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We compute the first nontrivial noncommutative correction to the Einstein-Hilbert Lagrangian, which
arises from the double copy of noncommutative Yang-Mills theory (ncYM). We start by considering linear
and quadratic @-corrections up to cubic order in fields in ncYM theory and in arbitrary D dimensions. We
compute the first nontrivial corrections to the three-points vertex operators and use them to construct a
double copy theory of the form ncYM x ncYM. The resulting theory is given by a double geometrical
formalism which includes noncommutative corrections to the perturbative cubic double field theory (DFT)
formulation, where the star product of the theory is doubled in agreement with the doubling of the physical
coordinates of the theory. Upon solving the level matching condition the noncommutative products are
identified and they produced §>-corrections to the cubic DFT action. We analyze the pure gravitational limit
of this formulation considering D = 4 and imposing the transverse-traceless gauge.
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I. INTRODUCTION

Exploring the connections between gauge and gravita-
tional theories has become a central focus of modern
theoretical physics, toward the understanding of the quan-
tum nature of gravitational interactions. One of the most
successful programs in this line of research is the double
copy prescription [1-3], which provides a powerful frame-
work linking scattering amplitudes of gravitational and
gauge theories. First introduced by Kawai, Lewellen, and
Tye [4] this approach reveals a remarkable correspondence
in the context of string theory: closed string tree-level
amplitudes can be recast in terms of open string amplitudes.
Beyond its profound implications for scattering theory, the
double copy formalism has also led to interesting con-
nections between classical solutions in Yang-Mills theory
and gravity [5-10], playing an important role in the
application of scattering amplitude methods to classical
gravitational physics [11-18].

Recently, the double copy formulation of Moyal-Weyl
type noncommutative gauge theories was discussed
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[19,20]. There the twisted version of color-kinematics
duality compatible with the color-kinematics mixing of
noncommutative U(N) gauge theory was developed. The
result of the double copy relations in that case is the
ordinary, commutative gravitational theory. Using the
classical double copy prescription, however, it is possible
to capture the gravitational noncommutative corrections
coming from the double copy map of noncommutative
SU(N) gauge theory. The explicit computation of these
corrections, at their leading order in the noncommutativity
parameter 6, is the main goal of this paper.

We exploit the idea of the classical double copy
prescription which connects Yang-Mills theory with per-
turbative double field theory (DFT) [21], the latter being a
T-duality invariant reformulation of supergravity.' This
prescription was given in [24] for the Yang-Mills theory
expanded up to cubic order in fields,

YM@3)(A) » DFT®3 (e, ¢p) — Sugra®3(h,b,p). (1)

While the double copy map (1) does not require a gauge
fixing condition at quadratic order, the cubic contributions
requires the Siegel gauge fixing at the DFT level, which is
equivalent to the De Donder gauge once the level matching
condition is solved. The same procedure has been used in

'For earlier works, see Refs. [22,23].
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other higher-derivative gauge theories for constructing
T-duality invariant formulations [25-28].

We start by considering linear and quadratic non-
commutative corrections in SU(N) gauge theory as given
in [29-32], up to cubic order in fields. Following [24] but
keeping track of the noncommutative structure of the
theory in arbitrary D dimensions, we compute the three-
point vertex operators d ;. — n'ﬁ,l, and f ;. — ﬂ,(,% + ﬂ,(,zy)p.
Using these operators, we construct the double copy ncYM
x ncYM theory giving rise to a #*>-corrected theory defined
in a double geometrical framework. This is interpreted as a
noncommutative correction to the cubic DFT Lagrangian
(ncDFT) extending (1).

We study the pure gravitational limit (b,, =0 and
@ = 0) in the transverse-traceless gauge (gauge TT) solving
the level matching condition in D = 4. In this limit, the
double copy theory is given by the Einstein-Hilbert
Lagrangian plus Riemann cubic contributions, schemati-
cally,

ncYM®3) SDFT®3) 4 neDFT®)
! J (2)
GR®% 1 92Riem?

Thus we obtain the noncommutative corrections to pure
gravity action from the double copy map.

