solution upon being disturbed.

Another type of linear response that would be of interest to study is the linear response of
a black hole to a long-wavelength tidal gravitational field. This type of response is expressed
in terms of tidal Love numbers [77], which outline the feedback of a rigid body to an external
deformation and thus represent a measure of the rigidity of the object being studied. In
principle, the feedback of the black hole to an external field could also be studied in case the
deformation is caused by the background electromagnetic and scalar field profiles.

As the gravitational wave signal coming from an orbiting binary system depends on the
tidal Love numbers7 of the constituents, the latter may be inferred by measuring gravitational
waves during the inspiral phase [78]. In our case it would be interesting to see how quantum
spacetime deformation affects the tidal Love numbers of the Schwarschild black hole [79].
Another point of interest would be to extend the results for the QNM spectra obtained here
to Kerr black holes, which we plan to address in an upcoming work.
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A Zerilli gauge

The polar perturbations of a static spherically symmetric black hole are parameterized
by seven families of functions: Hℓm

0 , Hℓm
1 , Hℓm

2 , αℓm, βℓm, Kℓm, and Gℓm, dependent on
the variables (r, t) [18, 32]. The non-zero components of the metric perturbation hµν are
expressed as follows:

htt = A(r)
∑
ℓ,m

Hℓm
0 (t, r)Yℓm(θ, φ), htr =

∑
ℓ,m

Hℓm
1 (t, r)Yℓm(θ, φ), (A.1)

hrr = 1
A(r)

∑
ℓ,m

Hℓm
2 (t, r)Yℓm(θ, φ), (A.2)

hta =
∑
ℓ,m

βℓm(t, r)∂aYℓm(θ, φ), hra =
∑
ℓ,m

αℓm(t, r)∂aYℓm(θ, φ), (A.3)

hab =
∑
ℓ,m

Kℓm(t, r)gabYℓm(θ, φ) +
∑
ℓ,m

Gℓm(t, r)DaDbYℓm(θ, φ) , (A.4)

where A(r) = 1 − R/r. The indices a and b take values of angular coordinates θ and φ.
Here, Da is the 2-dimensional covariant derivative associated with the metric of the 2-sphere
dθ2 + sin2 θdφ2. The explicit form of the angular part of the metric hµν is given by

hθθ =
∑
ℓ,m

Kℓm(t,r)Yℓm(θ,φ)+
∑
ℓ,m

Gℓm(t,r)∂2
θYℓm(θ,φ) , (A.5)

hθφ =hφθ =−
∑
ℓ,m

Gℓm(t,r)cotanθ∂φYℓm(θ,φ) , (A.6)

hφφ =
∑
ℓ,m

sin2 θKℓm(t,r)Yℓm(θ,φ)+
∑
ℓ,m

Gℓm(t,r)
(
∂2

φ+sinθ cosθ∂θ

)
Yℓm(θ,φ) . (A.7)

Due to the spacetime diffeomorphism invariance of the theory, the parametrization of per-
turbations presented above is redundant and can be simplified through gauge fixing. At the
linear level, an infinitesimal change of coordinates, xµ → xµ + ξµ, induces the transformation:

hµν → hµν +∇µξν +∇νξµ. (A.8)

In the polar sector, one can choose the gauge parameter ξ in such a way that three families of
functions in (A.1)–(A.4), namely Gℓm, αℓm, and βℓm, are set to zero. This particular gauge is
known as the Zerilli gauge. In the Zerilli gauge, the polar perturbations can be parametrized
by the remaining four families of functions, namely Hℓm

0 , Hℓm
1 , Hℓm

2 , and Kℓm, as follows:

htt = A(r)
∑
ℓ,m

Hℓm
0 (t, r)Yℓm(θ, φ), htr =

∑
ℓ,m

Hℓm
1 (t, r)Yℓm(θ, φ), (A.9)

hrr = 1
A(r)

∑
ℓ,m

Hℓm
2 (t, r)Yℓm(θ, φ), hab =

∑
ℓ,m

Kℓm(t, r)gabYℓm(θ, φ). (A.10)

