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Abstract: Accurate information on species distributions and population sizes is essential
for effective biodiversity conservation, yet such data are often lacking at national scales.
This study addresses this gap by assessing the distribution and abundance of 111 bird
species across Croatia, including breeding, wintering, and migratory flyway populations.
We combined Species Distribution Models (SDMs) with expert-based population esti-
mates to generate spatially explicit predictions. The modeling framework incorporated
high-resolution Earth observation (EO) data and advanced spatial analysis techniques.
Environmental variables, such as land cover, were derived from satellite datasets, while cli-
mate variables were interpolated from ground measurements and refined using EO-based
co-variates. Model calibration and validation were based on species occurrence records
and EO-derived predictors. This integrative approach enabled both national-scale popula-
tion estimates and fine-scale habitat assessments. The results identified critical habitats,
population hotspots, and areas likely to experience distribution shifts under changing
environmental conditions. By integrating EO data with expert knowledge, this study
enhances the robustness of population estimates, particularly where species monitoring
data are incomplete. The findings support conservation prioritization, inform land use
and resource management, and contribute to long-term biodiversity monitoring. The
methodology is scalable and transferable, offering a practical framework for ecological
assessments in diverse regions. We integrated expert-based population estimates with
species distribution models (SDMs) by applying expert-derived density values to areas of
suitable habitat predicted by SDMs. This approach enables spatially explicit population
estimates by combining ecological modeling with expert knowledge, which is particularly
useful in systems with limited data. Experts provided species-specific density estimates
stratified by habitat type, seasonality, behavior, and detectability, aligned with habitat
suitability classes derived from SDM outputs.

Keywords: species distribution model SDM; Earth observation EO; endangered species;
breeding population; wintering population; expert-based system; birds

1. Introduction
Species distribution models (SDMs) have become pivotal tools in ecology and conser-

vation biology, providing essential insights into the relationships between species and their
environment [1]. These models predict the geographic distribution of species by correlating
known occurrences with environmental variables such as climate, topography, and land
use. By offering spatially explicit predictions, SDMs support a wide array of ecological
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applications, including biodiversity conservation, invasive species management [2,3], and
environmental change impact assessments [4–8].

Originally based on bioclimatic envelope models that described species’ ecological
niches using simple climatic parameters, SDMs have evolved significantly. Advances
in computational power and statistical methodologies have enabled the development
of more sophisticated modeling techniques, including machine learning and ensemble
approaches [7,9–12]. These innovations have improved predictive accuracy and broadened
the applicability of SDMs, making them effective tools for fine-scale spatial planning and
dynamic forecasting.

SDMs are particularly valuable in addressing major ecological challenges such as
habitat degradation and climate-driven distribution shifts. They help identify critical
habitats for conservation prioritization and assess potential changes in species distributions
under future climate scenarios [13–15]. Such applications are essential for guiding land-use
decisions and ensuring that conservation strategies are aligned with ecological dynamics.
Earth observation (EO) data, providing consistent and high-resolution environmental
information, play a crucial role in enhancing the spatial and temporal precision of SDMs
and improving their effectiveness in practical conservation planning [7,8,16,17].

In addition to conservation, SDMs have proven useful in invasive species manage-
ment by serving as early warning tools that identify areas at risk of colonization, thereby
facilitating targeted monitoring and control efforts [6,8]. In agricultural and urban settings,
they contribute to ecosystem service optimization and pest management by pinpointing
ecologically significant areas [18].

Despite their wide application, SDMs face limitations, particularly related to data
quality, model transferability, and assumptions about species–environment relationships.
Ongoing research aims to address these issues by incorporating new data sources—such
as satellite remote sensing—and refining algorithms to better reflect ecological complex-
ity [9,10,12].

This paper presents the development of spatial distribution models for 111 bird species
across Croatia, with the goal of estimating population sizes and supporting informed
biodiversity management. These models integrate bird occurrence data collected through
various monitoring efforts that were neither fully systematic nor entirely random, resulting
in uneven spatial and temporal coverage. By combining these data with EO-derived
environmental variables, we produced robust, scalable estimates of species distributions
and population abundances. Particular emphasis is placed on the value of remote sensing
in addressing data limitations, improving model reliability, and enhancing the utility of
SDMs for conservation prioritization and long-term resource management.

2. Materials and Methods
This project combined spatial modeling techniques with expert-based knowledge

systems (involving local bird experts) to evaluate bird population distributions and estimate
population sizes. These evaluations were conducted for specific areas of interest, the entire
territory of Croatia, and within a broader regional context. Spatial models were built
using independent datasets derived from various EO systems. Examples include EO
data from Landsat (used in national habitat mapping), Sentinel-1 and Sentinel-2 (ESA
Copernicus), and NASA Landsat imagery incorporated into ESA Land Cover products.
For models extending beyond Croatian borders, habitat type variables were excluded
in favor of globally accessible open-source environmental datasets, ensuring consistency
and replicability.

Bird data—Species Occurrence Data
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A primary challenge in this study was the lack of comprehensive presence–absence
bird data. Thus, presence-only data were employed, supplemented with background or
pseudo-absence data generated algorithmically.