This paper is organized as follows: In Sec. II we briefly
review the classical double copy procedure given in [24]. In
Sec. III we repeat the basic elements of the ncYM
construction. In Sec. IV we identify the vertex operators
of ncYM to construct the double copy prescription.
We then analyze the resulting gravitational case in the
transverse-traceless gauge. Finally in Sec. V we conclude
our work including an outlook with promising future
directions.

II. DOUBLE FIELD THEORY AS THE DOUBLE
COPY OF YANG-MILLS

We start by reviewing the classical double copy map
developed in [24]. We will briefly show how to obtain a
quadratic and cubic double geometrical framework (which
we understand as a T-duality invariant rewriting of the
NSNS supergravity) using the double copy map. The
starting point is a D-dimensional Yang-Mills action,

1
Sym = _Z/ dDXKabFﬂuaFﬂyba (3)
where
F;wa = 20[;4Au]a + fabcAybAvcv (4)

and space-time indices are contracted with a Minkowski
metric 7, = diag(—, +,+,+) and gauge indices are

contracted by the Cartan-Killing metric «,;,. The quadratic
and cubic action require different maps, apart from the
identification of the gauge field, so we will review them
separately.

A. Quadratic action

Passing to momentum space, the quadratic terms of the
gauge action read (up to a total derivative)

$:= =5 [ KR WA 04, (5)

where [, = [dPk and A,%(k) = (2m)™P/?A,%(x)e™**. The
projector I1#(k) is defined as

k" k¥
() = == (©)
and obeys the identities
" (k)k, = 0, 11, =11 . (7)

The next step is to follow the double copy prescription
which consists on replacing the color indices by a second
set of space-time indices (a — ji) corresponding to a
second set of space-time momenta k”. This implies

A (k) — e,z (k. k). (8)
The Cartan-Killing metric x,;, is identified following the
relation

1o -

Kap — Enﬂv(k)7 (9)
where the projector IT#7 is defined in the same way as the
projector IT* but for barred momenta and indices instead of
the original ones. Using these rules the quadratic action (5)
becomes

1

Sy = _ZA,k TV ()T (K e, (—k. —K) e, (k. k). (10)

while the level matching constraint states that
K =k (11)

The presence of a nonlocal term forces the introduction of
an auxiliary scalar field ¢(k, k),

(k. k) = izkﬂl_c,;eﬂ”. (12)

k
Considering the inclusion of the scalar field (dilaton), it is
straightforward to Fourier transform to a local action in
doubled position space:
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4
+ gpeﬂﬂat_’eﬂa- - ¢D¢ + 2¢()”517€m—/), (13)

i ) _
S, = _/ dPxdPx(e*"Oe,; + e z00e,”

which  reproduces the standard quadratic DFT
action [21]. Pure gravity limit is obtained using x = X as
the solution of the level matching condition and identifying
ey, with the linearized gravitational field &, = g, —1,,,
with h = h), = ¢.

B. Cubic action

After Fourier transforming to momentum space the cubic
contributions from (3), the three-point vertex function with
appropriate antisymmetrization is obtained

7O (ky ky. k) = Ky + 0Py + ks, (14)

for k;; = k; — k;. The action at this point can be written as
[A; = A(k;)]

i
Sy =—————+= [ 6k +k,+k
3 6(2T5)D/2/k,- (ky 2 3)

X fabcﬂﬂDpAcllﬂAguAgp’ (15)
which shows that an extension of the double copy pre-
scription (8), (9) must be considered in order to include the
structure constant. The proper substitution rule is

Foupe —> — 7R

§HO, (16)

with 7(V777 defined in the same way as (14) but for barred
momenta. One obtains

1
48(27)P/2

=(0)av v
x 7 ORDP g €1,47€20€3p (17)

S; /dKldszK35(K1 + K, + K3)

where K = (k. k), dK = d°°K and e,,; = e,;(K;). After
some manipulations, Fourier transformation to position
space and integration by parts, the authors of [24] obtained
the following cubic action for the double copy of
Yang-Mills theory

! o -
S3 = 8 / dPxdPxe,;[20"e ;0" e — 20 e ;0 e

=200 d e,; 4 O e, e + 0;eM70,eF]. (18)

This action agrees with the cubic (gauged fixed) DFT
action. Upon solving the level matching condition (11)
using the solution x = X, which breaks the double geom-
etry, it gives rise to the universal NSNS sector of the
low energy limit of string theory. In this scenario, we

decompose the field e, into a symmetric and an anti-
symmetric part,

ey =hy, +by,. (19)

When both the dilaton (related to scalar ¢ appearing at
quadratic order) and the b-field are set to zero, the resulting
action reproduces linearized gravity in the De Donder
gauge with 4 = 0. In the next section, we explore the
noncommutative corrections to action (18) coming from the
double copy map of ncYM and imposing the transverse-
traceless gauge, which is compatible with the De Donder
gauge.

