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Abstract 

Background  Aquaculture is one of the fastest growing sectors of food production and covers more than half 
of the market demand for fish and fishery products. However, aquaculture itself faces numerous challenges, such 
as infectious disease outbreaks, which are one of the limiting factors for the growth and environmental sustainabil-
ity of modern aquaculture. Understanding the composition and diversity of the gut microbiota of fish is important 
to elucidate its role in host health and aquaculture management. In addition, the gut microbiota represents a valuable 
source of bacteria with probiotic potential for farmed fish.

Results  In this study, we analysed the intestinal microbiota of two economically important fish species, the European 
seabass (Dicentrarchus labrax) and the gilthead seabream (Sparus aurata), using 16S rRNA gene amplicon sequencing. 
The taxonomic analysis identified 462 amplicon sequence variants at a similarity level of 99 and showed similar alpha 
diversity indices between seabass and gilthead seabream. Beta diversity analysis showed no significant differentia-
tion in gut microbiota between fish species or aquaculture sites. Among the culturable isolates, a high proportion 
of Photobacterium damselae and Bacillus spp. was detected. We selected a single Bacillus velezensis isolate and further 
characterised its biosynthetic potential by performing whole genome sequencing. Its genome contains biosynthetic 
gene clusters for most of the common secondary metabolites typical of B. velezensis. Antibiotic susceptibility test-
ing showed the sensitivity of the selected isolates to several antibiotics according to EFSA recommendations. Fur-
thermore, stimulation of peripheral blood leukocytes (PBL) with B. velezensis resulted in a strong pro-inflammatory 
response, with a pronounced upregulation of cytokines il1b, il6, tnfa and il10 observed over time.

Conclusions  Overall, this study provides an insight into the composition of the intestinal microbiota and the diver-
sity of culturable intestinal bacteria of two economically most important fish species from Adriatic cage culture 
and sheds light on the autochthonous intestinal B. velezensis as a promising probiotic candidate for Mediterranean 
aquaculture.
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Introduction
Aquaculture is one of the crucial and the fastest grow-
ing food-supply sectors, with a global production of 
59.4 million tonnes of finfish in 2024, of which around 
2.1 million tonnes were produced in marine and coastal 
aquaculture facilities in Europe [1]. The most produced 
aquaculture fish species in Europe include gilthead sea-
bream, Sparus aurata (GSB) and European seabass, 
Dicentrarchus labrax (ESB), whose production reached 
245,402 tonnes and 256,577 tonnes respectively in 2022 
[2], accounting for 95% of total finfish production in 
the Mediterranean. EU countries Greece, Italy, Spain 
and Croatia, together with non-EU countries, Turkey, 
Egypt and Tunisia, are traditionally the largest pro-
ducers of both species, accounting for more than 90% 
of production [3]. However, conditions in rearing sys-
tems vary considerably between geographical regions 
and ultimately shape the etiological and epidemiologi-
cal framework for fish health and welfare [4]. Infectious 
diseases cause significant economic losses to produc-
ers, estimated at several billion US dollars annually 
[5, 6]. Infectious disease outbreaks in aquaculture sys-
tems are one of the most important limiting factors in 
achieving the environmental sustainability of modern 
aquaculture [7]. This is aggravated by climate change, 
i.e. the rise in seawater temperature, particularly in the 
semi-enclosed Mediterranean, which is warming faster 
than other seas [8]. Studies suggest that increased local 
temperature can affect the physiology of bacterial cells 
and promote mutagenesis, leading to the emergence 
of antibiotic-resistant strains [9–11]. In addition to 
climate change, pollution of the marine environment 
by human activities (wastewater discharges, indus-
trial effluents, agriculture, oil exploration and refining, 
etc.) also has a negative impact on the ability of farmed 
and wild fish populations to adapt to environmental 
changes and favours the invasion of bacterial and para-
sitic pathogens [12].

Relatedly, GSB and ESB aquaculture in the Mediterra-
nean is burdened by a variety of infectious diseases that 
are caused by bacterial (aeromoniasis, mycobacteriosis, 
pseudotuberculosis, tenacibaculosis, vibriosis), viral (viral 
encephalopathy and retinopathy, lymphocystis), and 
parasitic pathogens (sparicotylosis) [13–16]. These infec-
tions, which are associated with higher fish mortality or 
the occurrence of severe epidemics, are likely to increase 
under the climate change scenario [13]. In addition, some 
of the fish pathogens causing these diseases are zoonotic, 
i.e. Aeromonas hydrophila (aeromoniasis) [17, 18], Photo-
bacterium damselae subsp. damselae (pseudotuberculo-
sis) [19] and Mycobacterium spp. (mycobacteriosis) [20, 
21] and several Vibrio species, in particular V. cholerae, 
V. vulnificus, V. parahaemolyticus, V. alginolyticus and 

V. harveyi (reviewed by [22, 23]), showing an increasing 
global trend linked to anthropic activities.

Antimicrobial compounds are main solutions for the 
management of the bacterial diseases, but also major 
contributing factor in the spread of antimicrobial resist-
ance (AMR) in many bacterial pathogens. Approximately 
80% of antimicrobials used in aquaculture are estimated 
to be released into the environment with their activity 
intact, directly contributing to the increased risk of devel-
oping AMR [24–26] and raising public health concern.

One of the preventive measures for disease control is 
the use of probiotics in fish feed. Probiotics are useful, 
easy-to-use and genuine alternatives to the use of anti-
biotics. The WHO/FAO defines probiotics as live micro-
organisms that, when administered in appropriate doses, 
have a health benefit for the host [27]. The use of probi-
otics in aquaculture can increase nutrient utilisation and 
feed conversion and thus promote growth, disease resist-
ance, rearing water quality and overall health of farmed 
fish by improving the internal microbial balance [28]. 
The latter is achieved through the production of various 
bacteriostatic or bactericidal compounds, including bac-
teriocins, siderophores, lysozymes, proteases, hydrogen 
peroxide and organic and volatile fatty acids, which can 
alter the pH value of the intestine [29]. It is also assumed 
that autochthonous probiotic strains offer better protec-
tion against resident pathogens, becoming predominant 
shortly after ingestion and remaining in the intestinal 
environment for a longer period [30]. The ability of pro-
biotics to modulate the host immune system is of par-
ticular importance as they have been shown to improve 
the epithelial structure of the gut, modulate the secretion 
profiles of cytokines, influence the populations of T cells 
and increase antibody secretion [31].

To date, several yeast and bacterial strains have been 
investigated for their potential probiotic use in GSB and 
ESB aquaculture, either as live or heat-inactivated cells. 
In ESB, mostly lactobacilli were tested that exhibited 
multiple positive effects, such as the activation of vari-
ous digestive enzymes [32], stimulation of the intesti-
nal immune system of the larvae and downregulation of 
key pro-inflammatory cytokines [33], lowering of serum 
cortisol levels [34, 35], and promoting of weight gain by 
upregulating insulin-like growth factor 1 (igf-1) tran-
scription [34]. In addition, several isolates of the genus 
Bacillus render positive effects in ESB on gut histol-
ogy and microbial composition [36], increased disease 
resistance to Vibrio anguillarum [37–39], and increased 
feed digestibility [39]. In GSB, several other bacterial 
strains have been commonly tested as potential probi-
otics in addition to the lactic acid bacteria with proven 
positive effects on survival [40, 41], specific growth rate 
and digestive enzyme activities [41] or cellular innate 
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immunity [42]. These include Shewanella putrefaciens 
(strain PdP11) that was shown to be beneficial in miti-
gating stress caused by high stocking density [43, 44], 
while several members of the genus Bacillus stimulated 
innate immunity [45, 46] and increased phagocytosis of 
Edwardsiella tarda and V. anguillarum [46].

Despite the progress made in use of probiotics in 
aquaculture, broadening the knowledge about the diver-
sity, dynamics and functionality of the fish microbiome 
is required before favourable microbial strains can be 
selected and used as potential probiotics. Hence, the 
present study focused on two Adriatic cage-reared fish 
species, European seabass (Dicentrarchus labrax) and 
gilthead seabream (Sparus aurata), with the main objec-
tives to: i) examine the taxonomic composition and diver-
sity of dominant gut microbial community using the 16S 
rRNA gene metabarcoding amplicon analysis; ii) identify 
culturable bacterial isolates from the gut of both fish spe-
cies; iii) characterise in silico the biosynthetic potential of 
a selected Bacillus isolate using whole genome sequenc-
ing; and iv) evaluate the immunomodulatory properties 
of the selected Bacillus spp. isolate on fish peripheral 
blood leukocytes in vitro.