B Coefficients of transformation

In this appendix we present the coefficients {f(r), g(r), h(r), l(r)} and {f̃(r), g̃(r), h̃(r), l̃(r)}
that constitute the transformation equation (3.36). Together with the equation (3.42), the
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field redefinition satisfies the constraints outlined in (3.40). The functions appearing in
eq. (3.41) are given by

g(r) =1,

f(r) =2Λ(Λ + 1)r2 + 3ΛrR+ 3R2

r2(2Λr + 3R) ,

l(r) = ir2

R− r
,

h(r) = 3iR
2Λr + 3R − i(2r − 3R)

2(r −R) ,

(B.1)

which are the commutative results derived in ref. [19] and the non commutative corrections are

f̃(r)= 1
72r3(2Λr+3R)2

{
36

r−R

(
−4Λ(Λ(3Λ+5)+5)r4+8(Λ−1)Λ(2Λ+1)r3R

+(Λ(44Λ+21)−36)r2R2+(32Λ+57)rR3−6R4
)
−
(
r(2Λr+3R)

(
4Λ(Λ+1)r2+6ΛrR+6R2))

×
[

9
(

8Λ2+34Λ+9
)

log(r−R)+4Λ(Λ+3)(10Λ−9)log(2Λr+3R)
(2Λ+3)2R

+ 36
2Λ+3

( 1
r−R

− 3
2Λr+3R

)
− (10Λ+9)log(r)

R
− 123

r

]}
,

l̃(r)=− ir

36(r−R)

{
−9
(

8Λ2+34Λ+9
)

r log(r−R)−4Λ(Λ+3)(10Λ−9)r log(2Λr+3R)
(2Λ+3)2R

− 36r

2Λ+3

( 1
r−R

− 3
2Λr+3R

)
+ (10Λ+9)r log(r)

R
+69

}
,

h̃(r)= i

72(2Λ+3)2rR(r−R)2(2Λr+3R)2

{(
2r(r−R)(2Λr+3R)

(
3R(2Λr+R)−4Λr2))

×
[
Λ
((
20Λ2+78Λ+99

)
log(r)−9(4Λ+17)log(r−R)−2(Λ+3)(10Λ−9)log(2Λr+3R)

)
+81tanh−1

(
R

2r−R

)]
+3(2Λ+3)R

[
8Λ(Λ(74Λ+183)+72)r4−4Λ(Λ(202Λ+69)−531)r3R

+12(Λ(Λ(22Λ−189)−213)+252)r2R2+9(2Λ(64Λ−89)−579)rR3+675(2Λ+3)R4

]}
,

g̃(r)=− 1
36

{
1

(2Λ+3)2R

[
9
(
8Λ2+34Λ+9

)
log(r−R)+4Λ(Λ+3)(10Λ−9)log(2Λr+3R)

]
+ 36

2Λ+3

( 1
r−R

− 3
2Λr+3R

)
− (10Λ+9)log(r)

R
− 123

r

}
.

(B.2)
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C Error estimation in WKB approximation method

In this appendix, we provide the details of error estimation in the QNM calculation using the
higher-order WKB method for both axial and polar modes. Error for the n-th order WKB is
equal to |ωn+1 − ωn−1|/2 [39, 80]. For the commutative case (am = 0) with ℓ = 2 we obtain

WKB order Axial QNM Error Polar QNM Error
12 0.373913− 0.090034i 0.001916 0.372655− 0.089826i 0.001727
11 0.374467− 0.089901i 0.00061 0.374128− 0.089473i 0.000855
10 0.374217− 0.088853i 0.000564 0.373945− 0.088705i 0.000451
9 0.373894− 0.088930i 0.000191 0.373519− 0.088806i 0.000254
8 0.373850− 0.088746i 0.00016 0.373578− 0.089057i 0.000151
7 0.373599− 0.088806i 0.000136 0.373730− 0.089020i 0.000093
6 0.373619− 0.088891i 0.000074 0.373707− 0.088923i 0.000062
5 0.373504− 0.088918i 0.000121 0.373636− 0.088940i 0.000038
4 0.373553− 0.089124i 0.000227 0.373640− 0.088959i 0.000323
3 0.373162− 0.089217i 0.002502 0.373012− 0.089109i 0.002622

Table 6. Error estimation in WKB method for commutative case (am = 0) with n = 0, M = 1(R = 2)
and ℓ = 2.

