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A significant discrepancy, spanning multiple orders of magnitude, exists between the leading
order contribution to the 𝐷0𝐷0 mixing parameters and experimental values. This is largely due
to the Glashow–Iliopoulos–Maiani (GIM) mechanism, which results in substantial suppression
of the theoretical predictions. To bridge this gap, various efforts have been made to account
for higher-order terms and nonperturbative effects, which, although suppressed in the operator
product expansion (OPE), could potentially lead to a larger contribution by weakening the GIM
cancellation through flavour SU(3) symmetry breaking. In this work, we compute the long-
distance contributions of nonlocal QCD condensates within different models and, for the first
time, determine the impact of the mixed condensate. Although our results still fall short of the
experimental value, they represent an improvement over current theoretical estimates by an order
of magnitude.
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1. Introduction

Most recent HFLAV results (September 2023) [1] found the average experimental value for the
mass difference mixing parameter of neutral charm mesons to be

𝑥𝐷 =
Δ𝑀

Γ𝐷
= (0.407 ± 0.044)% . (1)

On the theory side, a calculation taking into account short-distance leading and next-to-leading
perturbative terms, gives a result which is orders of magnitude away from the experimental value
[2]. This is due to strong CKM suppression and very efficient GIM cancellation in the box-diagrams
leading to the mixing, although separate contributions are large. It was demonstrated in [3] that the
issue could be resolved by selecting the renormalization scale for each internal quark contribution
individually. In contrast, the exclusive approach [4] and the dispersive approach [5–7] showed that
the experimental value can be achieved by accounting for SU(3) breaking effects. However, these
approaches suffer from large uncertainties and uncontrollable theoretical errors.

Already a long time ago there was an idea [8, 9] that the inclusion of contributions from higher-
order operators in HQET, although suppressed, may lead to a less effective GIM cancellation, giving
rise to a larger final value for mixing in the charm system. In addition, because of the not-so-large
charm-quark mass, the long-distance, non-perturbative effects cannot be ignored in charm-meson
mixing. This, however, questions how fast the OPE expansion would converge.

In this talk, in the inclusive approach, we focus on the long-distance contribution to charm
meson mixing which lifts the GIM suppression via chirality breaking terms, specifically arising
from QCD condensates. The basic idea was first promoted in [10]. The QCD condensates have
been known for some time and appear regularly in the QCD sum rules method ([11] and others)
to compute various non-perturbative quantities including hadronic decay constants and transition
form factors. To our knowledge, nonlocal condensates (NLC) were initially applied to assess
the pion distribution amplitude, aiming to enhance the precision of ‘traditional’ sum rules with
local condensates in [12]. However, the first comprehensive exploration of condensate nonlocality
occurred earlier, particularly within heavy-quark propagators and their mass expansions [13–18].

An analysis of local vacuum condensate contributions to charm mixing was carried out by [19],
focusing on the leading chirality breaking term of the diquark condensate. We extend the study of
their (unpublished) work by incorporating models for the nonlocal QCD condensate expansion, and
also including higher-dimensional condensates (both mixed and four-quark), which may provide
significant contributions. Finally, by introducing the nonlocality of the condensates, we probe the
convergence of 1/𝑚𝑐 expansion.

2. Nonlocal condensates

Typically, the leading order contribution originates from the so-called box diagram. The
propagators of internal quarks lie between weak interaction currents (𝑉−𝐴), allowing only structures
with an odd number of gamma matrices to contribute. The GIM mechanism implies that any terms
independent of the internal quark masses will cancel out. Due to the left-handed nature of weak
interactions, each propagator in the box diagram contributes two powers of the quark mass. As a
result, the box diagram is proportional to (𝑚𝑠/𝑚𝑐)4. However, when considering the contributions
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from background quark condensates, the condensate flips helicity and the suppression is reduced to
∝ (𝑚𝑠/𝑚𝑐)3.

The nonlocal quark-quark condensate can be expressed through an expansion in terms of local
condensates, as can be found in [11, 20]:

⟨𝑞(𝑥)𝑎𝛼𝑞(0)𝑏𝛽⟩ =
⟨𝑞𝑞⟩
4𝑁𝐶

𝛿𝑎𝑏

[
𝛿𝛼𝛽

(
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(
𝑚2

2
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)
. . .

)
+
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(
𝑚

4
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(
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⟨𝑞𝑞⟩2

⟨𝑞𝑞⟩

)
. . .