Methods
Fish intestines sampling
Market-size European seabass (Dicentrarchus labrax, 
ESB) weighing 378.1 g ± 108 (mean ± SD) and measur-
ing 33.9 cm ± 3.1 (mean ± SD) in length, and gilthead sea 
bream (Sparus aurata, GSB) weighing 381.3 g ± 85.2 and 
measuring 28.7 cm ± 2.5 in length were sampled from 
eight farms (Sites A-H) along the eastern Adriatic coast 
in June and July 2019 (Fig. 1). The exception was farm G, 
where only ESB was sampled. Five specimens of each spe-
cies were sampled randomly from each farm, resulting in 
35 and 40 specimens of ESB and GSB, respectively. In the 
grow-out phase the fish were fed twice daily ad  libitum 
with commercial feed and withdrawn food 24 h before 
capture. The fish were netted from the cages, anesthe-
tised and killed by a blow on the head. The fish from all 
farms were transported to the Institute of Oceanography 
and Fisheries (Split, Croatia) in ice slurry and processed 
immediately upon arrival. In no case did more than 8 h 
elapse between catching and processing the samples. 
During this time, the fish were constantly immersed in 
ice slurry to ensure minimal changes in the microbial 
communities.

Before dissection, the ventral surface of each fish was 
disinfected with 70% ethyl alcohol. The entire intestine 
from the pyloric caeca to the anal region was aseptically 
removed and washed several times with sterile PBS. The 
intestines of five specimens of each species from each 
farm were pooled as a single sample, diluted with 0.85% 

physiological saline (10% w/v, i.e. 10 g of tissue in 90 
mL of saline) and homogenised in a sterile blender for 
total 60 s (4 × 15 s with 15 s pause). This approach was 
deployed to focus on isolation and identification of cul-
turable bacteria to select the probiotic candidates from, 
while still yielding the most representative signature of 
overall intestinal microbiome. Previously, we observed 
that such an approach enables the cultivation of a diverse 
population of intestinal bacteria [4]. To ensure the cap-
turing of intracellular or loosely adherent bacteria that 
may detach from the intestinal mucosa during sam-
pling, and avoid potential contamination from the envi-
ronment, whole intestine was homogenised. This also 
facilitated a consistent mucosal sampling, since mucosal 
scrapings can be subject to variation depending on the 
pressure applied by the operators. Steps described below 
were undertaken to ensure higher biomass of microbial 
DNA from samples of homogenised intestines that are 
abundant in host DNA.

Fish gut bacterial community DNA extraction 
and sequencing
Prior to extraction of DNA from the intestinal microbi-
ota, intestinal homogenates prepared as described above 
were lyophilized to ensure higher biomass of microbial 
DNA and used as starting material. Intestinal microbial 
DNA was extracted using the PureLink™ Microbiome 
DNA Purification Kit (Invitrogen, Waltham, MA, US) 
according to the manufacturer’s instructions with slight 
modifications: i) to ensure better tissue lysis, 4 µL of Pro-
teinase K (Ambion, Carlsbad, CA, US) were added to the 
S1 Lysis buffer and incubated at 55 °C for one hour; ii) 
tissue was homogenised by bead beating in MagNA Lyser 
(Roche Diagnostics, Manheim, Germany) in two one-
minute cycles at 6,000 oscillations, with a five-minute 
incubation on ice between cycles.

To explore composition of the microbial community 
in the gut of two fish species, the hypervariable regions 
V3-V4 of the bacterial 16S rRNA genes [47] were first 
amplified with the forward primer 341 F (5′-CCT​ACG​
GGNGGC​WGC​AG-3′) and the reverse primer 802R 
(5′-GAC​TAC​HVGGG​TAT​CTA​ATC​C-3′). An Illumina 
library was then constructed using 16S Nextera two-
step PCR and sequenced on an Illumina MiSeq plat-
form (PE250) using the MiSeq reagent kit v2 (2 × 250 bp 
paired-end) from Microsynth, Switzerland.

The obtained raw amplicon reads were filtered, 
trimmed and clustered into unique amplicon sequence 
variants (ASVs) using the software ‘Quantitative 
Insights Into Microbial Ecology 2’ (QIIME2), release 
2022.8 [48]. Briefly, raw demultiplexed paired-end 
fastq files were imported into QIIME2 using a manifest 
file and then quality filtered, trimmed, dereplicated, 
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denoised, merged and analysed for chimaeras to gen-
erate amplicon sequence variants (ASVs) using the 
DADA2 plugin [49]. Taxonomy was assigned employ-
ing the naïve Bayesian classifier method using the 
Silva 16S database (version 138 from September 28, 
2020), clustered at 99% similarity using the QIIME2 
feature classifier plugin. A phylogenetic tree was cre-
ated using fasttree2 based on mafft alignment of the 
ASVs as implemented in the q2-phylogeny plugin 
[50]. After quality control and taxonomic assignment, 

sequences feature table, metadata and taxonomy table 
were imported into R Software v.4.0.3. [51] and ana-
lysed using the ‘phyloseq’ package [52]. Based on the 
generated taxonomy, the taxonomy table was filtered 
to exclude from the dataset ASVs assigned to the class 
Chloroplast, Mitochondria and Unclassified (Additional 
file 1). Raw sequence reads were deposited in European 
Nucleotide Archive (ENA) (https://​www.​ebi.​ac.​uk/​ena) 
under project accession number PRJEB72876.

Fig. 1  Map of Adriatic Sea with sampling locations. Shown are locations of farms from which European seabass (Dicentrarchus labrax) and gilthead 
seabream (Sparus aurata) were sampled in 2019. Note that from farm G only European seabass sample was collected. (Map downloaded 
from https://d-​maps.​com/​carte.​php?​num_​car=​5352&​lang=​en)

https://www.ebi.ac.uk/ena
https://d-maps.com/carte.php?num_car=5352&lang=en
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Bacterial isolation and identification of culturable bacteria
The intestinal homogenates were decimally diluted 
ninefold with physiological saline (10% v/v, i.e. 1 part 
homogenate and 9 parts of diluent). An aliquot of 200 μL 
of each dilution was inoculated onto 160 mm Tryptic Soy 
Agar (TSA) plates (Biolife, Monza, Italy) containing 2% 
NaCl and incubated at 25 °C for 72 h. Plates with clearly 
demarcated bacterial colonies were selected and the size 
and appearance of the colonies were noted. Ten colonies 
were selected from each plate to encompass variations in 
morphology and colouration of distinctive colonies. If no 
differences were observed in morphology and coloura-
tion of colonies, then ten colonies were selected at ran-
dom. Colonies were re-inoculated onto fresh TSA plates 
to obtain pure cultures, and finally grown overnight in 
Tryptic Soy Broth (TSB) containing 2% NaCl at 25 °C. 
Half of the overnight culture was used for molecular 
identification of the bacterial isolates, while the other half 
was stored in 20% glycerol at −80 °C as stock cultures.

For molecular identification, DNA was extracted from 
selected colonies (N = 150) using the DNeasy Blood and 
Tissue Kit (Qiagen, Hilden, Germany) with a modified 
protocol for Gram-negative bacteria according to the 
manufacturer’s instructions. A 1.4 kb portion of the 16S 
rRNA gene was amplified with 0.2 μM universal primers 
27 F 5′-AGA​GTT​TGATYMTGG​CTC​AG-3′ and 1429R 
5′-ACG​GGC​GGT​GTG​TRCAA-3′ [53]. The rest of the 
reaction mixture consisted of 2.5 mM MgCl2, 200 μM 
dNTPs, 5 U/μL HotStarTaq DNA polymerase (Qiagen, 
Hlden, Germany), 1 μL DNA template and MiliQ water 
to a final volume of 25 μL. Annealing temperature was set 
to 55 °C. The PCR products were checked in a 1% agarose 
gel and sent, along with negative PCR controls, to Mac-
rogen Europe, Amsterdam (Netherlands) for commercial 
purification and sequencing. The sequences obtained 
were aligned using the Clustal W algorithm implemented 
in the MEGA X software [54]. After trimming the primer 
annealing sites, the sequences were compared with the 
sequences deposited in GenBank and the Ribosomal 
Database Project II (RDB database; https://​rdp.​cme.​msu.​
edu/) using the BLAST tool [55] and Seqmatch, respec-
tively. Taxonomic identification was based on > 99% simi-
larities and generated list of taxa that served to select a 
probiotic candidate for further characterisation.