Regional-level data were sourced from the Global Biodiversity Information Facility
(GBIF, https://www.gbif.org/, accessed on 7 July 2023) [19], encompassing all seasonal
records. These data provided insights into how bird populations in Croatia relate to
broader climatic and bioclimatic conditions. The use of GBIF helped address national data
limitations and enabled an ecological niche comparison at the regional scale. The regional
models served as tools to support expert assessments in estimating population sizes and
potential threats within Croatia.

National-Level Data
A primary challenge in this study was the lack of comprehensive presence–absence

bird data. A major challenge in this study was the absence of comprehensive presence–
absence data for bird species. Consequently, we utilized all available bird occurrence data
from diverse sources to ensure the most complete dataset possible.

Bird data—Species Occurrence Data
Key national datasets included:
MZOE database (formerly HAOP “Crofauna”)—This database includes spatial records

from scientific studies, incidental sightings, and conservation monitoring. Data were
collected without a standardized research effort and reflect the characteristics of citizen
science databases rather than structured ecological surveys.

Fauna.hr database—Maintained by the BIOM association (BirdLife International’s
Croatian partner), this database contains valuable bird records but suffers from inconsistent
spatial sampling. There is adequate information for congregation and rare species, but
territorial species with large, heterogeneous home ranges are underrepresented.

International Waterbird Census (IWC)—Spanning 1968–2018 and supported by the
Croatian Society for Bird and Nature Protection (DZPP), this observational dataset also
resembles citizen science efforts. To address its gaps, additional data were obtained from
targeted surveys such as the EU Natura 2000 Integration Project (2014–2016), covering
breeding and wintering birds in 175 10 × 10 km grid cells, and the SMART project [20],
which targeted lesser-studied species.

Justification for Use of Non-Systematically Collected Data
The ecological modeling undertaken in this study is based largely on presence-only

data because of the absence of a unified, systematically collected bird monitoring database
in Croatia. While this presents inherent challenges, the inclusion of these datasets is justified
based on several considerations. First, presence-only data still contain valuable ecological
signals, especially when spatial and temporal biases are addressed through established
preprocessing techniques such as spatial thinning and pseudo-absence generation. Second,
integrating data from multiple independent sources enhances spatial coverage and species
representation, compensating for limitations in any single dataset. Finally, all models were
developed with transparency, validated using performance metrics such as AUC, and inter-
preted in conjunction with expert knowledge systems. These strategies collectively ensure
that the results remain scientifically credible and actionable for conservation planning
despite the heterogeneity of input data.

Targeted research included species such as Tetrao tetrix, Tetrao urogallus, woodpeckers,
mountain owls, Alectoris graeca, Caprimulgus europaeus, Hipolais olivetorum, raptors, wetland
passerines, waterfowl, waders, and colonial birds (e.g., herons, gulls, ibises, cormorants,
and terns) (Table 1).

https://www.gbif.org/
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Table 1. List of bird species and ecological groups of bird species included in this work/presented
only M. pygmaeus as an example.

Ecological Group Species

Woodpeckers and Picids Dendrocopos leucotos, Dendrocopos major, Dendrocopos syriacus, Dryobates minor, Dryocopus
martius, Leiopicus medius, Picoides tridactylus, Picus canus, Picus viridis

Birds of Prey (Raptors)
Circaetus gallicus, Accipiter brevipes, Accipiter gentilis, Tachyspiza nisus, Aquila fasciata, Clanga
pomarina, Buteo buteo, Falco subbuteo, Falco vespertinus, Falco biarmicus, Falco columbarius,

Hieraaetus pennatus, Pernis apivorus, Circus cyaneus, Milvus migrans

Game Birds Alectoris graeca, Tetrao urogallus, Bonasa bonasia

Nocturnal Birds Caprimulgus europaeus, Aegolius funereus, Glaucidium passerinum

Herons, Egrets, and Allies Ardea alba, Ardea cinerea, Ardea purpurea, Ardeola ralloides, Egretta garzetta, Nycticorax
nycticorax

Spoonbills and Ibises Platalea leucorodia, Plegadis falcinellus

Cormorants Microcarbo pygmaeus, Phalacrocorax carbo sinensis

Terns and Gulls Chlidonias hybrida, Chlidonias niger, Thalasseus sandvicensis, Hydrocoloeus minutus, Larus
melanocephalus, Larus ridibundus

Rails and Crakes Fulica atra, Gallinula chloropus, Porzana porzana, Rallus aquaticus, Zapornia parva, Zapornia
pusilla

Ducks, Geese, and Swans
Anas acuta, Anas crecca, Anas platyrhynchos, Anser albifrons albifrons, Anser anser, Anser

fabalis rossicus, Aythya ferina, Aythya fuligula, Aythya nyroca, Bucephala clangula, Cygnus olor,
Mareca penelope, Mareca strepera, Netta rufina, Spatula clypeata, Spatula querquedula

Grebes Podiceps cristatus, Podiceps grisegena, Podiceps nigricollis, Tachybaptus ruficollis