III. NONCOMMUTATIVE CORRECTIONS

We consider the noncommutative extension of SU(N)
Yang-Mills theory using a Moyal-Weyl star product and
considering terms up to cubic order in fields. The starting
action is [29]

1
S == Tr / dPxF, % F (20)

where the Moyal-Weyl product is defined in the usual way

(fxg)(x) = "7 f) @ gly)| . (21)

y—x

Noncommutative field strength is defined as

F, = Za[ﬂAZ‘] —i[AF AF],, (22)
where A* is a solution of the Seiberg-Witten map [33].
Namely, the algebra of noncommutative gauge transforma-
tion in general closes in enveloping algebra, and one
introduces the map relating noncommutative fields and
parameters with the standard ones in order to keep the same
number of degrees of freedom [34]. The SU(N) generators
T, satisfy

[Tm Tb} = ifabCch (23)
1
{Tav Tb} = Néab + dabCch (24)
while the trace of three generators is given by

Tr(TuTch) = (dabc + ifahc)' (25)

F-

The quadratic form of the action (20) is given by
Sh = —/ded[ﬂA,,]a*a”A”“. (26)

The O-corrections coming from this action are total deriv-
atives, and therefore there are no noncommutative correc-
tions at quadratic level in fields.
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A. O-correction to the cubic Yang-Mills action

At cubic order, the 8-correction to the Yang-Mills action
is given by [29]

3= —éTr [ a0 (1 Ea )
-5 F P} 27)
Using the expression (25) we rewrite this as
1 1
$i=—3 / dPx0" d <F,,ﬂ“Fm,bF”"C—ZFﬂD“FpngP"C).

Moving to momentum space and regrouping terms we can
rewrite the noncommutative contribution to the cubic action
in terms of the three vertex operator z(!),

i

m / 5(ky + ky + k3)dpom P AS AL AS L (28)
where
00 = 2 (glek, (K2 + o ki)
+ 2001k, oo K5n*) — 26Ky Koo kS9)). (29)

Following the YM x YM structure of the double copy
prescription we identify

dabc . Zﬂ(l)ﬁﬂﬁv (30)

with p a free parameter of order 1. The above identification
give rise to 6>- corrections to the cubic DFT action, which
takes the implicit form

p —(Wavp (1) u v p
-~ (K| + Ky +K3)aWioP el ey e, (31
48(2@%4} (K, 2 3) wp€1€25€3p (31)

where now 7("#77 is proportional to a second noncommu-
tative parameter € coming from a % product defined as

(%)) = & T (D) ® gD)yor. (32)

We present the full noncommutative cubic action in Sec. IV,
after taking into account the quadratic #-correction to the
cubic Yang-Mills action.

B. 6*-correction to the cubic Yang-Mills action

The 6?-correction to the cubic part of the Yang-Mills
action is given by [31,32]

1
S§ — defa be O GFA <4 aD F Dleoc

32

- D,F, D,F, ”F"‘") (33)

where D, =0, —iA, is the standard gauge covariant
derivative. The first term in the action (33) can be
eliminated by using the covariant field redefinition A, —
A, + c0"0°D,F wk e with appropriately2 chosen con-
stant ¢, thus we drop it from further considerations.