Whole genome sequencing of Bacillus velezensis
Based on previous extensive data on the antimicrobial 
[56] and immunomodulatory potential of different Bacil-
lus species and their secondary metabolites [38, 46, 57, 
58], we selected a single Bacillus spp. isolate to further 
characterise its probiotic potential in Mediterranean 
aquaculture. The selected isolate was grown overnight in 
lysogeny broth (LB, Carl Roth, Germany; 10 g/L tryptone, 

5 g/L yeast extract, and 5 g/L NaCl). Genomic DNA for 
Illumina and Nanopore sequencing was extracted using 
the GeneMatrix Bacterial and Yeast Genomic DNA Puri-
fication Kit (EURx, Gdansk, Poland) according to the 
manufacturer’s instructions. Paired-end library was pre-
pared using the NEBNext Ultra II DNA Library Prep Kit 
for Illumina (New England Biolabs, Ipswich, MA, US). 
Genomic DNA was randomly fragmented to 350 bp, 
end-polished, A-tailed, ligated with an adapter and finally 
enriched by PCR. The paired-end reads were generated 
on an Illumina NovaSeq 600 with 2 × 150 bp reads. For 
Nanopore sequencing, a sequencing library was pre-
pared using an SQK-RBK110.96 barcoding kit (Oxford 
Nanopore Technologies, Oxford, UK) according to the 
manufacturer’s instructions. The library was sequenced 
on a MinION platform with an R9.4.1 flow cell, with 
a 48-h sequencing cycle. Reads were live base called, 
demultiplexed and quality controlled in MinKNOW GUI 
v.4.1.22.

For the de novo assembly, the Illumina and Nanopore 
reads were quality- and adapter- trimmed in AdaptRem-
oval v.2.3.1 [59] and Porechop v.0.2.4 [60], respectively. 
The trimmed reads from both sequencing platforms were 
hybrid assembled using Unicycler v.0.4.8 [61]. The com-
plete circular chromosome was analysed with Bandage 
v.0.8.1 [62] and BUSCO v.4.1.4 [63] to assess core gene 
content and with CheckM v.1.2.2 for completeness and 
contamination level [64]. Automatic annotation was 
performed using the NCBI Prokaryotic Genome Anno-
tation Pipeline. The genome assembly has been depos-
ited in GenBank under BioProject accession number 
PRJNA1196159. antiSMASH 5.0 software [65] was used 
to predict the biosynthetic gene clusters (BGCs).

Antibiotic susceptibility testing
The minimum inhibitory concentrations (MICs) of the 
antibiotics against the selected Bacillus sp. were deter-
mined using the broth microdilution method according 
to the guidelines of the European Committee for Antimi-
crobial Susceptibility Testing [66]. A total of ten antibiot-
ics were included in this study (all from Sigma-Aldrich, 
USA): eight antibiotics (vancomycin, gentamicin, chlo-
ramphenicol, erythromycin, clindamycin, kanamycin, 
streptomycin and tetracycline) recommended by the 
European Food Safety Authority (EFSA) [67] and two 
antibiotics (imipenem and meropenem) recommended 
by the European Committee on Antimicrobial Suscepti-
bility Testing (EUCAST) [66]. The microdilution assays 
were performed in 96-well microtiter plates with two-
fold serial dilutions of the active substances ranging from 
32 to 0.03125 mg/L of their final concentration. Bacterial 
cells grown in Mueller–Hinton broth (Biolife, Monza, 
Italy) were then added to a final inoculum density of 5 × 

https://rdp.cme.msu.edu/
https://rdp.cme.msu.edu/
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105 colony forming units/mL and incubated at 35 °C for 
18 h. After incubation, the MIC was recorded as the low-
est concentration of antibiotic that showed no visually 
detectable bacterial growth in the wells. Staphylococcus 
aureus ATCC 29213 was used as a quality control strain. 
The MIC tests were performed in triplicate.

In vitro assay of fish peripheral blood leukocytes 
(PBLs) immunostimulation by Bacillus velezensis 
and quantification of target genes expression
Blood from four ESB anaesthetised with MS222 was 
aseptically collected from caudal vein and placed in 
EDTA coated BD Vacutainers (BD, Plymouth, UK). PBLs 
were prepared by hypotonic lysis of erythrocytes accord-
ing to Attaya et al. [68]. In brief, 4 mL of whole blood of 
each ESB was mixed with 36 mL of ice-cold Mili-Q water 
for 20 s. Subsequently, 4 mL of chilled PBS (10x) (Sigma, 
UK) was added to restore the isotonicity of the medium. 
The suspension was then incubated on ice for 5–10 min 
and filtered through a 70 µm cell strainer (Greiner Bio 
One, UK). The PBLs were pelleted by centrifugation at 
200 × g for 5 min and washed once with incomplete cell 
culture medium, Leibovitz L-15 (Sigma, UK) supple-
mented with 100 IU/mL penicillin, 100 µg/mL strepto-
mycin (P/S) and 1% foetal bovine serum (FBS) (Sigma, 
UK). Trypan blue staining was used to count the PBLs in 
Neubauer chamber and ensure viability greater than 95%. 
Finally, PBLs were resuspended in complete cell culture 
medium (as above, except 10% FBS) and seeded in 6-well 
cell culture plates at 2 × 106 cells in 3 mL medium. The 
PBLs of each fish were then stimulated with 107  CFU/

mL of B. velezensis or 25 µg/mL lipoteichoic acid (LTA) 
of B. subtilis (Sigma, Israel) for 3, 6 and 18 h, respectively. 
Upon treatment, cells were resuspended in 1 mL of TRI-
zol (Ambion, Carlsbad, CA, US) and stored at −80  °C 
until RNA extraction. LTA, being the surface-associ-
ated adhesion amphiphile from Gram-positive bacteria, 
served as a positive control for the in  vitro assay. Non-
stimulated PBLs in culture medium were used as con-
trol. In total, 36 samples of PBLs were collected for RNA 
isolation (four individual fish × two treatments, control 
× three time points).

Total RNA from PBLs was extracted using the TRIzol 
method according to the manufacturer’s instructions and 
dissolved in 20 µL of Mili-Q water (Merck Millipore, Bill-
erica, CA, US). Prior to cDNA synthesis, RNA samples 
were treated with DNase I, RNase-free (ThermoFisher 
Scientific, Vilnius, Lithuania) to avoid amplification of 
residual genomic DNA. cDNA was synthesised from 
500 ng of total extracted RNA using the PrimeScript 
1 st Strand cDNA Synthesis Kit (Takara, Shiga, Japan) 
according to the manufacturer’s instructions. Expression 
of target genes (Table 1) was quantified by real-time PCR 
using the LightCycler 480 SYBR Green I Master (Roche 
Diagnostics, Manheim, Germany) with the following 
cycling conditions: pre-incubation for 5  min at 95 °C, 
40 cycles for 10 s at 95 °C, 20 s at 60 °C/62 °C, 30 s at 
72 °C, with melting curves recorded from 75 to 98 °C to 
assess the specificity of each reaction. Elongation factor 
1 a (ef1a), actin beta (actb) and 18S rRNA (rna18s) were 
used as reference genes due to their stability after Best-
Keeper analysis [69]. Prior to real-time PCR, the cDNA 

Table 1  Oligonucleotide primers used for target gene expression analysis in European seabass (Dicentrarchus labrax). Indicated are 
primer sequences, annealing temperature for each primer pair, efficiency, product size and respective reference from which the 
sequences were retrieved

Locus/Accession Primer sequence (5´ → 3´) Annealing (°C) Efficiency (%) Product size 
(bp)

Reference

interleukin 1 beta
(il1b)

CAT​GAG​CGA​GAT​GTG​GAG​ATC​CAA​GAT​
CAT​TGT​CAG​TGG​GTG​GTG​GGT​AAT​C

62 97.6 73 [70]

interleukin 6
(il6)

CAT​GCC​CTG​AGA​AGT​CCA​
TTG​AGA​AGA​GCT​GTG​TAA​GTGA​

62 90.5 79 [70]

tumor necrosis factor a (tnfa) TCT​ACA​GCC​AGG​CGT​CGT​TCAG​
CCG​CAC​TTT​CCT​CTT​CAC​CAT​CGT​

60 91.1 57 [70]

interleukin 10
(il10)

CAG​TGC​TGT​CGT​TTT​GTG​GAG​GGT​TTC​
TCT​CTG​TGA​AGT​CTG​CTC​TGA​GTT​GCC​TTA​

60 98.5 77 [70]

toll-like receptor 2
(tlr2)

GGC​TAG​CTG​TAA​TCC​ACC​TGTCA​
CAG​CTG​TAT​GGG​TTG​TTG​AGCAG​

62 95.3 154 This study

elongation factor 1 a (ef1a) CTG​GTG​TTG​GTG​AGT​TCG​AGG​
GGG​GTT​GTA​GCC​GAT​CTT​CTTG​

60 96.5 203 [4]

18S rRNA (rna18s) CCA​ACG​AGC​TGC​TGACC​
CCG​TTA​CCC​GTG​GTCC​

60 96.3 200 [4]

actin beta
(actb)

TGC​TGT​CCC​TGT​ATG​CCT​CTG​
GGC​TGT​GGT​GGT​GAA​GGA​GTAG​

60 99.2 176 [4]



Page 7 of 23Hrabar et al. Animal Microbiome            (2025) 7:64 	

template was diluted 1:10 with Mili-Q water and 2.5 μL 
of cDNA was used for each reaction. The web interface 
of Primer3 (v.4.10.) was used to generate specific prim-
ers for toll-like receptor 2 (tlr2), while the other primers 
were used from previous studies (Table 1).