Passerines

Alcedo atthis, Riparia riparia, Acrocephalus arundinaceus, Acrocephalus melanopogon,
Acrocephalus schoenobaenus, Acrocephalus scirpaceus, Cettia cetti, Cisticola juncidis, Emberiza
schoeniclus, Locustella fluviatilis, Locustella luscinioides, Panurus biarmicus, Remiz pendulinus,

Hippolais olivetorum

Shorebirds and Waders

Actitis hypoleucos, Calidris alpina, Calidris pugnax, Charadrius alexandrinus, Charadrius
dubius, Grus grus, Haematopus ostralegus, Himantopus himantopus, Limosa limosa, Numenius

arquata arquata, Numenius phaeopus, Pluvialis squatarola, Recurvirostra avosetta, Tringa
erythropus, Tringa glareola, Tringa nebularia

Large Waterbirds Botaurus stellaris, Ixobrychus minutus

Data Cleaning and Standardization
Extensive preprocessing was required to address inconsistencies in file formats, vari-

able naming, and data standards. Key procedures included:
Detection and correction of coordinate reference system (CRS) errors using EPSG codes;
Standardization of file formats (Shapefiles, Excel, TXT, etc.);
Harmonization of variable naming and meanings;
Taxonomic corrections based on BirdLife International;
Removal of formatting artifacts (e.g., whitespace, case inconsistencies);
Normalization of date and count fields;
Separation of population types (breeding, wintering, flyover);
Transformation into spatial features and aggregation to a reference grid.
Reference Grid Preparation
To model the distribution of 111 bird species across different population types, more

than 150 spatial variables were created, primarily from Earth observation data. A condensed
list of variables is presented in Table 1. Unlike single-species studies, a common set of
variables was used across all species.

Regional Context
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For the regional context, universally available environmental variables were used to
ensure comparability and ease of application. These datasets enabled the contextualization
of Croatian bird populations within broader environmental gradients.

All spatial data were projected using the EEA standard projection ETRS-LAEA 89
(EPSG:3035). The outputs were also transformed into Croatia’s official CRS (EPSG:3765)
where appropriate.

The 2019 Copernicus Land Cover dataset (https://zenodo.org/record/5848610) (ac-
cessed on 7 July 2023), featuring a 100 m resolution, was reprojected and resampled to EEA
reference grids [21] to the appropriate CRS and used in cross-border modeling because of
its alignment with field survey timing.

National Context—Environmental Variable Categories
Environmental predictors were grouped into four categories:
Morphometric Variables—Derived from EU-DEM v1.1 (30 m resolution), including

elevation, slope, and Wetness Index [22].
Habitat Variables—Two data types were prepared: binary presence/absence of habitat

types and area-based summaries. Sources: 2004 Habitat Map [23] and 2016 Non-Forest
Habitat Map [24].

Habitat Heterogeneity—Based on Copericus Land Cover Data [25] using metrics
such as Connectivity, Diversity, and Number of Categories, calculated via Fragstats and
landscape metrics [26,27].

Bioclimatic Variables—Sourced from WorldClim and accessed via the geodata R
package [28].

Environmental variables
Data Cleaning and Standardization
Extensive preprocessing was required to address inconsistencies in file formats, vari-

able naming, and data standards. This was performed in the R programming environ-
ment [29] using various packages. Key procedures included:

Detection and correction of coordinate reference system (CRS) errors using EPSG codes;
Standardization of file formats (Shapefiles, Excel, TXT, etc.);
Harmonization of variable naming and meanings;
Taxonomic corrections based on BirdLife International;
Removal of formatting artifacts (e.g., whitespace, case inconsistencies);
Normalization of date and count fields;
Separation of population types (breeding, wintering, flyover);
Transformation into spatial features and aggregation to a reference grid.
Spatial Modeling
Two presence-only modeling approaches were employed: MaxEnt [30] and Random

Forest (RF) classification [31]. These are established methods in ecological niche model-
ing [2,16,17], designed for cases where absence data are unavailable.

Modeling Environment
All modeling and analysis were performed in R [29] using packages such as

openxlsx [32], sf [33,34], RandomForest [35], spThin [36], dismo [37], rgeos [38], Wal-
lace [39], terra [40], raster [41], and ENMeval [7].

Regional Models
MaxEnt models used GBIF data, with 5000 randomly selected observations per species

stratified by season. Pseudo-absence points were randomly generated. Environmental
variables (e.g., DEM, BIOCLIM, and ESA 2021 land cover) were sampled at each loca-
tion. The models predicted areas of maximum entropy, distinguishing presence from
background points.

National Models

https://zenodo.org/record/5848610
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For national-level MaxEnt models, only data from the past 25 years were used. Habitat
Suitability Indices (HSI, range 1–100) were generated and categorized. Models were
validated using AUC from ROC curves; those scoring below 0.7 were excluded.

RF models classified areas as suitable or unsuitable for species based on presence
(class 1) vs. absence. Using 1000 trees, the model determined key predictor variables and
minimized presence-class errors. Internal resampling compensated for the lack of explicit
training/testing splits.

Due to the large number of models (2 algorithms × 111 species × 3 populations; not
for all species), individual results are not presented. Selected species were used to illustrate
the modeling methodology.