From the table we conclude that the optimal WKB order for axial case is 6 whereas
for the polar case, it is 5. The relative error between the WKB orders is of the order
10−4 in both cases.

For the noncommutative case am = −0.2 with ℓ = 2 we obtain

WKB order Axial QNM Error Polar QNM Error
12 0.375584− 0.089656i 0.001044
11 0.377608− 0.089176i 0.001082
10 0.377472− 0.088598i 0.000318
9 0.377693− 0.088546i 0.000157
8 0.377644− 0.088335i 0.000118
7 0.377552− 0.088356i 0.000052
6 0.377561− 0.088397i 0.000046
5 0.377482− 0.088416i 0.000118 0.432880− 0.288129i 0.437075
4 0.377533− 0.088632i 0.000242 0.336591− 0.094483i 0.10558
3 0.377115− 0.088730i 0.002582 0.380198− 0.083646i 0.023975

Table 7. Error estimation in WKB method for the noncommutative case am = −0.2 with n = 0,
M = 1 (R = 2) and ℓ = 2. Orders for which the error exceeded the obtained value were omitted.

From the table we conclude that the optimal WKB order for the axial case is 6, whereas
for the polar case it is 3. The relative error between the WKB orders is of the order of
10−4 in axial and 10−1 for the polar case. We observed that the higher-order WKB method
breaks down after reaching certain orders in the polar case. This phenomenon appears to be
a generic feature, particularly noticeable for higher (negative) values of the noncommutative
parameter am in the polar case.
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For the noncommutative case am = −0.1 with ℓ = 2 we obtain

WKB order Axial QNM Error Polar QNM Error
12 0.375160− 0.090027i 0.00085
11 0.376112− 0.089799i 0.000666
10 0.375903− 0.088921i 0.000457
9 0.375766− 0.088954i 0.000149
8 0.375705− 0.088699i 0.000165
7 0.375509− 0.088745i 0.000102 0.380796− 0.032964i 0.198099
6 0.375514− 0.088770i 0.000053 0.390405− 0.092178i 0.031484
5 0.375414− 0.088793i 0.000105 0.375878− 0.095740i 0.007852
4 0.375456− 0.088970i 0.00022 0.374735− 0.091148i 0.002431
3 0.375066− 0.089063i 0.002525 0.375851− 0.090878i 0.003284

Table 8. Error estimation in WKB method for the noncommutative case am = −0.1 with n = 0,
M = 1 (R = 2) and ℓ = 2. Orders for which the error exceeded the obtained value were omitted.

From the table we conclude that the optimal WKB order for axial case is 6, whereas
for the polar case it is 4. The relative error between the WKB orders is of the order 10−4

in axial and 10−2 for the polar case.

For the noncommutative case am = −0.01 with ℓ = 2 we obtain

WKB order Axial QNM Error Polar QNM Error
12 0.373989− 0.090051i 0.001792 0.372802− 0.090057i 0.001604
11 0.374621− 0.089899i 0.00062 0.374355− 0.089683i 0.000877
10 0.374375− 0.088872i 0.00055 0.374187− 0.088979i 0.000427
9 0.374078− 0.088942i 0.000181 0.373747− 0.089084i 0.000255
8 0.374033− 0.088753i 0.000159 0.373802− 0.089315i 0.000143
7 0.373788− 0.088811i 0.000133 0.373958− 0.089278i 0.000092
6 0.373807− 0.088892i 0.000072 0.373937− 0.089190i 0.000059
5 0.373691− 0.088919i 0.000119 0.373864− 0.089207i 0.000038
4 0.373739− 0.089121i 0.000228 0.373867− 0.089218i 0.000324
3 0.373345− 0.089215i 0.002501 0.373236− 0.089369i 0.002636

Table 9. Error estimation in WKB method for the noncommutative case am = −0.01 with n = 0,
M = 1 (R = 2) and ℓ = 2.