Statistical analysis

Intestinal microbiota analyses
Overall statistical analyses and visualisations were per-
formed with R Software v.4.0.3. Bacterial diversity (alpha 
diversity, calculated intra-sample) and structure (beta 
diversity) were analysed using the ‘phyloseq’ package [52] 
and results were visualised using the ‘ggplot2’ package 
[71] in RStudio. For these analyses, the samples were sub-
sampled to a minimum of 45,295 reads per sample. This 
threshold was set by the smallest read count of sample 
12 – Sparus aurata from farm A (Fig. 1 and Additional 
file 1) leaving all 15 samples for the diversity analyses, as 
the generated rarefaction curve was saturated (Additional 
file 2). Alpha diversity analysis included observed number 
of ASVs, Shannon’s diversity and Pielou’s evenness, which 
were compared using Kruskal–Wallis non-parametric 
hypothesis test. To compare the gut microbiota among 
the two fish species (i.e. beta-diversity), a Weighted 
and Unweighted UniFrac principal coordinates analy-
sis (PCoA) was performed using the packages ‘phyloseq’ 
and ‘ggplot2’. Beta diversity was tested with Permutational 
multivariate analysis of variance (PERMANOVA) with 
999 permutations (function ‘adonis2’ using the ‘vegan’ 
package). Based on the assigned microbial taxonomy data 
using the Silva database in QIIME2, the average relative 
abundance on phylum and genus levels was calculated for 
each sample and used for visualisation with the ‘ggplot2’ 
package. A Venn diagram was used to determine shared 
and unique ASVs between two fish species by using the 
MicEco R library (https://​github.​com/​Russe​l88/​MicEco). 
Finally, microbial composition was further analysed with 
a focus on core microbes. Core microbiota analysis was 
conducted for each fish species using the core_mem-
bers function from the R ‘microbiome’ package, applying 
default thresholds (detection threshold: 0%, prevalence 
threshold: 50%) [72]. A heatmap was generated using the 
“pheatmap” package, displaying hierarchical clustering 
of both samples and taxa. To assess statistical differences 
in the abundance of each taxon between fish species, a 
Wilcoxon rank-sum test was applied. P-values were 
computed using the wilcox.test function from base R 
and corrected for multiple testing using the Benjamini–
Hochberg false discovery rate (FDR) method (p.adjust, 
method = ”fdr”). Only unadjusted and FDR-corrected 
p-values were reported in the results table.

Gene expression analyses
Expression of all genes was calculated according to for-
mula Efficiency(−Ct) and target genes were normalised 
against the geometric mean of the three housekeeping 
genes (ef1a, rna18s, actb). Log2 transformation, scaling 
and exploratory data analysis via principal component 
analysis (PCA) were conducted using R software v.4.3.0 
[51] with prcomp function. As it was determined that one 
LTA sample at 18 h heavily deviated from the rest of the 
group, it was removed from further analyses. Differential 
expression analysis of target genes was performed in R 
with the ‘limma’ package [73, 74]. The group means para-
metrization approach was applied to construct design 
matrix taking into account time and treatment. Contrasts 
were used to compare each treatment against its time 
matched control, differences between treatments (BV vs 
LTA for each group), and time points (Additional file 3). 
Fold changes greater than 2 (log2FC ≥ 1) were considered 
biologically significant, i.e. a change in expression large 
enough to manifest a specific effect. Statistical signifi-
cance was set at Benjamini-Hochberg adjusted p-value 
< 0.05. All visualisations for qPCR analyses were per-
formed using the package ‘ggplot2’[71] for R.

Results
Fish intestinal microbiota composition and diversity
To assess the bacterial diversity of GSB and ESB microbi-
omes, 15 samples were collected and analysed using 16S 
rRNA gene amplicon sequencing. A total of 1,428,925 
raw reads were obtained from 15 samples included in the 
study. After the DADA2 processing [49] and filtering of 
the resulting table, 1,010,886 merged reads were obtained 
from 15 samples and a total of 462 ASVs were identi-
fied. Finaly, after taxonomy filtering by ‘phyloseq’ pack-
age in R, total of 949,486 reads from 15 samples and 427 
ASVs remained. Additional file 1 lists the final number of 
obtained reads for each sample.

Microbial diversity of fish‑associated sample groups 
and the aquaculture location
Taxonomic richness (alpha and beta diversity)
The alpha diversity indices—the taxonomic richness 
index (observed number of ASVs), the Shannon’s diver-
sity index and the Pielou’s evenness index—between 
two aquaculture fish species are represented in Fig. 2A. 
The ESB samples had a slightly higher number of 
observed ASVs overall compared to the GSB samples 
(i.e. 43 ASVs vs 35 ASVs on average), but no significant 
difference was found between the two (Kruskal–Wallis 
test: P = 0.523). According to Shannon’s diversity and 
Pielou’s evenness index, both species had similar spe-
cies richness and evenness of the gut microbial com-
munity, with a mean of 1.9 and 0.52 for ESB and 2.09 

https://github.com/Russel88/MicEco
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Fig. 2  Alpha and beta diversity plots. (A) Alpha diversity analyses of gut microbiomes in two aquaculture fish species: Dicentrarchus labrax (green) 
and Sparus aurata (purple): Observed number of ASVs, Pielou’s evenness index and Shannon’s diversity index. Kruskal–Wallis hypothesis test P 
values are indicated above horizontal bars. (B) Principal coordinate analysis (PcoA) based on weighted and unweighted Unifrac distances of fish gut 
samples according to species and the locations. Fish farm location (A – H) match the labels on Fig. 1
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and 0.6 for GSB, respectively, with no significant differ-
ence found between the two for each index (Kruskal–
Wallis test: Shannon’s diversity—P = 0.817 and Pielou’s 
evenness—P = 0.354). List of values for the three alpha 
diversity indices for each sample is presented in the 
Additional file 4.

Beta diversity plots (Unweighted and Weighted Uni-
Frac principal coordinates analysis (PCoA)) showed 
that overall there are no differentiation of fish gut sam-
ples according to the fish species (permutational multi-
variate analysis of variance [PERMANOVA]: P = 0.07, 
pseudo-F = 2.17, and P = 0.41, pseudo-F = 0.87, respec-
tively) (Fig. 2B).

Microbial composition
Venn diagram was constructed to identify the shared or 
special ASVs in two different fish species of intestinal 
samples. Interestingly, as shown in Fig.  3A, both sam-
ple groups had high percentage (47% ESB, 41% GSB) of 
unique ASVs, while shared only 12% (22) of similar num-
ber of ASVs.

Taxonomic analysis revealed 13 phyla and 58 genera in 
addition to an unclassified bacterial group, however only 
9 phyla were abundant with more than 0.5% and 26 gen-
era were abundant with more than 3% (Additional file 5 
and Fig. 4). Two aquaculture fish species had gut microbi-
omes with a similar composition of core taxa (Fig. 3B and 
Additional file 5). Pseudomonadota (ex: Proteobacteria), 

4411%% ((7733))1122%% ((2222))4477%% ((8833))

0% 0.1% 0.2% 0.7% 2.2% 6.7% 20%

DDiicceennttrraarrcrchhuuss llaabbrraraxax SSppaarruuss aauurrarattaa
((3355)) ((4400))

Pseudomonas

Unclassified Yersiniaceae

Genus
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B
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Fig. 3  (A) Venn diagram displays the number of shared and unique ASVs among two fish species. (B) Heatmap of core microbiome at Genus level. 
Scale represents prevalence (relative abundance)
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Bacillota (ex: Firmicutes) and Actinomycetota (ex: Actino-
bacteria) were the core bacterial phyla in all samples and 
all three phyla were dominant > 70% (Additional file  5). 
Of the 10 most abundant phyla (Additional file 5) present 
in both species, Pseudomonadota were the most rep-
resented (ESB: 40.98–99.78%; GSB: 42.16–99.93%), fol-
lowed by Bacillota (ESB: 0–45.48%; GSB: 0–32.68%) and 
Actinomycetota (ESB: 0–23.2%; GSB: 0.02–17.08%). In 
addition, the presence of the following taxa was detected 
in the gut microbiome of some ESB samples: Acidobac-
teriota (location H – 20.53%), Deinococcota (location A 
– 2.1%). The presence of the following taxa was detected 
in the gut microbiome of some samples of GSB: Bacte-
roidota (samples B – 16.33% and C – 18.63%), Spirochae-
tota (sample C – 9.87%) and Cyanobacteria (samples C 
– 3.33% and H – 7.53%).