Spatial autocorrelation was managed by thinning occurrence records to one presence
per 1 × 1 km grid cell. Pseudo-absence points were only generated in cells without
observed presences.

Post-Hoc Population Estimation
Population estimates considered:
Species with large home ranges—Population estimates were informed by RF-predicted

suitable areas, expert input, and both regional and national MaxEnt outputs.
Species with small, habitat-specific territories—Estimates were extrapolated based on

known densities and habitat availability.
Each bird guild was analyzed using a tailored post-processing methodology, incorpo-

rating habitat presence and area data per grid cell.

3. Results
In this section, we present the modeling results for M. pygmaeus, a species randomly

selected from a subgroup of birds with complex habitat requirements and broad spa-
tial needs. Although selected randomly within this group, the species is ecologically
representative, making it suitable for illustrating both the modeling approach and the
expert-based post-hoc evaluation. The same procedure—adapted by bird guild and eco-
logical specificity—was applied to all 111 bird species and their breeding, wintering, and
flyway populations.

In the regional context, Figure 1. The result of the Maxent model based on the global
dataset and GBIF data shows that the coastal area of Croatia, as well as the most eastern
part of Croatia, falls into a relatively suitable area for the breeding of M. pygmaeus.

To assess breeding suitability at the national scale, a Random Forest (RF) classification
model was employed. The RF model identified 437 1 × 1 km grid cells as suitable for
breeding, suggesting a total breeding area of 437 km2. Variable importance from the RF
model showed that top predictors included digital elevation (DEM; importance: 0.01715), a
maximum temperature of the warmest month (BIO_5; 0.01437), and the extent of wetland
habitat (AGG_A4; 0.01173), along with several other temperature and precipitation-related
bioclimatic variables (see Table 2 below). Spatial models provided valorization of Croatian
territory for M. pygmaeus (Figures 2–4; Table 2), completely randomly selected species for
presenting results, allowing post-hoc evaluation and ranking of protected areas for the
species and expert-based estimation of the population size.

Interestingly, the models predict suitable breeding habitats for the species along the
entire Istrian coast and other northern parts of Croatia. However, no breeding records exist
for these areas. For this and many other species, the models often identify ecologically
similar areas to those where the species has been observed.
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Figure 1. Regional valorization of space for breeding population of the species M. pygmaeus using
Maxent modeling and GBIF data (black dots). Greener colors in the figure represent higher suitability
for the breeding population of the species.

 

Figure 2. Habitat suitability, national valorization of space for breeding population of the species
M. pygmaeus using Maxent modeling using national data not older than 25 years Black polygon is
convex hull around data. Green squares are 10 km by 10 km squares with at least one presence of the
species from the last 5 years. Red–orange colors represent the most suitable area for the breeding
population of the species.



Diversity 2025, 17, 399 8 of 16

 

Figure 3. Detected breeding area and national valorization for the breeding population of the species
M. pygmaeus using a Random Forest classification algorithm and national data not older than 25 years.
The black polygon is a convex hull around data. Green squares are 10 km by 10 km squares with at
least one presence of the species from the last 5 years. Red–orange colors represent the most suitable
area for the breeding population of the species.

 

Figure 4. Example of final lassification of Maxent algorithm habitat suitability result at national scale
for breeding population of M. pygmaeus; zoom at North Dalmatiathe square.
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Table 2. List of environmental variables that influence the spatial distribution of the breeding
population of M. pygmaeus at a national scale.

Variable Description Abs Significance

DEM Digital elevation model 0.01715
BIO_5 Max Temperature of Warmest Month 0.01437

AGG_A4 Area of habitat A1 (element of inland surface water and wetlands) 0.01173
BIO_9 Mean Temperature of Driest Quarter 0.00879

BIO_18 Precipitation of Warmest Quarter 0.00845
BIO_1 Annual Mean Temperature 0.00683
BIO_3 Isothermality 0.00609

BIO_10 Mean Temperature of Warmest Quarter 0.00554
AGG_A1 Area of habitat A4 (element of inland surface water and wetlands) 0.00548

There may be multiple reasons why the species has not been recorded in certain areas:
the species may not actually occur in these regions because of an environmental variable
not included in the model. The limiting factor may not necessarily be an environmental
variable but rather a consequence of land management practices. Constraints could include
insufficient habitat size to meet the species’ needs and increased disturbances due to human
activities such as habitat disruption or hunting.

A large number of environmental factors that restrict species’ settlement—especially
for species requiring complex habitat combinations over large areas—cannot be easily
mapped or adequately incorporated into spatial models. This is particularly true for
variables describing human activities in the landscape and physical barriers such as fences,
which may significantly impact species distribution.

The post-hoc analytical approach differed substantially across bird guilds and ecological
profiles; therefore, we do not present the full process for each species here. In brief, for each
species/population, we evaluated habitat suitability across Croatian territory, identified key
environmental variables correlated with distribution, and compared suitability scores within
and outside protected areas. Final estimations of population sizes—both within protected
areas and nationwide—were made using expert knowledge and interpolated species densities
applied to areas classified as suitable by the RF model.