From the table we conclude that the optimal WKB order for the axial case is 6, whereas
for the polar case it is 5. The relative error between the WKB orders is of the order 10−4

in both cases.
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For the noncommutative case am = −0.001 with ℓ = 2 we obtain

WKB order Axial QNM Error Polar QNM Error
12 0.373920− 0.090036i 0.001903 0.372679− 0.089851i 0.001724
11 0.374482− 0.089901i 0.000611 0.374150− 0.089498i 0.000853
10 0.374233− 0.088855i 0.000562 0.373967− 0.088732i 0.00045
9 0.373912− 0.088931i 0.00019 0.373541− 0.088833i 0.000254
8 0.373868− 0.088747i 0.00016 0.373601− 0.089083i 0.00015
7 0.373618− 0.088806i 0.000136 0.373753− 0.089046i 0.000092
6 0.373638− 0.088891i 0.000073 0.373730− 0.088950i 0.000062
5 0.373523− 0.088919i 0.000121 0.373658− 0.088967i 0.000038
4 0.373572− 0.089124i 0.000227 0.373663− 0.088986i 0.000323
3 0.373180− 0.089217i 0.002501 0.373034− 0.089135i 0.002623

Table 10. Error estimation in WKB method for the noncommutative case am = −0.001 with n = 0,
M = 1 (R = 2) and ℓ = 2.

From the table we conclude that the optimal WKB order for the axial case is 6, whereas
for the polar case it is 5. The relative error between the WKB orders is of the order 10−4

in both cases.

For the noncommutative case am = 0.001 with ℓ = 2 we obtain

WKB order Axial QNM Error Polar QNM Error
12 0.373906− 0.090033i 0.001929 0.372631− 0.089801i 0.00173
11 0.374452− 0.089901i 0.000609 0.374107− 0.089447i 0.000856
10 0.374201− 0.088851i 0.000565 0.373924− 0.088678i 0.000452
9 0.373876− 0.088929i 0.000192 0.373496− 0.088780i 0.000255
8 0.373832− 0.088745i 0.00016 0.373556− 0.089030i 0.000151
7 0.373580− 0.088805i 0.000137 0.373708− 0.088994i 0.000093
6 0.373601− 0.088891i 0.000074 0.373685− 0.088897i 0.000062
5 0.373486− 0.088918i 0.000121 0.373613− 0.088914i 0.000038
4 0.373535− 0.089124i 0.000227 0.373618− 0.088933i 0.000322
3 0.373144− 0.089218i 0.002502 0.372991− 0.089083i 0.002621

Table 11. Error estimation in WKB method for the noncommutative case am = 0.001 with n = 0,
M = 1 (R = 2) and ℓ = 2.

From the table we conclude that the optimal WKB order for the axial case is 6, whereas
for the polar case it is 5. The relative error between the WKB orders is of the order 10−4

in both cases.
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For the noncommutative case am = 0.01 with ℓ = 2 we obtain

WKB order Axial QNM Error Polar QNM Error
12 0.373840− 0.090011i 0.002053 0.372415− 0.089579i 0.001753
11 0.374316− 0.089897i 0.0006 0.373918− 0.089218i 0.000872
10 0.374061− 0.088832i 0.000577 0.373731− 0.088434i 0.000461
9 0.373710− 0.088915i 0.000203 0.373296− 0.088537i 0.00026
8 0.373668− 0.088735i 0.000161 0.373357− 0.088795i 0.000155
7 0.373412− 0.088796i 0.00014 0.373513− 0.088758i 0.000095
6 0.373433− 0.088888i 0.000076 0.373489− 0.088657i 0.000065
5 0.373318− 0.088915i 0.000122 0.373413− 0.088675i 0.000041
4 0.373368− 0.089124i 0.000226 0.373418− 0.088696i 0.000318
3 0.372981− 0.089216i 0.002503 0.372801− 0.088843i 0.002613

Table 12. Error estimation in WKB method for the noncommutative case am = 0.01 with n = 0,
M = 1(R = 2) and ℓ = 2.

From the table we conclude that the optimal WKB order for the axial case is 6, whereas
for the polar case, it is 5. The relative error between the WKB orders is of the order
10−4 in both cases.