Moving to momentum space and regrouping terms
we rewrite the action (33) in terms of the three-vertex
operator (),

S3 = ;g/ 5(ky 4 ky + k3) fapem PP A9 Ay P AS,C
6(27)2

(34)

where the 6?-correction to (14) is given by
3
”(ZWW = gegéklek%(a[/wkll(kg]kg - eK[ylekgkj;])‘ (35)

Thus we obtain two extra sources of the 6%-corrections to
the DFT action: on one hand, we use the identification

fave = V%77 on (34). On the other hand, we consider
the identification

fabc 8 2)[45/_) (36)

in the leading order action (15). Therefore, the full
identification for the structure constant f . is given by

Fone = é(ﬂ(omﬂﬁ + 7@RPp), (37)

IV. FULL ¢*>-CORRECTED DFT ACTION AND ITS
PURE GRAVITATIONAL LIMIT

The full §>-correction, obtained through the double copy
map, to the cubic DFT action is given by

1
Silppr = ———— | 8(K, +K,+K
orr = e mye [, 2+ Kt K

x ( pﬁélgﬁ”(l)ﬂvﬂ + 79 2@up 4 72 xOmr)

x ey tfeples,). (38)

Note that the results for the §2-correction to the cubic part of
the Yang-Mills action obtained from Refs. [31,32] differ by a
factor in front of the term we removed by field redefinition. In
(33) we used result of Ref. [32].
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The action (38) contain terms proportional to 86, 62, and 6.
The explicit expression in coordinate space is given in (A1)
of the Appendix A.

A. Pure gravitational analysis

While the double copy map presented in this paper is
valid in an arbitrary number of dimensions, from now on
we will fix D = 4. We solve the level matching constraint
as x =X and we consider a pure gravitational setup
e, = h,, satisfying the gauge TT, ie., we impose
@h,, = 0 = h. Then double copy action up to cubic order
in fields can be written schematically3 as

S?Z,?ﬂ) = _2/ hﬂDRm/ + / Lijem® + t.d, (39)
X X

where Ly are terms cubic in the Riemann tensor and t.d

are total derivative terms containing Riem? contributions,

which drop out in agreement with the absence of nontrivial

corrections at the quadratic level.

All the cubic contributions in Lg;.,3 proportional to the
Ricci tensor can be eliminated considering a field redefi-
nition of perturbation of the metric, h,, — h,, = h,, + h,,
in the quadratic action i.e.,

/ dPxhy, RA () = / dPxh,, R + / dPxh,, R +O(6%).

The h,, is proportional to ¢’Riem’ and all the Ricci
contributions of (39) can be eliminated. The procedure
induces new quartic contributions (in fields and &) through
the commutative cubic action which now should depend on
hy,,- Finally, the first nontrivial noncommutative corrections
to gravity action inferred from the linearized expressions are

p
‘cRiem3 =00 <mR§aﬂKR§aﬁKRllbpa

Sp 2p
+§R§ﬂ “ReapuRyps = jRW “ReapuRipuo

2+ L) revp,, R
+ §p +ﬁ Epapt prkoe

5 1
- (1_817 - ﬂ) RéﬂaKszﬂapRﬂakv
P pepe K I spe o«
_ER ﬂRépf RﬂGKl/ +ER /ARé apRﬁoKv . (40)

Note that the proposed noncommutative corrections to
Einstein-Hilbert action should be thought of as higher
derivative/curvature corrections obtained through the
double copy map. These corrections could potentially have

The full expression is long and not very illuminating thus we
do not present it at this level.

a geometric interpretation of the action in terms of *-
deformed general relativity [35].

The equation of motion of the pure gravitational setup
coming from the double copy of the noncommutative
Yang-Mills Lagrangian is given by

1 1 1
Dh/“/ == —ga"h"la"h,{ﬂ - Zaghlyao-hlﬂ + Zaﬂ_hlya}*hﬂﬁ

1 3 1
v op A 777 po —uv(p2
817 0,hP0,h*, + 16’7 ol aﬂh,m+2c (64),
(41)

where C*(6?) represents §>-corrections coming from the
variation of the higher-derivative contributions in the
double copy Lagrangian. In order to check the possibility
of propagation of unphysical degrees of freedom in this
particular setup, we split the noncommutative corrections
into cubic and quartic order in derivatives:

" (6%) = C™(°h) + C¥(*h). (42)

The explicit form of the corrections is given the
Appendix B. One can show that if we restrict noncommu-
tativity to spatial directions only, there are no time
derivatives higher than quadratic and therefore, no propa-
gating unphysical degrees of freedom. Limiting nocommu-
tativity to spacial direction” is the standard solution for the
potential loss of unitarity due to higher derivative correc-
tions coming from the *-product deformations.