In the case of M. pygmaeus, the results (Figure 2) show that the Croatian population is
neither marginal nor limited by major climate or land cover constraints. When comparing
models, both Maxent and RF showed general agreement at the national scale, although
differences emerge in marginal areas. Maxent, which provides a continuous habitat suit-
ability index (ranging from 0 to 100), tends to highlight broader gradients of suitability,
while the RF model outputs a binary classification (0 or 1), categorizing each grid cell as
either suitable or unsuitable, resulting in sharper habitat boundaries.

Notably, the RF model excluded several central and eastern areas of Croatia that
were considered potentially suitable by Maxent. This discrepancy emphasizes the dif-
ference in how both algorithms define suitability thresholds. Furthermore, as shown in
Figures 3 and 4, which display a convex hull around national occurrence data from the
past 25 years, many areas predicted as suitable breeding habitats lack any observational
records. This gap may be due to unmodeled variables, such as local land use practices,
habitat fragmentation, or the presence of physical barriers, all of which can significantly
affect the actual occupancy of predicted suitable areas.

At the national scale, the habitat suitability for M. pygmaeus was modeled using both
Maxent and Random Forest (RF) algorithms. Maxent, using global GBIF data, predicted
coastal and eastern inland regions of Croatia as suitable breeding habitats. Interestingly,
Maxent also identified northern and Istrian coastal zones as highly suitable, although no
breeding records exist from these areas. Such an overprediction may be due to unmod-
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eled constraints such as human disturbance, land management practices, or fine-scale
habitat structure.

To complement Maxent and to produce a binary habitat classification, we applied a
Random Forest (RF) classification model using the randomForest package in R. The model
was trained on the dataset data_for_RF using the formula index~., with 1000 trees and the
na.roughfix method for missing values. The RF algorithm identified 437 1 × 1 km grid cells
as suitable breeding habitats, corresponding to a national breeding area of 437 km2.

The most influential variables in the RF model were DEM_1k (elevation): 0.01715;
bio5_16 (max temperature of the warmest month): 0.01437; agg_A4 (area of inland water
and wetland habitats): 0.01173. Other contributing variables included temperature sea-
sonality, precipitation of the warmest quarter, and additional habitat area indicators (see
Table 3).

Table 3. The condensed list of variables prepared and used in different geographical contexts.

Category Variable Name Description

Morphometric Variables Digital Elevation Model (DEM) Surface elevation model

Wetness Index (WI) Potential water accumulation index

Slope Terrain slope

Habitat Variables Habitat Type Presence Presence (1) or absence (0) of habitat type at reference grid

Habitat Type Area Area of each habitat type at 1 km reference grid

Aggregated Habitat Types Spatial aggregation of habitat types up to 2nd level of national
classification scheme (e.g., agg_A1, agg_A2, agg_B12, etc.)

Habitat Heterogeneity
Variables Averaged Connectivity Average connectivity between habitat fragments

Connectivity Connectivity between habitat fragments

Diversity Degree of habitat heterogeneity

Number of Categories Number of different land cover categories per grid

Bioclimatic Variables
(WorldClim BIOCLIM)

BIO1—Annual Mean
Temperature Average annual temperature

BIO2—Mean Diurnal Range Mean difference between daily max and min temperatures

BIO3—Isothermality Ratio of mean diurnal range to the annual temperature range

BIO4—Temperature Seasonality Variation in temperature throughout the year

BIO5—Max Temperature of
Warmest Month Maximum temperature of the hottest month

BIO6—Min Temperature of
Coldest Month Minimum temperature of the coldest month

BIO7—Temperature Annual
Range Difference between BIO5 and BIO6

BIO8—Mean Temperature of
Wettest Quarter Mean temperature during the wettest 3-month period

BIO9—Mean Temperature of
Driest Quarter Mean temperature during the driest 3-month period

BIO10—Mean Temperature of
Warmest Quarter Mean temperature during the warmest 3-month period

BIO11—Mean Temperature of
Coldest Quarter Mean temperature during the coldest 3-month period

BIO12—Annual Precipitation Total annual precipitation
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Table 3. Cont.

Category Variable Name Description

BIO13—Precipitation of Wettest
Month Precipitation in the wettest month

BIO14—Precipitation of Driest
Month Precipitation in the driest month

BIO15—Precipitation
Seasonality Variation in monthly precipitation levels

BIO16—Precipitation of Wettest
Quarter Total precipitation in the wettest 3-month period

BIO17—Precipitation of Driest
Quarter Total precipitation in the driest 3-month period

BIO18—Precipitation of
Warmest Quarter Total precipitation in the warmest 3-month period

BIO19—Precipitation of Coldest
Quarter Total precipitation in the coldest 3-month period

Land Cover Categories
(ESA LC 2021) Tree Cover Percentage of tree cover

Shrubland Percentage of shrub cover

Grassland Percentage of grassland cover

Cropland Percentage of agricultural land

Built-up Areas Percentage of artificial surfaces

Bare/Sparse Vegetation Percentage of barren land

Snow and Ice Percentage of snow and ice cover

Permanent Water Bodies Percentage of surface covered by water

Herbaceous Wetland Percentage of wetland cover

Mangrove Percentage of mangrove cover

Moss and Lichen Percentage of moss and lichen cover

The confusion matrix indicated perfect classification of absences (50/50) but lower
sensitivity for presences, with 10 out of 14 known breeding sites correctly classified (classi-
fication error for presences = 28.6%). This result suggests some caution when interpreting
binary predictions, especially in fragmented or marginal habitats.