Pseudomonas, Unclassified Yersiniaceae, Corynebacte-
rium, Acinetobacter and Staphylococcus were present in 
all gut samples, making them the core bacterial genera 

(Fig. 3B). Moreover, Pseudomonas was the predominant 
genus in all samples of both species (ESB: 20.48–98.84%; 
GSB: 9.04–72.84%) (Fig.  3 and 4). Other four core gen-
era were present in both species with the abundance 
> 3%, but only in some samples (Fig.  4): Unclassified 
Yersiniaceae (ESB: locations B – 8.04%, D – 18.95%, 
F – 30.32%, G – 12.89%, and H – 11.06%; GSB: loca-
tions A – 27.08%, B – 3.64%, D – 14.42, F – 35.39, and 
H – 3.83%), Corynebacterium (ESB: locations A – 9.17%, 
B – 17.96%, E – 23.2%; GSB: locations B – 11.55%, C – 
6.41, E – 17.05% and H – 11.02%), Acinetobacter (ESB: 
locations A – 8.63%, D – 36.7% and E – 21.29%; GSB: 
locations E – 18.98% H – 17.42%), Staphylococcus 
(ESB: locations A – 1.52%, E – 19.07%; GSB: locations 
B – 9.83%, C – 6.41, E – 13.99% and H – 18.83%). The 
presence of 8 genera was detected in the gut microbi-
ome of certain samples of ESB: Acidiphilium (location 
A – 3.62%), Bacillus (location A – 40.86%), Enterococcus 
(location G – 19.3%), Massilia (locations A – 3.13% and 

Fig. 4  Taxonomical structure of bacterial assemblages with over 3% relative abundance. Taxa with < 3% are denoted as Other. Hypervariable 
V3-V4 regions of 16S rRNA were used to assign taxonomy at genus level in two aquaculture fish species – Dicentrarchus labrax and Sparus aurata 
at different locations (A – H) in the eastern Adriatic Sea. Fish farm location (A – H) match the labels on Fig. 1
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H – 21.87%), Sphingobium (location G – 19.31%), Sphin-
gomonas (location H – 22.04%), Streptococcus (locations 
A – 0.39% and B – 26.92%), and Vicinamibacteraceae 
(location H – 20.53%). Similarly, the gut microbiome 
of 11 samples of GSB revealed the presence of certain 
genera that were absent in the ESB samples: [Eubacte-
rium]_coprostanoligenes_group (location H – 3.95%), 
Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium 
(location B – 29.15%), Brevinema (location C – 9.87%), 
Brevundimonas (location C – 10.05%), Chroococcidi-
opsis_PCC_7203 (location H – 5.99%), Hymenobacter 
(location B – 16.33%), Lawsonella (locations B – 4.89% 
and H – 3.7%), Mesorhizobium (locations C – 11.08%, D 
– 40.51%, E – 17.72%, H – 1.78%), Peptoniphilus (location 
H – 8.17%), Roseimarinus (location C – 18.64%), Rubel-
limicrobium (location H – 6.81%), and Synechococcus_
CC9902s (location A – 3.32%).

To investigate the dominant members of the gut 
microbiome in two aquaculture fish species (ESB and 
GSB), a heatmap was constructed using OTUs with 
relative abundances above 0.5% across samples (Fig. 5). 
Z-transformed abundances revealed distinct cluster-
ing of samples primarily driven by host species. Among 
the 27 dominant taxa visualized, statistical comparison 
using the Wilcoxon rank-sum test identified no signifi-
cantly different taxa between the two fish species after 
FDR correction (FDR-adjusted p > 0.05 for all compari-
sons, Additional file  6). Corynebacterium and Strepto-
coccus were more abundant in ESB, while Pseudomonas 
and Yersiniaceae (Unclassified) appeared more preva-
lent in GSB individuals. Acinetobacter, Enterococcus, 
and Staphylococcus were detected across both species 
without clear host specificity.

CC DD FF AA EE HH BBEEDDAAFFBBGGHH

Fig. 5  Abundance heatmap of discriminative gut microbiomes detected between two fish species – ESB (green) and GSB (purple). Taxonomic 
annotation was included at the family (Genus) level for labelling. A color-coded annotation bar was added above the heatmap to indicate host 
species identity, as well indicated in the fish farm location (A – H) that match the labels on Fig. 1
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Identification of cultivable bacteria
A total of 150 strains were isolated on TSA plates from 
fish intestine tissue. Of these, seven sequences obtained 
were of poor quality, and were excluded from further 
analyses. Comparison of the sequences with those 
deposited in the GenBank and RDP databases identified 
P. damselae as the most abundant cultivable bacterial 
species from the guts of both ESB and GSB, account-
ing for almost a third of all isolates identified (42/143, 
29.37%). Other bacteria represented with more than 
five colonies cultivated from the guts of both ESB and 
GSB were Bacillus spp. (34/143, 23.77%), Vibrio spp. 
(19/143, 13.28%), Staphylococcus spp. (15/143, 10.49%) 
and Psychrobacter spp. (6/143, 4.19%). Most of the 
remaining bacteria were present with a single cultured 
colony (Additional file 7).

Assessing the prevalence of cultured isolates by 
farm and host species, the highest divergence with 
6 different isolates from ten selected colonies was 
observed in ESB on farm A. The second highest diver-
gence with five different isolates was observed in both 
ESB and GSB on farm B, GSB on farm D and in ESB 
from farm F. Finally, the lowest divergence with only P. 
damselae identified among the selected colonies was 
observed in ESB on farm E, and divergence with only 
Bacillus spp. was identified in GSB on farms E and H 
(Additional file 7).

Whole genome sequencing of Bacillus velezensis
The genome sequence of the selected isolate, DL_A4 
was determined using Illumina and Nanopore sequenc-
ing followed by de novo hybrid assembly [75, 76]. 
Based on the analysis of the Genome Taxonomy Data-
base, the selected Bacillus spp. isolate was identified 
as B. velezensis, which was further supported by the 
analysis of the biosynthetic gene clusters (BGCs). The 
antiSMASH analysis identified the BGCs for most 
of the common specific secondary metabolites of B. 
velezensis, including surfactin, bacillaene, macrolac-
tin, fengycin, difficidin, bacillibactin, and bacilysin. The 
biosynthetic potential for iturin is also present, “region 
8” comprises two BGCs, namely the gene cluster for the 
synthesis of fengycin and iturin. While antiSMASH is 
unable to separate the two BGCs due to the overlapping 
genes, the presence of both BGCs is apparent.

Antibiotic susceptibility testing
Next, MICs of selected antibiotics were tested against 
the B. velezensis isolate (Table 2). When both the EFSA 
[67] and the EUCAST [66] breakpoints values were 

applied for the MICs, the B. velezensis isolate was found 
to be sensitive to all ten antimicrobial agents.

Quantification of target genes expression in  
B. velezensis‑stimulated fish peripheral blood leukocytes 
(PBLs)
PCA analysis was performed to determine similarities 
and differences in the expression of target genes analysed 
in fish peripheral blood leukocytes (PBLs) stimulated 
with live B. velezensis (BV) and lipoteichoic acid (LTA) 
for 3, 6 and 18 h (Fig.  6). PCA confirmed a clear sepa-
ration of stimulated PBLs from non-stimulated controls. 
Stimulated PBLs formed a homogeneous cluster, whereas 
control PBLs were less homogeneous, mainly due to the 
variability observed 18 h after stimulation.

A strong pro-inflammatory response was observed as 
early as 3  h after stimulation, which slowly decreased 
until 18 h after stimulation (Fig.  7A). Nevertheless, the 
expression of all genes, except for toll-like receptor 2, 
remained high throughout the experiment. Of the five 
target genes, only tlr2 was not differentially expressed in 
both treatments and at all time points. In fact, tlr2 was 
constantly downregulated compared to time-matched 
controls, except for LTA stimulation at 18 h when induc-
tion of tlr2 was observed. Although a biologically sig-
nificant change in the expression of tlr2 was detected in 
BV-stimulated PBLs 3 and 6  h after stimulation and in 
LTA-stimulated PBLs 18 h after stimulation (log2FC > 1) 
(Fig.  7B), this change in expression was not statistically 
significant compared to the time-matched non-stimu-
lated control (p > 0.05). The highest average expression 
was measured for il1b, while the lowest average expres-
sion was measured for il10. The highest fold-change (FC) 
was observed for il1b in LTA-stimulated PBLs 3 and 6 h 
after stimulation and in BV-stimulated PBLs 3  h after 

Table 2  Antibiotic susceptibility phenotype of B. velezensis 
isolate (S = sensitive)

Antibiotic MIC (mg/L) Breakpoint (mg/L)

EFSA EUCAST

vancomycin 0.25 S ≤ 4 S ≤ 2

gentamicin 0.125 S ≤ 4 –

kanamycin 0.5 S ≤ 8 –

streptomycin 4 S ≤ 8 –

erythromycin 0.125 S ≤ 4 S ≤ 0.5

clindamycin 0.25 S ≤ 4 S ≤ 1

tetracycline 8 S ≤ 8 –

chloramphenicol 2 S ≤ 8 –

imipenem 0.0625 – S ≤ 0.5

meropenem 0.25 – S ≤ 0.25
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stimulation, respectively, while the lowest significant FC 
was measured for il6 in BV- and LTA-stimulated PBLs 18 
h after stimulation (Fig. 7B).