The present construction brings new possibilities when
studying the noncommutative correction to exact gravita-
tional solutions like the generalized version of the Kerr-
Schild ansatz [36], which has been constructed in [37] and
further extended in [38-40]. Since our double copy
procedure generates a nontrivial cubic correction to the
cubic DFT action, it is natural to expect @?-corrections to
the single and zeroth copy procedure following [37] and
using the prescription given in [41].

V. CONCLUSIONS AND OUTLOOK

We performed a classical double copy procedure on the
noncommutative formulation of non-Abelian Yang-Mills
theory up to cubic order in fields. We constructed the three-
point vertex operators in order to identify the noncommu-
tative corrections to the totally symmetric, d,,., and totally
antisymmetric, f ., structure constants and we use them to
construct the double copy theory respecting the form
ncYM x ncYM. The resulting theory (A1) can be interpret
as a noncommutative deformation of the DFT cubic action.’

*The Lorentz invariance is already broken with the choice of
the constant noncommutativity parameter 6.

See Ref. [41] for a nonperturbative formulation of non-
commutative DFT in generalized metric formalism.
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Interestingly enough, the noncommutativity is given by a
pair of *-products, with parameters #* and 677, in
agreement with the doubling of the physical coordinates
of DFT, also noticed in [19,20]. As a consequence of
solving the level matching condition (identification of the
dual coordinates with the ordinary ones), these products are
identified, giving rise to #>-corrections to the cubic DFT
action, while the quadratic part remains uncorrected. We
wrote the covariant form of the noncommutative cubic
correction to the action in the pure gravitational limit
(b, =0, @ = 0) and using the transverse-traceless gauge
in D = 4, compatible with the De Donder gauge, required
by the cubic commutative action.

We computed the corrections to the equation of motion
up to quadratic order in fields, giving rise to new correc-
tions to the subleading dispersion relation for gravitational
waves coming from the double copy formulation. In the
present version of the construction the equation of motion
potentially contains cubic and quartic time derivatives for
generic 6, which indicates that the foundation of the double
copy requires the inclusion of extra degrees of freedom,
possible in the form of charged scalar fields mimicking the
technique developed in [26]. However, in the special case
when 6 is a spacial constant, we evade this issue.

Furthermore, we use the transverse-traceless gauge in
order to simply the first noncommutative correction to the
Einstein-Hilbert Lagrangian, given by Riem? terms. Using
this gauge, for example, all the cubic contributions con-
taining the Ricci scalar (for instance, RiemR?) are trivial
due to R = 0 + O(h?) in the gauge TT. Then, our result can
be generalized by imposing only the De Donder gauge and
allowing new gravitational contributions related to the
Ricci scalar. Using the De Donder gauge one finds
R =—0"h,, + O(h?), and only the leading order part
contributes to the cubic action. In our case, the transverse
condition eliminates the leading order contribution to R.

While the z(*) and z(?) vertices are fixed using the
perturbative DFT, the inclusion of the vertex z(!) induces a
free parameter p which cannot be fixed by the classical
double copy procedure. The full cubic action, up to
6-contribution can be written as

S5 = ;Q/ S(ky + ky + k3)Ay, Ay A c

6(27)2 Jk

Fase (#0004 £200) 4 dyponVr], (43)

and due to different symmetrization of f and d terms we
can write

i
S5 =——5 [ 6(ky + ko + k3)A;,%A5,PA5)°
= gt | B e kA

(fabe + dape) (@O + 7Omer 4 gGher) . (44)

This rewriting implies the identification

Fave + dape = é(ﬂ(o)ﬂvﬂ 4 gWDwep 4 ”(Q)MDP)’ (45)

which fixes p = 1. This choice is reminiscent of the
identification encountered in the analysis of double copy
of U(N) noncommutative gauge theory based on twisted
color-kinematics duality [20]. It would be interesting to
further study the color-kinematics mixing inherent in the
noncommutative field theories in the framework of (pos-
sibly weakly) constraint double field theory.