Post-Hoc Evaluation and Population Estimation
For all species in this study, including M. pygmaeus, the modeling results were further

refined through expert-driven post-hoc evaluations. These involved:
Quantification and ranking of environmental variables correlated with species pres-

ence, comparison of protected area effectiveness for habitat provision,
Estimation of occupied territories and interpolation of population size across suitable

habitat patches.
In the case of M. pygmaeus, it is clear from Figure 2 that the Croatian breeding pop-

ulation is not climatically or geographically marginal. However, Figures 3 and 4, which
include a convex hull of national presence records from the past 25 years, show that many
potentially suitable areas lack any confirmed observations. This discrepancy reinforces
the need for expert validation, especially for species with patchy distributions or specific
ecological constraints.

The combined modeling approach, integrating spatial algorithms and expert post-hoc
assessments, provides a robust framework for evaluating population sizes and habitat
values, even when systematic data collection is limited. By using species with differing
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habitat complexity and ecological specificity, this approach ensures broader applicability
across bird conservation planning.

The approach to post-hoc analyses is significantly different for different bird guilds,
so we are not presenting the process made for each bird species in regard to the guild and
ecological specificity of the species. In summary, for each species/population, an evaluation
of Croatian territory was performed, and quantification and ranking of environmental
variables were performed for those that have the highest correlation with detected species
spatial distributions. Additionally, a comparison of protected areas for suitability for the
species (Table 4), estimation of occupied territories, and estimation of the population size
for the protected area and overall Croatian territory was given by adequate interpolating of
species densities at suitable habitats obtained with the classification RF algorithm.

Table 4. Comparison among protected areas for breeding population of M. pygmaeus based on results
of Maxent algorithm.

Sort Site ID Count/Area of the Site N MIN MAX MEAN

0 40,139,618 177,536 1 62 10.32
1 228,484 0
2 46,923 0
3 31,817 2242 7 12 10.73
4 204,609 1641 2 31 11.38
5 97,578 0
6 14,486 0
7 45,377 0
8 24,664 0
9 5883 5126 1 51 29.41
10 21,768 0
11 61,252 27,452 1 62 24.56
12 10,752 0
13 23,405 0
14 88,764 7891 1 29 10.12
15 67,109 47,896 1 62 17.57
16 69,104 0
17 87,799 0
18 30,239 0
19 38,423 235 4 59 9.95
20 47,334 1403 1 12 6.92
21 14,550 0
22 20,203 600 3 9 5.66
23 20,571 0
24 39 0
25 38,410 0
26 85,758 8455 1 29 8.25
27 14,594 7076 1 19 10.72
28 13,464 0
29 18,267 3990 1 9 5.96
30 1928 196 1 11 7.98
31 39,973 14,091 1 4 1.97
32 35,839 17,417 1 10 6.04
33 123,454 1198 1 4 2.41
34 1668 0
35 23,790 0
36 29,287 2842 3 34 9.33
37 24,891 5971 1 62 32.36
38 120,927 33,542 1 32 8.69
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In the case of the presented species, M. pygmaeus, Figure 2 shows that the Croatian
population is not in any way a marginal population limited by climate or land cover
variables. At a national scale, the two models correspond, but the differences are mostly
visible in the less suitable areas for the species. The classification type RF algorithm did not
predict the central and eastern part of Croatia as suitable areas. The reason for this is that
the Maxent algorithm is an algorithm that provides a suitability index in the range of 0–100,
but the classification type RF algorithm produced a binary variable (0, 1), so each pixel can
be either suitable or unsuitable for the population and clear cut-offs are made. Looking at
Figures 3 and 4, where we presented convex hull around national presence data from the
last 25 years, it is visible that for the majority of potentially suitable breeding habitats for
the species, there are no observations of the species whatsoever.

4. Discussion
Species distribution models (SDMs) are indispensable tools for identifying habitat

preferences and informing conservation strategies, particularly in regions where stan-
dardized biodiversity data are lacking. In this study, we applied two machine learning
approaches—Maxent and Random Forest (RF)—to predict the breeding distribution of
birds in Croatia, with a case focus on M. pygmaeus. Despite the inherent limitations of
presence-only datasets, both models provided ecologically meaningful insights that can
support biodiversity planning at national and local scales.

The Random Forest model for M. pygmaeus identified key environmental predictors
aligned with the species’ known ecological niche. Elevation (DEM_1k), the maximum
temperature of the warmest month (bio5), and proximity to inland water and wetland
habitats emerged as the most important variables. These findings are consistent with the
species’ preference for lowland freshwater wetlands, confirming the ecological plausibility
of the model outputs. The Maxent model, by producing a continuous habitat suitability
index, offered finer resolution insights into habitat quality within protected areas, while
the RF model’s binary classification was effective in delineating areas suitable for breeding.