For the noncommutative case am = 0.1 with ℓ = 2 we obtain

WKB order Axial QNM Error Polar QNM Error
12 0.369608− 0.087506i 0.002105
11 0.372146− 0.086909i 0.0014
10 0.423526− 0.090112i 0.116517 0.371917− 0.085922i 0.000538
9 0.371627− 0.102697i 0.027848 0.371565− 0.086003i 0.000249
8 0.367866− 0.088119i 0.007773 0.371643− 0.086338i 0.000221
7 0.371941− 0.087153i 0.002263 0.371912− 0.086276i 0.000148
6 0.372337− 0.088826i 0.00094 0.371888− 0.086175i 0.00006
5 0.371603− 0.089001i 0.000379 0.371832− 0.086188i 0.000063
4 0.371587− 0.088938i 0.000085 0.371857− 0.086298i 0.000283
3 0.371435− 0.088975i 0.002594 0.371317− 0.086423i 0.002616

Table 13. Error estimation in WKB method for the noncommutative case am = 0.1 with n = 0,
M = 1 (R = 2) and ℓ = 2. Orders for which the error exceeded the obtained value were omitted.

From the table we conclude that the optimal WKB order for the axial case is 4, whereas
for the polar case it is 6. The relative error between the WKB orders is of the order 10−4

in both cases. We observe that the higher-order WKB method breaks down after reaching
certain orders for axial case. This phenomenon appears to be a generic feature, particularly
noticeable for higher (positive) values of the noncommutative parameter am for the axial case.
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For the noncommutative case am = 0.2 with ℓ = 2 we obtain

WKB order Axial QNM Error Polar QNM Error
12 0.371439− 0.084352i 0.001621
11 0.372232− 0.084172i 0.000735
10 0.371963− 0.082977i 0.00081
9 0.370930− 0.083209i 0.000582
8 0.371035− 0.083679i 0.000246
7 0.375044− 0.026050i 0.207929 0.371129− 0.083658i 0.000056
6 0.384557− 0.088907i 0.03337 0.371116− 0.083600i 0.000109
5 0.369412− 0.092552i 0.008114 0.370910− 0.083647i 0.000152
4 0.368345− 0.088195i 0.002378 0.370959− 0.083862i 0.000356
3 0.369909− 0.087822i 0.003151 0.370299− 0.084011i 0.002625

Table 14. Error estimation in WKB method for the noncommutative case am = 0.2 with n = 0,
M = 1 (R = 2) and ℓ = 2. Orders for which the error exceeded the obtained value were omitted.

From the table we conclude that the optimal WKB order for the axial case is 4, whereas
for the polar case it is 7. The relative error between the WKB orders is of the order 10−2

in the axial case and 10−4 in the polar case.

Now we consider the mode with ℓ = 3. For the commutative case (am = 0) we obtain

WKB order Axial QNM Error Polar QNM Error
12 0.599443− 0.092703i 2.21× 10−7 0.599443− 0.092703i 1.898× 10−7

11 0.599443− 0.092703i 3.92× 10−7 0.599443− 0.092703i 9.85× 10−8

10 0.599443− 0.092703i 4.45× 10−7 0.599443− 0.092703i 4.03× 10−8

9 0.599444− 0.092703i 3.59× 10−7 0.599443− 0.092703i 7.84× 10−8

8 0.599443− 0.092703i 1.94× 10−7 0.599443− 0.092703i 1.271× 10−7

7 0.599443− 0.092703i 2.38× 10−7 0.599443− 0.092703i 2.18× 10−7

6 0.599443− 0.092703i 1.081× 10−6 0.599443− 0.092703i 8.361× 10−7

5 0.599441− 0.092703i 1.347× 10−6 0.599442− 0.092703i 1.5108× 10−6

4 0.599441− 0.092701i 0.000089 0.599441− 0.092700i 0.000089
3 0.599265− 0.092728i 0.001116 0.599264− 0.092728i 0.001117

Table 15. Error estimation in WKB method for the commutative case (am = 0) with n = 0,
M = 1 (R = 2) and ℓ = 3.