When comparing the expression of target genes 
between treatments, both BV- and LTA-stimulated PBLs 
generally responded in the same way. The only statis-
tically significant difference between treatments was 
observed for il6 and il10 6 h after stimulation (Additional 
file  3). While il6 was more strongly expressed in LTA-
stimulated PBLs, BV-stimulated PBLs expressed more 
il10 6 h after stimulation. Assessing the differences in 
expression of the target genes between the time points, 
significant differences in expression were only observed 
for il1b and il6 between 6 and 18 h post infection for 
both treatments (Additional file 3).

Discussion
Probiotics in aquaculture have various beneficial aspects 
such as the potential to improve the immune status and 
performance of farmed fish. Isolation of autochthonous 
candidates is promising for successful colonisation of the 
gastrointestinal tract of farmed fish as they can be easily 
adapted to other contemporary farmed fish species [77]. 
In addition, the use of probiotics represents an effective 

strategy to combat pathogens through a variety of mech-
anisms as an alternative to antibiotic treatment [78]. 
The main objective of this study was to characterise the 
diversity of gut microbial communities and to investigate 
the probiotic potential of autochthonous gut bacteria of 
Adriatic cage-reared gilthead seabream, Sparus aurata 
(GSB) and European seabass, Dicentrarchus labrax (ESB) 
for possible use as a feed additive in mariculture. A sin-
gle isolate of Bacillus spp. was selected and further char-
acterised for its biosynthetic and immunostimulatory 
potential by WGS and in vitro stimulation of fish PBLs.

First, we characterised the composition of the gut 
microbiota of both ESB and GSB from eight aquacul-
ture sites both by high-throughput Illumina 16S rRNA 
gene amplicon sequencing and by culture. The patterns 
of gut microbial communities and the identification 
of the dominant microbiome in the fish gut are funda-
mental for improving the physiological performance of 
the host. From analysing the taxonomic composition at 
the phylum level, it can be observed that Pseudomon-
adota (ex-Proteobacteria), Bacillota (ex-Firmicutes) and 
Actinomycetota (ex-Actinobacteria) were the most domi-
nant phyla with similar relative contribution in samples 
of both fish species. Pseudomonadota and Bacillota are 

Fig. 6  Principal components analysis for gene expression profiles during in vitro stimulation of European seabass PBLs. Relative positions 
of treatment groups (time-points and stimuli) are shown. Values are log2-transformed and scaled. Numbers within symbols indicate the fish PBLs 
were isolated from
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typically dominant bacteria associated with fish in both 
marine and freshwater habitats [79–83]. Pseudomonad-
ota is the most abundant phylum in the healthy intestine 
and its disbalance may reflect a possible microbial signa-
ture of dysbiosis and disease in the gut microbiota [84]. 
Its predominance in both fish species is indicative of its 
importance for the host and ubiquitous presence in the 
environment. Bacillota are shown to be abundant in the 
gut of European seabass fed with plant-based diet [83]. 
Actinomycetota play the main role in maintaining gut 

homeostasis and are widely used as probiotics [85]. At 
the genus level, Pseudomonas (Pseudomonadota) was the 
predominant genus in the gut samples of both fish spe-
cies, together with the Unclassified Yersiniaceae (Pseu-
domonadota), genus that was present in 10 samples (5 
ESB and 5 GSB). The genus Pseudomonas can typically be 
found in the gut microbiota of other fish and is known 
to have probiotic properties [86–88]. Yersiniaceae (Pseu-
domonadota) are one of the seven families belonging to 

Fig. 7  Expression of target genes in European seabass PBLs stimulated with B. velezensis and lipoteichoic acid (LTA). (A) Distribution of target 
gene expression is shown according to state (control, B. velezensis-stimulated and LTA-stimulated) and time. Box plots represent distribution 
of log2-normalised expression; (B) Log2-transformed fold changes of target genes expression in respect to time-matched controls with respective 
adjusted p-values. Statistically significant fold changes are indicated in bold
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the order Enterobacteriales that contains common fish 
pathogens that can cause mild to severe fish diseases [89].

Previous studies indicated that the host species is the 
main factor influencing variations in the diversity and 
structure of the fish gut microbiota [88, 90–92]. Here, 
with respect to α-diversity indices (observed number of 
ASVs, Pielou’s evenness, Shannon index) the gut micro-
biota of the ESB and GSB had similar values. Regarding 
the PCoA plot, both weighted and unweighted analyses 
indicated that the microbiota of the ESB and GSB over-
lap and do not differ significantly from each other. These 
results could be related to the similar diet in the same 
aquaculture farms. Lower number of ASVs observed 
could be due to the method we used to obtain the intes-
tinal homogenates for growing the culturable bacteria. 
We homogenised the whole gut tissue instead of using 
only the mucosal scrapings, which may have resulted in 
a lower diversity of the gut microbiome due to exces-
sive dilution with host DNA or degradation of microbial 
DNA. However, as a potential probiotic should be easy to 
grow in culture, we opted for this approach to obtain the 
culturable isolates, especially as it proved satisfactory for 
obtaining a diverse population of culturable bacteria in 
our earlier study [4].

A high proportion (> 80%) of the cultivable bacterial 
isolates belonged to only five taxa, namely P. damse-
lae, Bacillus spp., Vibrio spp., Staphylococcus spp. and 
Psychrobater spp. Although a rich medium was used to 
culture the bacteria, namely tryptic soy broth/agar, it is 
possible that the culture conditions did not favour the 
growth of some of the fastidious bacteria, found in the 
fish gut, so that only a few taxa predominated in the 
grown cultures.

A surprising finding was that almost 30% of the colo-
nies grown belonged to P. damselae. The bacterium com-
prises two categories of subspecies, P. damselae subsp. 
damselae and P. damselae subsp. piscicida [93]. Unlike 
the culture method, by the 16S rRNA gene amplicon 
sequencing the presence of P. damselae was detected 
only in GSB sample from farm location C in total of 
< 3%, possibly due to the sampling method used to obtain 
the intestinal homogenates or culture conditions that 
favoured only some bacteria, as already described. Biases 
intrinsic to amplicon sequencing, such as primer ampli-
fication bias or 16S rRNA gene variability in different 
taxa, might have also played a part [94, 95]. Furthermore, 
previous studies have shown that P. damselae can be eas-
ily detected by cultivation method [96, 97], so it might 
have been preferentially cultivated and detected. How-
ever, the presence of P. damselae, regardless of the sub-
species, could pose a risk for aquaculture facilities in the 
Adriatic Sea. Both subspecies of P. damselae are among 
the most important fish pathogens causing disease in a 

wide range of fish hosts [19, 98], including GSB [99, 100], 
ESB [101] and meagre (Argyrosomus regius) [102], being 
associated with mass mortalities in aquaculture facilities 
[103]. Although the fish collected for this study showed 
no signs of infection either externally or in the internal 
organs, we speculate that a change in environmental fac-
tors, such as temperature, or the presence of other stress-
ors could trigger a disease outbreak. In fact, outbreaks of 
disease caused by these pathogens have been recorded 
mainly during the summer season and early autumn, 
when sea temperatures rise [104]. It is known that higher 
temperatures induce transcriptional changes that facili-
tate the development of a sufficient bacterial population 
to cause disease. This includes the upregulation of genes 
involved in DNA synthesis, nutrient uptake, chemotaxis, 
flagellar motility, secretion systems and antimicrobial 
resistance, as well as several plasmid-encoded virulence 
factors [105]. Nevertheless, cases of pseudotuberculosis 
have also been detected at low water temperatures [106]. 
This seasonality is probably also a contributing factor 
as to why a high proportion of the isolates belonged to 
P. damselae, as the fish were sampled in June and July. 
The prevalence observed here and the potential to cause 
disease outbreaks with the change in water temperature 
may also pose a risk to human health when handling the 
infected and diseased fish, as P. damselae subsp. dam-
selae is known to cause severe disease in humans [107, 
108].