The confusion matrix from the RF model indicated high accuracy for absence pre-
dictions, while true presences were slightly underrepresented, with a classification error
of 28.6% for the presence class. This discrepancy highlights a broader challenge in SDM
application—model performance may be skewed when presence data are limited or spa-
tially biased, as is often the case with citizen science datasets [12,42].

A major limitation of biodiversity research in Croatia is the absence of systematically
collected presence–absence data. Current databases are largely derived from opportunistic
observations, often concentrated in protected areas, which introduce spatial bias. Such
data are not ideally suited for parametric modeling approaches such as Generalized Linear
Models (GLMs) or Generalized Additive Models (GAMs), necessitating the use of machine
learning algorithms that can accommodate presence-only data, such as Maxent and RF
(which internally generate pseudo-absences) [11,12].

To address these limitations, we incorporated expert validation into the modeling pro-
cess. Expert knowledge was used to refine model outputs and ensure ecological credibility,
particularly in cases where species distributions were poorly represented by these data.
This integration of expert judgment is essential for generating reliable models under data-
limited conditions and helps bridge the gap between statistical predictions and real-world
ecological patterns.

Earth observation data derived from remote sensing technologies were fundamental
to our modeling approach. Variables such as temperature, precipitation, land cover, and
vegetation indices were sourced from platforms such as Sentinel, Landsat, and the Coperni-
cus Climate Data Store. These datasets allow for consistent, high-resolution environmental
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characterization across large geographic extents, enabling SDMs to operate effectively even
when field-based measurements are sparse or unevenly distributed [3,43].

In particular, remote sensing enables monitoring of dynamic environmental processes—such
as vegetation seasonality and surface water availability—which are crucial for species such as M.
pygmaeus that depend on aquatic habitats. The integration of such data strengthens the predictive
power of SDMs and supports the assessment of habitat changes over time, including those driven
by climate change or anthropogenic disturbance [11].

While remote sensing and expert input can partially compensate for data gaps, the lack
of standardized ecological monitoring remains a critical barrier to biodiversity modeling in
Croatia. The absence of systematic sampling protocols limits the ability to model species’
ecological niches accurately and to validate model predictions against independent datasets.

Improving national biodiversity datasets through the implementation of standardized
monitoring protocols would significantly enhance the utility of SDMs [12]. Aligning
data collection efforts with international best practices—such as the Global Biodiversity
Observation Network (GEO BON) or Essential Biodiversity Variables (EBVs)—would
enable Croatia to improve both the quality of ecological research and the effectiveness of
conservation policy.

Future developments in remote sensing, including higher spatial resolution, increased
temporal frequency, and integration with citizen science platforms, may offer new oppor-
tunities to improve species distribution models. Technologies such as unmanned aerial
vehicles (UAVs) and real-time environmental sensors could provide novel data sources to
further support habitat assessments and dynamic SDMs.

Despite the inherent limitations in data quality, this study demonstrates that the
combination of machine learning algorithms, Earth observation data, and expert input can
yield reliable models for biodiversity assessment. These models can inform conservation
planning by identifying key habitats, estimating population distributions, and guiding
resource allocation. For species of conservation concern, such as M. pygmaeus, SDMs can
support targeted monitoring efforts and proactive habitat management.

However, for SDMs to reach their full potential, investments in biological data infras-
tructure are urgently needed. The adoption of systematic, long-term biodiversity monitor-
ing programs will be critical for enhancing the accuracy, transparency, and applicability of
predictive ecological models in Croatia and similar data-poor regions.

5. Conclusions
This study demonstrates the utility of machine learning–based species distribution

models (SDMs) in ecological research and conservation planning, even in data-limited
contexts such as Croatia. By applying Maxent and Random Forest algorithms to model
the breeding distribution of M. pygmaeus, we were able to identify key environmental
variables—such as temperature, wetland coverage, and elevation—that define suitable
habitats for this species at the national scale.

Despite the limitations associated with presence-only data and opportunistic observa-
tions, our approach—supplemented by expert input and remotely sensed environmental
variables—yielded ecologically meaningful predictions. The integration of Earth observa-
tion data proved critical for enhancing model performance and enabling spatially explicit
assessments of habitat suitability, particularly in areas lacking ground-based biodiver-
sity monitoring.

Our findings underscore the urgent need to improve biodiversity data collection
practices in Croatia. Systematic, high-quality presence–absence data are essential to validate
and refine predictive models and to align national conservation efforts with global best
practices. Moving forward, the adoption of standardized monitoring protocols, coupled
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with ongoing advancements in remote sensing technology, will be essential for supporting
robust, data-driven biodiversity management.

In conclusion, the combined use of SDMs, remote sensing, and expert knowledge
offers a practical and effective pathway for improving species conservation outcomes in
regions with limited ecological datasets. Such an approach provides a scalable frame-
work for assessing habitat suitability, guiding field surveys, and prioritizing conservation
interventions in support of biodiversity preservation.