Another interesting continuation of our current results is
to explore the b-field contributions to the Einstein-Hilbert
action coming from the double copy map. These contri-
butions will be proportional to 6> after solving the level
matching condition and we expect some contributions of
the form (VH)? after writing the terms in covariant form.
The inclusion of the b-field to the noncommutative cor-
rection of the cubic action will allow us to study nontrivial
T-duality transformations involving the metric and the
b-field on the noncommutative cubic dynamics.

Finally, once the cubic corrections are fixed one can use
purely algebraic methods to construct the quartic contri-
butions, as described in Refs. [42,43] in commutative
setting and in [19] in noncommutative generalization of
the problem. These become important in order to preserve
causality when studying the group/phase velocity of the
(modified) gravitational waves for propagating signals. As
studied in [44], the contributions to the group/phase
velocity require an infinite expansion in derivatives in
the gravitational Lagrangian, as happens in string theory.
Interestingly, the double copy of ncYM offers a tower of
higher-derivative corrections, unlike its commutative
version.
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APPENDIX A: NONCOMMUTATIVE DOUBLE FIELD THEORY:
CORRECTIONS TO THE CUBIC ACTION

The fu611 noncommutative §>-correction to the perturbative DFT action obtained from the double copy map of ncYM is
given by

3p c G v v c Ap P
356 (9<”‘9H066”66e )0, e, + 0¥1°0 ;0,07 ¢, 70" F e, 7y 50 0z,

- 20#'69 116050:€,/ 0" 05,70 0 e Py 5 + 2011650, 0.¢,7 0 05,70 0 e 1 5 )

+ 010 150,0° €,70,0,¢,70° 0 e P*P) + OWloylr)9WeyP) g o e,0,.0-€,,0°0 €

— 20Wlonl)0, .71, 50,0z, 0.05¢,7 00 e, + 20Woy1)6°%0 0,e,F0.05¢,70°0 e 71y )
— 20y )0 ;50,07 ¢,/ 0,0,¢,70°0, €, — 20W1°n )0 ;o 5 50,07 €, 70, 0q,7 O O e,

+ 40Uenl)0 101 5) 0.0z, 0, 05,70 0 e, — 40T 690, 0,7 0,05€,70°0 €, )
+ 20°°6/3150.05€,"0,0,¢,70%105 e PP + 20°°0 551, 5)0.0° €,7 0,0 ¢,7 0¥ o e ;PP

— 46°70 315115 ) 0c 0z ¢,/ 0,07 €, 0" O e P ") + 46°°0; ;0. 0:€,70,05¢,70% 0z e,/ )

S5 =-

1 Fers . = — - — - = - = I -
128 /. eefew(aﬂaéa;e,,ﬂagaﬂl e300 e’ s — 0,0:0;¢,,0:0 et ;0 e s — 0:05€,;0 0:0) et ;e

+ 0:05¢,, aﬂa‘f et ,dte,, — 0:0;¢t0:07 ;0,0 e, + 0:0;¢ 1050 ¢ 10,0 e 5
1 o — - — -
o eefek[v(—a’aéa%eﬂﬁagaﬂe,wau] e, + 0"0:0:¢”,0;0¢,;0" e

/)/‘) + 5;5,—(6”/—10”555’36”;5’7] e/)/-,

128
=0 a,cewaﬂagéﬁeﬂiéﬁ] ¢yp + 0c0ce! 050" ¢ 0,0 ¢ 5, — OcOre’ 100" 50,0 e )
1 B —_—
T 128 x}_c95‘59“‘”(0”06016,,,¢a¢aﬁ]emaie — F0.0,e,;0: e ;00 f' — 0.0,e,,070:F)e, P e,;
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APPENDIX B: NONCOMMUTATIVE GRAVITY: CORRECTIONS TO THE EQUATIONS OF MOTION

Using the leading order equation of motion (JA* + O(h?) = 0) and field redefinitions, we simplify C|* and C5” to the
form
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p 1
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144 Hyﬂeak(yﬂeh.faafﬂxhn - _8 H’/ﬂeakare hﬂ.fa'fﬁkhfe

67 1 K T € a K v,
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5767 T 384
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2887 " 384 7 Orapltae =\ 7687 T 763 ¢ by

®We used CADABRA software [45] for the calculations. Code is available upon request.
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where we introduced the compact notation d,, = 9,0,
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