From the table we conclude that the optimal WKB order for the axial case is 12, whereas
for the polar case it is 10. The relative error between the WKB orders is negligible, 10−7

for the axial case and 10−8 for the polar case.
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For the noncommutative case am = −0.2 with ℓ = 3 we obtain

WKB order Axial QNM Error Polar QNM Error
12 0.602760− 0.092375i 4.23× 10−6

11 0.602764− 0.092374i 2.93× 10−6

10 0.602765− 0.092379i 2.66× 10−6

9 0.602768− 0.092378i 2.11× 10−6

8 0.602768− 0.092381i 1.86× 10−6

7 0.602770− 0.092381i 2.61× 10−6

6 0.602771− 0.092385i 2.45× 10−6 0.649712− 0.099181i 0.114998
5 0.602772− 0.092385i 7.1× 10−6 0.601994− 0.107043i 0.025139
4 0.602774− 0.092399i 0.000089 0.599747− 0.093586i 0.007185
3 0.602598− 0.092426i 0.001166 0.604367− 0.092871i 0.003341

Table 16. Error estimation in WKB method for the noncommutative case am = −0.2 with n = 0,
M = 1 (R = 2) and ℓ = 3.

From the table we conclude that the optimal WKB order is 8 for both the axial case
and 3 for the polar case. The relative error between the WKB orders is of the order 10−6

in axial case and 10−2 in polar case.

For the noncommutative case am = −0.1 with ℓ = 3 we obtain

WKB order Axial QNM Error Polar QNM Error
12 0.600921− 0.092632i 1.226× 10−6

11 0.600920− 0.092633i 9.68× 10−7 0.637566 + 0.066313i 0.502846
10 0.600920− 0.092632i 5.79× 10−7 0.641747− 0.098722i 0.088089
9 0.600920− 0.092631i 8.59× 10−7 0.599441− 0.105690i 0.022373
8 0.600920− 0.092630i 9.28× 10−7 0.597353− 0.093123i 0.006679
7 0.600921− 0.092630i 8.03× 10−7 0.601463− 0.092486i 0.002223
6 0.600920− 0.092628i 9.56× 10−7 0.601704− 0.094037i 0.000862
5 0.600922− 0.092628i 6.71× 10−7 0.601002− 0.094147i 0.000406
4 0.600922− 0.092628i 0.000084 0.600941− 0.093756i 0.000203
3 0.600755− 0.092653i 0.001134 0.601035− 0.093742i 0.001263

Table 17. Error estimation in WKB method for the noncommutative case am = −0.1 with n = 0,
M = 1 (R = 2) and ℓ = 3.

From the table we conclude that the optimal WKB order for the axial case is 10, whereas
for the polar case it is 4. The relative error between the WKB orders is of the order 10−7

for the axial and 10−3 for the polar case.
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For the noncommutative case am = −0.01 with ℓ = 3 we obtain

WKB order Axial QNM Error Polar QNM Error
12 0.599573− 0.092706i 2.17× 10−7 0.599571− 0.092828i 4.73× 10−7

11 0.599572− 0.092706i 3.77× 10−7 0.599571− 0.092827i 2.02× 10−7

10 0.599572− 0.092707i 4.28× 10−7 0.599571− 0.092828i 2.22× 10−7

9 0.599573− 0.092707i 3.47× 10−7 0.599571− 0.092828i 1.47× 10−7

8 0.599573− 0.092706i 1.84× 10−7 0.599571− 0.092828i 2.09× 10−7

7 0.599573− 0.092706i 2.12× 10−7 0.599571− 0.092828i 2.2× 10−7

6 0.599573− 0.092706i 1.078× 10−6 0.599571− 0.092828i 9.68× 10−7

5 0.599571− 0.092706i 1.416× 10−6 0.599569− 0.092828i 1.812× 10−6

4 0.599570− 0.092704i 0.000088 0.599569− 0.092825i 0.000089
3 0.599395− 0.092732i 0.001116 0.599392− 0.092852i 0.001119

Table 18. Error estimation in WKB method for the noncommutative case am = −0.01 with n = 0,
M = 1 (R = 2) and ℓ = 3.