) ]
,

(2)

where 𝑎, 𝑏 are color indices,𝛼, 𝛽 are Dirac indices. Local condensates are simplified as ⟨𝑞(0)𝑞(0)⟩ =
⟨𝑞𝑞⟩, similarly for the mixed condensate. The two terms with distinct Dirac structures can be re-
summed into functions that depend on 𝑥 and the condensate values. The idea was presented in [21],
where the regular large 𝑥 behaviour of the expansion was questioned. This led to the use of models
incorporating a nonlocality parameter 𝜆2

𝑞 ∝ ⟨𝑞𝐷2𝑞⟩ ∝ ⟨𝑞𝑖𝑔𝜎𝐺𝑞⟩ to regulate the large 𝑥 behaviour.
The coefficients in these models are adjusted to match the expansion in the local limit 𝜆2

𝑞 → 0 by
imposing normalisation conditions on the functions that model the condensates. By substituting
these general functions for the expansion, we can directly work with the non-local condensate,
instead of dealing with its local expansion. This enables us to control large 𝑥 behaviour effectively,
while correctly reproducing the expansion for small 𝑥:

⟨𝑞(𝑥)𝑎𝛼𝑞(0)𝑏𝛽⟩ =
⟨𝑞𝑞⟩
4𝑁𝐶

𝛿𝑎𝑏
[
𝛿𝛼𝛽𝐹𝑆 (𝑥) + 𝑖(/𝑥)𝛽𝛼𝐹𝑉 (𝑥)

]
, (3)

To achieve the correct order of expansion of the diagrams in a background field, we likewise
expand the non-local mixed condensate to the same order,

⟨𝑞𝑎𝛼 (𝑥)𝐺𝑐𝑑
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] (4)

and modify it in a similar manner using a general function 𝐹𝐺 (𝑥), which models large 𝑥 behaviour1
as

⟨𝑞𝑎𝛼 (𝑥)𝐺𝑐𝑑
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(5)

The primary parameters in our nonlocal model analysis include 𝜆2
𝑞 = 0.4±0.1 GeV2, the value of the

quark condensate ⟨𝑞𝑞⟩ = −(243 MeV)3, and the ratio of the 𝑠-quark to the light quark condensate
⟨𝑠𝑠⟩/⟨𝑞𝑞⟩ = 0.8 ± 0.3.

1Here, the Dirac structure is more complex. Ideally, each Dirac structure would have its own higher-order corrections
(similar to the quark-quark condensate). Nonetheless, since we are considering, at most, the leading order of the mixed
condensate contribution, we are justified in using a single general function 𝐹𝐺 (𝑥) to model the behaviour for large 𝑥.
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Figure 1: Diagrammatic view of the local expansion of nonlocal condensates: the quark condensate (2),
the mixed condensate (4), and the four-quark condensate, respectively, up to the same order ∝ ⟨𝑞𝑞⟩2. The
dashed-line represents the background soft gluon field. Note that the genuine four-quark contributions
necessarily contain a perturbative gluon exchange.

The general functions 𝐹𝑉 (𝑥), 𝐹𝑆 (𝑥), 𝐹𝐺 (𝑥) introduced above represent a partial resummation
of the OPE to all orders. Their small 𝑥 behavior is tightly constrained by the requirement to
match the expansions, leading to specific coefficients of the general functions that are determined
through this matching process. This is essential for ensuring consistency of the approach. However,
we have some freedom in modeling their large 𝑥 behaviour. The ‘delta’ model, introduced in
references like [12, 22], utilizes delta functions to fix the coefficients to the expansion, simplifying
the representation. On the other hand, the more complex ansatz utilized in works of [23, 24]
introduces a large 𝑥 behavior characterized by an exponential decay, specifically 𝑒−𝜆𝑞

√
−𝑥2 . This

form aligns with expectations from QCD, where correlation functions typically exhibit rapid decay
at large distances, reflecting the confinement of quarks and gluons. Although both models are
constrained to match the small 𝑥 expansion, the disparity in their large 𝑥 behavior could lead to
notable differences in predictions.

3. Results & outlook

Using the simplest delta model, we have calculated the contributions of the quark condensate
and the mixed quark gluon condensate, yielding preliminary results of

𝑥𝑁𝐿𝐶
𝐷 = (5.8 + 1.9) × 10−6 = 7.7 × 10−6, (6)

where the two terms represent contributions of the quark and mixed condensates, respectively. In
contrast, the LO and NLO short-distance calculations from [2] estimate 𝑥

(𝐿𝑂+𝑁𝐿𝑂)
𝐷

≈ 6 × 10−7,
indicating that our result represents an improvement by an order of magnitude.

Comparing the different models discussed earlier (see Fig. 2), we observe that a more complex
model does not lead to significantly different results, but it demonstrates greater stability with
respect to the nonlocality parameter 𝜆2

𝑞.
In conclusion, we have investigated the contributions of non-local condensates to the mixing

of neutral charmed mesons. Our preliminary results indicate that by modeling nonperturbative
effects with NLCs, the GIM suppression of the mass difference mixing parameter can be alleviated,
although it still falls short of matching the experimental value. For the first time, we have also
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Braun's model
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Figure 2: Dependence of the result on the quark virtuality 𝜆𝑞 for the ‘delta’ model [12, 22] and ‘Braun’s
model’ from [23, 24].

considered the contribution from mixed condensates and plan to conduct a comprehensive NLC
calculation that includes the four-quark condensate contribution. Its expected dependence on the
strange mass, 𝑂 (𝑚2

𝑠/𝑚2
𝑐), could significantly impact the mixing of charm mesons. The results will

be presented in a forthcoming publication [25].
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