The second most common genus was Bacillus, which 
accounted for almost a quarter of all cultured isolates. 
By the 16S rRNA gene amplicon sequencing, the pres-
ence of Bacillus was detected only in three samples – two 
GSB samples from farm location A and C in total of 0.03 
and 40.86%, respectively, and in ESB sample from farm 
location D in total of 0.14%. The genus Bacillus includes 
many species that are ubiquitous in nature and have both 
medical and industrial importance due to their abil-
ity to secrete large amounts of enzymes and secondary 
metabolites. These include ribosomal peptides, volatile 
compounds, polyketides, non-ribosomal peptides, and 
hybrids between polyketides and non-ribosomal pep-
tides [56]. Live cells or metabolites of several species of 
this genus, most of which belong to the B. subtilis group, 
have been shown to modulate the immune response of 
fish and increase disease resistance to many important 
bacterial fish pathogens in vitro, in vivo or in the gnoto-
biotic zebrafish model, including A. hydrophila [58, 109, 
110], E. tarda [46], P. damselae subsp. piscicida [111], 
Pseudomonas aeruginosa [109], Streptococcus iniae [112, 
113], Streptococcus agalactiae [114], V. anguillarum [37–
39, 46], V. alginolyticus [109] and Yersinia ruckeri [115]. 
While the mechanisms by which different Bacillus spp. 
stimulate the immune response are not yet entirely clear, 
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their increased disease resistance is mediated by several 
secondary metabolites with antibacterial and antifun-
gal activity [56]. Therefore, it is possible that in certain 
samples a rather high number of isolates belonging to 
Bacillus and their secreted secondary metabolites are 
the cause for the low number or absence of P. damselae 
among the culturable isolates. Higher detection of genus 
Bacillus by 16S rRNA gene amplicon sequencing com-
pared to P. damselae, especially on farm location C, sup-
ports this hypothesis.

On this basis, we selected a single Bacillus spp. isolate 
to characterise its biosynthetic and immunostimulatory 
potential. According to the Genome Taxonomy Data-
base, the isolate was identified as B. velezensis, while 
antiSMASH analysis identified eight biosynthetic gene 
clusters (BGCs) for the common secondary metabo-
lites of B. velezensis, i.e. surfactin, bacillaene, macro-
lactin, difficidin, bacillibactin, bacilysin, fengycin and 
iturin. Surfactins, fengycins and iturins are non-riboso-
mal lipopeptides produced by the B. subtilis group [56]. 
Fengycins and iturins have been shown to have potent 
antifungal activity against various phytopathogenic fungi 
and those that can cause disease in humans [116–118]. 
Surfactins, on the other hand, are potent broad-spec-
trum antibiotics that are effective against mycoplas-
mas, enveloped viruses and various bacteria, regardless 
of their Gram stain, possibly due to their pore-forming 
effect on the lipid membrane [119]. Bacilysin, another 
non-ribosomal peptide, also shows strong antibacterial 
activity by inhibiting glucosamine-6-phosphate synthase, 
which is necessary for the biosynthesis of peptidoglycans 
as components of the bacterial cell wall [120]. Similar 
to surfactin, the polyketides bacillaene, difficidin (and 
its derivative oxydifficidin) and various macrolactins 
exhibit potent antibacterial activity against many plant- 
and clinically important pathogens, including vancomy-
cin- and methicillin-resistant isolates [121–125]. Finally, 
bacillibactin is a catecholic siderophore that chelates 
iron and reduces its bioavailability [126]. We hypothesise 
that some of these secondary metabolites are also effec-
tive against bacteria that are pathogenic to ESB and GSB, 
particularly emerging bacteria such as V. harveyi. Touraki 
et al. [111] have shown that a 16 kDa lipopeptide bacteri-
ocin from B. subtilis inhibits the growth of two important 
fish pathogens, V. anguillarum and P. damselae subsp. 
piscicida. Although the production of these secondary 
metabolites was not tested in this B. velezensis isolate, the 
in silico biosynthetic potential indicated by the genome 
analysis and the results of a preliminary in vitro test sug-
gesting bacteriostatic activity against P. damselae subsp. 
piscicida (Bulfon and Volpatti, personal communica-
tion) indicate that some of these metabolites are indeed 
secreted. However, their production and secretion in an 

aquatic environment, especially in a harsh gut environ-
ment, requires further investigation as the production of 
surfactin, iturin and fengycin depends on the tempera-
ture and aerobic conditions in the environment [127]. 
Future studies on aquaculture isolates of B. velezensis 
should therefore focus on confirming the synthesis of 
these metabolites in different cultivation environments 
and testing the activity of the purified metabolites against 
a range of fish pathogenic bacteria, especially those that 
are still exclusively controlled with antibiotics.

In contrast to the extensive research on this bacterium 
as a pest control agent against many plant pathogens in 
agriculture (reviewed in [128–131]), there are few studies 
on B. velezensis from aquatic environments. The BGCs 
identified here are consistent with recently published 
genome mining studies of two B. velezensis isolates from 
aquatic animals, the giant freshwater shrimp (Macrobra-
chium rosenbergii) [132] and the ribbontail (Taeniura 
lymna) and Tahitian stingrays (Himantura fai). In addi-
tion, the genome of B. velezensis also contains glycosidase 
hydrolase family of enzymes and the addition of raffinose 
and inulin to the culture medium significantly increases 
the growth of B. velezensis cultures [133], suggesting that 
dietary inclusion of these prebiotics with B. velezensis 
likely has a synergistic effect on host health. Such a syn-
ergistic effect would be beneficial from a disease preven-
tion and control perspective in aquaculture, as different 
isolates of B. velezensis have shown in vitro broad-spec-
trum antimicrobial activity against various fish pathogens 
belonging to the genera Aeromonas, Edwarsiella, Lacto-
coccus, Streptococcus and Vibrio [134–137]. In addition, 
dietary inclusion of this bacterium significantly increased 
disease resistance to V. anguillarum, S. agalactiae, A. 
hydrophila and V. harveyi in ESB [37, 38], Nile tilapia 
(Oreochromis niloticus) [134], Carassius auratus [135] 
and hybrid groupers (Epinephelus lanceolatus ♂ × E. 
fuscoguttatus ♀) [137].

Although probiotics are widely used for their benefi-
cial effects, a safety assessment of a potential probiotic 
strain is required as they can express virulence factors 
or acquire antibiotic resistance genes. We have shown 
that the present isolate of B. velezensis is sensitive to all 
eight antibiotics recommended by EFSA [67], in addi-
tion to imipenem and meropenem as recommended by 
EUCAST [66], and is therefore currently considered safe 
for use as a fish feed additive.

To test the immunostimulatory potential of the selected 
B. velezensis isolate, we stimulated fish peripheral blood 
leukocytes (PBL) from ESB with live bacterial cells and 
lipoteichoic acid as a positive control for 3, 6 and 18 h. 
Although probiotics are usually administered orally with 
food and therefore react first with the gut-associated 
lymphoid tissue (GALT), we decided in favour of the PBL 
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in vitro assay for a number of reasons. Firstly, probiotics 
not only have a direct effect on mucosal immunity, but 
can also modulate systemic immunity [28, 138]. Sec-
ondly, although we have not investigated the composition 
of immune cells in PBLs, it has already been shown that 
PBLs prepared by hypotonic lysis of erythrocytes contain 
the major cell types such as monocytes/macrophages, 
neutrophils and T and B cells, like peripheral blood mon-
onuclear cells (PBMCs) prepared by gradient centrifuga-
tion. In addition, PBLs prepared in this way can respond 
to stimulation by pathogen-associated molecular pat-
terns (PAMPs) and cytokines, proliferate and phagocy-
tose [139]. Finally, working with PBLs is in line with the 
3Rs principle (replace, reduce, refine) as peripheral blood 
is easy to obtain without the need to sacrifice the ani-
mals, as is the case with GALT.