From the table we conclude that the optimal WKB order for the axial case is 8, whereas
for the polar case it is 9. The relative error between the WKB orders is of the order 10−7

for both cases.

For the noncommutative case am = −0.001 with ℓ = 3 we obtain

WKB order Axial QNM Error Polar QNM Error
12 0.599456− 0.092703i 2.2× 10−7 0.599456− 0.092715i 1.889× 10−7

11 0.599456− 0.092703i 3.91× 10−7 0.599456− 0.092716i 9.77× 10−8

10 0.599456− 0.092704i 4.43× 10−7 0.599456− 0.092716i 4.04× 10−8

9 0.599456− 0.092704i 3.58× 10−7 0.599456− 0.092716i 7.86× 10−8

8 0.599456− 0.092703i 1.93× 10−7 0.599456− 0.092716i 1.275× 10−7

7 0.599456− 0.092703i 2.36× 10−7 0.599456− 0.092716i 2.175× 10−7

6 0.599456− 0.092703i 1.078× 10−6 0.599456− 0.092715i 8.363× 10−7

5 0.599454− 0.092703i 1.347× 10−6 0.599454− 0.092716i 1.515× 10−6

4 0.599454− 0.092702i 0.000089 0.599454− 0.092713i 0.000089
3 0.599278− 0.092729i 0.001116 0.599277− 0.092740i 0.001117

Table 19. Error estimation in WKB method for the noncommutative case am = −0.001 with n = 0,
M = 1 (R = 2) and ℓ = 3.

From the table we conclude that the optimal WKB order for the axial case is 8, whereas
for the polar case it is 10. The relative error between the WKB orders is of the order 10−7

for axial and 10−8 for the polar case.

– 40 –



J
H
E
P
0
5
(
2
0
2
5
)
0
8
3

For the noncommutative case am = 0.001 with ℓ = 3 we obtain

WKB order Axial QNM Error Polar QNM Error
12 0.599431− 0.092702i 2.22× 10−7 0.599431− 0.092690i 1.908× 10−7

11 0.599430− 0.092702i 3.93× 10−7 0.599431− 0.092690i 9.93× 10−8

10 0.599430− 0.092703i 4.47× 10−7 0.599431− 0.092690i 4.05× 10−8

9 0.599431− 0.092703i 3.61× 10−7 0.599431− 0.092690i 7.8× 10−8

8 0.599431− 0.092702i 1.95× 10−7 0.599431− 0.092691i 1.271× 10−7

7 0.599431− 0.092702i 2.39× 10−7 0.599431− 0.092691i 2.178× 10−7

6 0.599431− 0.092702i 1.084× 10−6 0.599431− 0.092690i 8.375× 10−7

5 0.599429− 0.092702i 1.348× 10−6 0.599429− 0.092690i 1.5105× 10−6

4 0.599428− 0.092701i 0.000089 0.599429− 0.092688i 0.000089
3 0.599252− 0.092728i 0.001116 0.599252− 0.092715i 0.001117

Table 20. Error estimation in WKB method for the noncommutative case am = 0.001 with n = 0,
M = 1 (R = 2) and ℓ = 3.

From the table we conclude that the optimal WKB order for the axial case is 8, whereas
for the polar case it is 10. The relative error between the WKB orders is of the order 10−7

for the axial and 10−8 for the polar case.

For the noncommutative case am = 0.01 with ℓ = 3 we obtain

WKB order Axial QNM Error Polar QNM Error
12 0.599318− 0.092696i 1.73× 10−7 0.599324− 0.092577i 2.061× 10−7

11 0.599318− 0.092697i 4.17× 10−7 0.599324− 0.092577i 1.023× 10−7

10 0.599318− 0.092697i 4.73× 10−7 0.599324− 0.092577i 3.3× 10−8

9 0.599319− 0.092697i 3.66× 10−7 0.599324− 0.092577i 8.51× 10−8

8 0.599319− 0.092697i 2.37× 10−7 0.599324− 0.092577i 1.28× 10−7

7 0.599319− 0.092697i 2.03× 10−7 0.599324− 0.092577i 2.08× 10−7

6 0.599318− 0.092696i 1.177× 10−6 0.599324− 0.092577i 8.893× 10−7

5 0.599316− 0.092697i 1.476× 10−6 0.599322− 0.092577i 1.6208× 10−6

4 0.599316− 0.092695i 0.000088 0.599322− 0.092574i 0.000089
3 0.599140− 0.092722i 0.001117 0.599146− 0.092601i 0.001116

Table 21. Error estimation in WKB method for the noncommutative case am = 0.01 with n = 0,
M = 1 (R = 2) and ℓ = 3.