Author Contributions: Validation, L.T.T.; Formal analysis, A.R.; Data curation, S.K.; Writing—original
draft, A.R. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are not publicly
available due to restrictions imposed by third-party ownership. Access to the data is therefore not
possible through the authors.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Elith, J.; Leathwick, J.R. Species distribution models: Ecological explanation and prediction across space and time. Annu. Rev.

Ecol. Evol. Syst. 2009, 40, 677–697. [CrossRef]
2. Gallien, L.; Münkemüller, T.; Albert, C.H.; Boulangeat, I.; Thuiller, W. Predicting potential distributions of invasive species: Where

to go from here? Divers. Distrib. 2010, 16, 331–342. [CrossRef]
3. Bannari, A.; Huete, A.R.; Morin, D.; Bonn, F. A review of vegetation indices. Remote Sens. Rev. 1995, 13, 95–120. [CrossRef]
4. Peterson, A.T.; Soberón, J.; Pearson, R.G.; Anderson, R.P.; Martínez-Meyer, E.; Nakamura, M.; Araújo, M.B. Ecological Niches and

Geographic Distributions; Princeton University Press: Princeton, NJ, USA, 2011. [CrossRef]
5. Guisan, A.; Thuiller, W. Predicting species distribution: Offering more than simple habitat models. Ecol. Lett. 2005, 8, 993–1009.

[CrossRef]
6. Broennimann, O.; Treier, U.A.; Müller-Schärer, H.; Thuiller, W.; Peterson, A.T.; Guisan, A. Analyzing niche dynamics during

biological invasions. Ecol. Lett. 2007, 10, 701–719. [CrossRef]
7. Stein, A.; Gerstner, K.; Kreft, H. Environmental heterogeneity as a universal driver of species richness across taxa, biomes and

spatial scales. Ecol. Lett. 2014, 17, 866–880. [CrossRef]
8. Petersen, C. Integrating remote sensing data into species distribution models. Ecography 2013, 36, 789–800.
9. Merow, C.; Smith, M.J.; Silander, J.A., Jr. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why

inputs and settings matter. Ecography 2013, 36, 1058–1069. [CrossRef]
10. Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006,

190, 231–259. [CrossRef]
11. Elith, J.; Leathwick, J.R.; Hastie, T. A working guide to boosted regression trees. J. Anim. Ecol. 2011, 77, 802–813. [CrossRef]
12. He, K.S.; Bradley, B.A.; Cord, A.F.; Rocchini, D.; Tuanmu, M.N.; Schmidtlein, S.; Turner, W.; Wegmann, M.; Pettorelli, N.

Integrating remote sensing data into species distribution models. Ecography 2013, 36, 789–800.
13. Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction; Cambridge University Press: Cambridge, UK, 2010.

[CrossRef]
14. Thomas, C.D.; Cameron, A.; Green, R.E.; Bakkenes, M.; Beaumont, L.J.; Collingham, Y.C.; Erasmus, B.F.N.; Ferreira de Siqueira,

M.; Grainger, A.; Hannah, L.; et al. Extinction risk from climate change. Nature 2004, 427, 145–148. [CrossRef] [PubMed]
15. Pearson, R.G.; Dawson, T.P. Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope

models useful? Glob. Ecol. Biogeogr. 2003, 12, 361–371. [CrossRef]
16. Bueno de Mesquita, C.P.; King, A.J.; Schmidt, S.K.; Farrer, E.C.; Suding, K.N. Incorporating biotic factors in species distribution

modelling: Are interactions with soil microbes important? Ecography 2016, 39, 970–980. [CrossRef]
17. Zhang, L. Use of remote sensing in biodiversity monitoring and ecosystem management. Biodivers. Conserv. 2019, 28, 2225–2237.
18. Hirzel, A.H.; Le Lay, G. Habitat suitability modelling and niche theory. J. Appl. Ecol. 2008, 45, 1372–1381. [CrossRef]
19. GBIF. Global Biodiversity Information Facility. Available online: https://www.gbif.org/ (accessed on 15 December 2024).

https://doi.org/10.1146/annurev.ecolsys.110308.120159
https://doi.org/10.1111/j.1472-4642.2010.00652.x
https://doi.org/10.1080/02757259509532298
https://doi.org/10.1515/9781400840670
https://doi.org/10.1111/j.1461-0248.2005.00792.x
https://doi.org/10.1111/j.1461-0248.2007.01060.x
https://doi.org/10.1111/ele.12277
https://doi.org/10.1111/j.1600-0587.2013.07872.x
https://doi.org/10.1016/j.ecolmodel.2005.03.026
https://doi.org/10.1111/j.1365-2656.2008.01390.x
https://doi.org/10.1017/CBO9780511810602
https://doi.org/10.1038/nature02121
https://www.ncbi.nlm.nih.gov/pubmed/14712274
https://doi.org/10.1046/j.1466-822X.2003.00042.x
https://doi.org/10.1111/ecog.01797
https://doi.org/10.1111/j.1365-2664.2008.01524.x
https://www.gbif.org/


Diversity 2025, 17, 399 16 of 16
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