A strong and transient pro-inflammatory response 
was observed in both B. velezensis- and lipoteichoic acid 
(LTA)-stimulated PBLs, supported by the sudden expres-
sion of the three pro-inflammatory cytokines tnfa, il1b 
and il6. Among these, il1b has generally been the most 
strongly expressed, but all targets gradually decreased 
after six hours. All three cytokines are master inducers 
of inflammation and enhance the antimicrobial functions 
of the immune cells, which facilitates the elimination of 
the pathogen [140, 141]. TNFα is a central inflammatory 
mediator with pleiotropic functions that is expressed by 
macrophages in the early phase of an infection. Like its 
counterpart in mammals, TNFα in teleosts promotes 
chemotaxis of neutrophils and monocytes/macrophages 
to the site of infection, phagocytosis of macrophages and 
triggers the production of reactive oxygen and nitrogen 
intermediates [142–144]. Considering that macrophages 
are the primary source of TNFα [145], the high log2 fold 
change (log2FC) observed for this gene suggests suc-
cessful priming of ESB monocytes/macrophages from 
peripheral blood by both live bacteria and LTA. In addi-
tion, TNFα enhances the expression of proinflammatory 
cytokines, including il1b and il6, through NF-κB signal-
ling [146, 147]. Indeed, we observed a very high expres-
sion (log2FC > 6) of il1b 3 and 6 h after stimulation with 
both live bacteria and LTA. Although the expression 
of this cytokine is also triggered by NF-κB signalling 
through the binding of the pathogen to surface recep-
tors (e.g. toll-like receptors, TLRs) [148], this stimula-
tory effect of TNFα could partly explain the very high 
log2FC observed for il1b. This cytokine has multiple bio-
logical functions that overlap with those of TNFα [140], 
but unlike its mammalian counterpart it doesn’t have 
pyrogenic effect in teleosts [149]. In addition to trigger-
ing an inflammatory reaction, IL-1β activates T and B 
cells, natural killer cells, stimulates macrophages to pro-
duce inflammatory mediators and enhances phagocytic 

activity of phagocytes [150]. Although il1b is usually 
not constitutively expressed in teleosts, it is rapidly and 
strongly induced after stimulation by PAMPs such as 
lipopolysaccharide (LPS) or bacterial DNA [149–153]. 
Therefore, the strong induction of this cytokine that we 
observed here further confirms successful priming with 
applied stimuli, even though in mammals, adherence 
of PBMC to glass or polystyrene culture dishes can also 
trigger il1b expression [154]. So, this culturing effect 
may be partially responsible for the increased expres-
sion of il1b in the unstimulated controls at 18 h. IL-6 
is the most pleiotropic proinflammatory cytokine and 
a key cytokine of the acute phase response. In contrast 
to il1b, il6 is constitutively expressed in various fish tis-
sues such as muscle, skin, spleen, head and trunk kidney 
and PBLs, although the level of expression in these tis-
sues varies between species [155–157]. Similarly to the 
previous two cytokines, its expression is strongly upregu-
lated in different tissues following bacterial (LPS, DNA) 
or viral (poly I:C) stimulation [156–159]. In teleosts, IL-6 
has been shown to promote the differentiation of naïve T 
helper cells into Th2 cells [158], antibody production via 
the STAT3 signalling pathway [155] and to regulate func-
tion of monocytes/macrophages to secrete proinflamma-
tory cytokines as well as their phagocytic and bactericidal 
ability [159]. Taken together, the expression of these 
cytokines indicates a strong innate immune response 
that probably triggers an adaptive response after pro-
longed stimulation. Nevertheless, excessive production 
of proinflammatory cytokines can be harmful and lead 
to immunopathologies. Therefore, their expression must 
be carefully balanced, either by transcriptional silenc-
ing or by secretion of anti-inflammatory mediators such 
as IL-10 or transforming growth factor β (TGF-β). This 
agrees well with the observed strong induction of il10 
after stimulation with both B. velezensis and LTA, which 
was triggered as early as 3 h after stimulation, probably to 
compensate for the sudden inflammatory response trig-
gered by the stimuli. This indicates a beneficial regulation 
of the immune response rather than uncontrolled inflam-
mation, suggesting that the tested probiotic candidate is 
an immune modulator, rather than only a stimulator of 
inflammatory response.

While the expression of pro-inflammatory cytokines 
following bacterial stimulation, as observed here, is to 
be expected, the lack or low induction of tlr2 is some-
what puzzling. This is because TLR2 is one of the pat-
tern recognition receptors (PRRs) responsible for the 
recognition of LTA and peptidoglycan (PGN) as cell 
wall components of Gram-positive bacteria, both in 
mammals and teleosts [148, 160], and the subsequent 
induction of pro-inflammatory cytokines via the Myd88-
dependent signalling pathway [148]. Since we did not 
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use specific pathogen-free (SPF) animals in this study, it 
is possible that the basal expression of tlr2 in the experi-
mental animals was already high enough due to previous 
exposure to different bacteria that could have triggered 
an immune response upon binding of a ligand, i.e. B. 
velezensis or LTA. Indeed, we detected a downregula-
tion of tlr2 almost throughout the experiment compared 
to the non-stimulated controls. While such expression 
profile of tlr2 was not influenced by the immune status 
of the fish used in the immunostimulatory experiment, as 
the animals expectedly expressed other immune targets, 
we hypothesised that downregulation of tlr2 indicates 
either its transcriptional or post-transcriptional repres-
sion in response to the inflammatory response, in addi-
tion to il10 expression. Considering the redundancy of 
teleost genomes and the much higher number of TLRs 
identified in teleosts compared to mammals [148], other 
receptors might be involved in LTA or PGN recogni-
tion. Indeed, in yellow catfish (Pelteobagrus fulvidraco), 
TLR18 expression was found to be increased after stim-
ulation of leukocytes with TLR ligands, including pep-
tidoglycan [161]. In previous studies with B. velezensis, 
this probiotic was usually administered with the feed and 
the humoral and innate immune responses, particularly 
in the head kidney leukocytes (HKL), were observed. 
In tilapia, feeding B. velezensis resulted in a significant 
increase in lysozyme and superoxide dismutase activity, 
as well as significant upregulation of type C lysozyme, 
complement C3 and major histocompatibility complex 
class IIβ in the intestine, gills and head kidney [134]. 
Similarly, in ESB fed B. velezensis, both lysozyme and 
nitric oxide were significantly increased in serum, along 
with a marked upregulation of pro-inflammatory genes 
(il1b, tnfa, cox2) and antimicrobial peptides (dicen-
tracin) in HKL [38]. Moreover, both il1b and tnfa were 
upregulated in Carassius auratus after dietary admin-
istration of this bacterium, in addition to an increased 
innate humoral response, i.e. serum acid and alkaline 
phosphatase, glutathione peroxidase and lysozyme [135]. 
In contrast to the administration of live bacteria, which 
triggered a strong upregulation of innate immune sys-
tem genes, treatment of seabream HKL with extracellular 
products of B. velezensis did not result in the increased 
expression of innate immune system genes. However, 
when these HKL were challenged with E. tarda, signifi-
cant expression of il6 was detected [46], suggesting that 
even extracellular molecules secreted by this bacterium 
can modulate the immune response of the fish. However, 
to fully characterise the protective role of B. velezensis 
in farmed fish, a follow up study should focus on in vivo 
trial with the isolate-enriched feed and subsequent chal-
lenge with a bacterial pathogen. While this would ema-
nate more accurately the complex gut-associated immune 

response, it would necessitate a preliminary in vitro data 
as obtained herein. Although comparison of the results is 
complicated by the fact that, as Mladineo et al. [4] noted, 
there are probably no two studies using the same experi-
mental design, our results are consistent with previous 
studies showing that B. velezensis elicits a distinct innate 
immune response in fish that likely transitions into an 
adaptive response after prolonged stimulation.

Conclusions
In the present study, we showed that European seabass 
(ESB) and gilthead seabream (GSB) have a similar com-
position and diversity in their gut microbiota, as both 
species displayed comparable alpha diversity indices and 
a uniform microbial community structure. Pseudomon-
dota, Bacillota and Actinomycetota were identified as the 
dominant phyla in the gut of both ESB and GSB. Analysis 
of culturable isolates revealed that P. damselae was the 
most abundant bacterial isolate in the intestines of ESB 
and GSB, followed by Bacillus spp., Vibrio spp., Staphy-
lococcus spp. and Psychrobacter spp. A single Bacillus 
isolate was tested as a potential probiotic, identified as 
B. velezensis by whole genome sequencing. In addition, 
genome analysis revealed the presence of biosynthetic 
gene clusters for most of the common B. velezensis sec-
ondary metabolites, including surfactin, bacillaene and 
fengycin. Antibiotic susceptibility testing showed that B. 
velezensis was sensitive to several antibiotics, emphasis-
ing its potential as a safe probiotic for aquaculture appli-
cations. Stimulation of peripheral blood leukocytes with 
B. velezensis elicited a strong pro-inflammatory response, 
indicating its immunomodulatory potential. Differen-
tial expression of target genes (il1b, il6, tnfa and il10) 
was observed over time, suggesting dynamic immune 
regulation in response to bacterial stimulation. Based on 
our results, B. velezensis is a promising probiotic candi-
date for Mediterranean aquaculture The limitation of 
the study, however, is that it did not entail testing of the 
influence of different sampling and extraction methods, 
and inclusion of individual samples from a given popu-
lation to account for inter-individual variability, instead 
of samples pooling. However, to get a deeper insight into 
the intestinal microbiota composition, which can serve 
as a basis for studying microbiota dysbiosis in differ-
ent diseases or resulting from introduction of novel feed 
formulations, a larger comprehensive study is needed. 
In addition, conducting metagenomic studies in future, 
rather than intestinal metabarcoding will provide more 
robust insight into the functional potential of intestinal 
microbiota, helping in the prevention of disease caused 
by emerging and re-emerging bacterial pathogens in 
Mediterranean aquaculture.
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