From the table we conclude that the optimal WKB order for the axial case is 12, whereas
for the polar case it is 10. The relative error between the WKB orders is of the order 10−7

in the axial case and 10−8 in the polar case.
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For the noncommutative case am = 0.1 with ℓ = 3 we obtain

WKB order Axial QNM Error Polar QNM Error
12 0.552799− 0.086858i 0.087919 0.598585− 0.091404i 3.0149× 10−6

11 0.600442− 0.079966i 0.024979 0.598587− 0.091404i 1.4565× 10−6

10 0.602350− 0.093218i 0.007056 0.598587− 0.091402i 1.466× 10−6

9 0.598097− 0.093881i 0.002289 0.598589− 0.091402i 1.132× 10−6

8 0.597857− 0.092341i 0.000842 0.598589− 0.091401i 1.5243× 10−6

7 0.598489− 0.092243i 0.000354 0.598592− 0.091400i 1.485× 10−6

6 0.598535− 0.092542i 0.000175 0.598592− 0.091400i 1.4303× 10−6

5 0.598362− 0.092569i 0.000105 0.598595− 0.091400i 2.6585× 10−6

4 0.598344− 0.092452i 0.00007 0.598596− 0.091404i 0.000083
3 0.598269− 0.092464i 0.001177 0.598431− 0.091429i 0.001136

Table 22. Error estimation in WKB method for the noncommutative case am = 0.1 with n = 0,
M = 1 (R = 2) and ℓ = 3.

From the table we conclude that the optimal WKB order is 4 for axial case and 9 for
polar case. The relative error between the WKB orders is of the order 10−4 in the axial
and 10−6 in the polar case.

For the noncommutative case am = 0.2 with ℓ = 3 we obtain

WKB order Axial QNM Error Polar QNM Error
12 0.598413− 0.090093i 5.2962× 10−6

11 0.598405− 0.090094i 4.9559× 10−6

10 0.598405− 0.090099i 3.3432× 10−6

9 0.598401− 0.090100i 3.3601× 10−6

8 0.598402− 0.090106i 2.9334× 10−6

7 0.600775− 0.073159i 0.042215 0.598400− 0.090106i 3.6448× 10−6

6 0.603498− 0.092906i 0.010492 0.598401− 0.090113i 4.6264× 10−6

5 0.597349− 0.093862i 0.003336 0.598395− 0.090114i 0.000011
4 0.596979− 0.091480i 0.00131 0.598399− 0.090136i 0.000098
3 0.597999− 0.091324i 0.001636 0.598206− 0.090165i 0.001163

Table 23. Error estimation in WKB method for the noncommutative case am = 0.2 with n = 0,
M = 1 (R = 2) and ℓ = 3. Orders for which the error exceeded the obtained value were omitted.

From the table we conclude that the optimal WKB order for the axial case is 4, whereas
for the polar case it is 8. The relative error between the WKB orders is of the order 10−3

in the axial case and 10−6 in the polar case. As observed earlier, for the axial modes, the
higher-order WKB breaks for large positive am values.
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The QNM calculation using the higher-order WKB method can be summarised as follows:

1. For ℓ = 2, the optimal WKB order for the commutative case is 6/5 for the axial/polar
perturbations. For negative (positive) am values, the optimal order for the axial (polar)
is around the order in the commutative case. However, for large positive (negative) am
values (|am| ∼ 0.1 or |am| > 0.1), the optimal orders are lower for the axial (polar)
case.

2. For all ℓ values, in the acceptable WKB orders, the noncommutative corrections are
larger than the errors.

3. For ℓ > 2, the errors in the higher-order WKB are negligible. However, the issue with
positive (negative) am for axial (polar) mode persists.
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