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We construct a new class of topological surface defects in Chern-Simons theory with noncompact,
non-Abelian gauge groups. These defects are characterized by isotropic subalgebras defined by solutions of
the modified classical Yang-Baxter equation, and their fusion realizes a semigroup structure with
noninvertible elements. From a Hamiltonian perspective, we calculate this fusion using the composition
of Lagrangian correspondences within the Weinstein symplectic category. Applications include boundary
terms and conditions in AdS3 gravity and higher-spin theories.
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I. INTRODUCTION

A topological defect may separate one phase of a
physical system from its symmetry-transformed counter-
part. The topological nature of the defects enables fusion
that captures the composition law of generalized
symmetries [1] (see reviews [2,3]). For conventional sym-
metries, this corresponds to group multiplication. More
generally, fusion results in a superposition of defects
yielding a noninvertible composition law.
In this work, we exhibit topological defects in three-

dimensional (3D) Chern-Simons (CS) theory with a novel
and perhaps more elementary kind of noninvertibility:
where fusion closes on single elements but no inverse
exists, resulting in a semigroup composition law. These
defects are obtained via the folding trick from topological
boundary conditions associated with Lagrangian (maximal
isotropic) subalgebras of a “doubled” Lie algebra
d ¼ g ⊕ g.
For Abelian CS theory where g ¼ uð1Þd our characteri-

zation of topological defects agrees with that of Kapustin
and Saulina [4]. When the inner product κ is positive
definite, we make contact with certain defect actions
studied by Roumpedakis et al. [5] via the introduction
of edge modes; also, we show fusion corresponds to the
orthogonal group OðκÞ. However, we show that the more
general case of indefinite κ admits noninvertible defects

forming a semigroup. This is illustrated with the examples
κ ¼ diagðþ1;−1Þ and κ ¼ diagðþ1;þ1;−1Þ.
We then construct defects for non-Abelian Chern-

Simons theory, addressing a long-standing open problem
identified in [4] (see also [6,7]). Given non-Abelian g, we
construct Lagrangians from R-matrices solving the modi-
fied Yang-Baxter equation. These R-defects, specific to
noncompact g, are shown to form a semigroup under fusion
using the Hamiltonian approach of [8]. Such constructions
have significant applications: CS theory on gC has been
extensively studied [9], while theories with g as a Drinfel’d
double provide a topological quantum field theory frame-
work for T-duality and Poisson-Lie T-duality [10,11].
The Chern-Simons action with g ¼ sl2 ⊕ sl2 provides a

rewriting of the 3D Einstein-Hilbert action with negative
cosmological constant [12,13]. Augmenting the action with
the boundary term for the Drinfel’d-Jimbo R-matrix
reproduces the full gravitational boundary contributions
used in [14] and readily generalizes to higher-spin theories.
We also introduce novel boundary conditions associated
with the R-matrix and show these include asymptotically
anti–de Sitter (AdS) spacetimes whose asymptotic sym-
metry algebra is identified as a single Virasoro.

II. FOLDING AND DEFECTS

Chern-Simons theory is defined by the action

SCS½A� ¼
Z
M

�
hA; dAi þ 1

3
hA; ½A; A�i

�
; ð1Þ

where κg ¼ h·; ·i is an appropriately quantized bilinear
form on the algebra g. We bisect M into northern, MN ,
and southern, MS, regions, with a shared boundary D of
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opposite orientations. Our goal is to define a theory that
mediates interactions between gauge fields AN;S living in
MN;S, respectively, and any degrees of freedom localized on
D. If the full system is invariant under displacements of D,
the defect is said to be topological.
We use the folding trick: since MN and MS are

diffeomorphic near D we fold them with a parity-odd
map φ∶ MN → MS. This reduces the problem to an
analysis of topological boundary conditions in the doubled
CS action SCS½A� on MN with boundary ∂MN ¼ D for a
connection A ¼ ðAN; ASÞ valued in d ¼ gN ⊕ gS with the
bilinear form κd ¼ ⟪•; •⟫ ¼ κgN − κgS .
The boundary condition should ensure the vanishing of

the surface term
R
D ⟪δA;A⟫ arising from the variation of

the action. A common choice is AjD ¼ ⋆ðAjDÞ, leading to
chiral dynamics on D, but this introduces a Hodge
structure, which is not topological. Instead, we require
that the gauge field be valued in a Lagrangian subalgebra
h ⊂ d [4] so that AjD ∈Ω1ðDÞ ⊗ h. Here and henceforth
we will use the shorthand Ω1ðMÞ for the space of one-form
tensor fields (i.e., sections of the cotangent bundle T⋆M) on
a manifold M.
Let P be a projector with complement P⊥ ¼ id − P, with

imðPÞ ¼ h such that P⊥AjD ¼ 0. We augment the theory
with a boundary term

Stot½A� ¼ SCS½A� þ
Z
D
⟪A; P⊥A⟫: ð2Þ

This introduces a boundary interaction between the north
and south theories while respecting the boundary condition,
as the surface term in δStot is 2

R
D ⟪δA; P⊥A⟫. The

boundary term is included to interpret P⊥AjD ¼ 0 as a
“boundary equation of motion.”
After including this boundary term half of the gauge

invariance, A ↦ Ag ¼ g−1dgþ g−1Ag, is preserved. The
broken symmetry may be repaired by introducing
Stückelberg fields h¼ðhN;hSÞ transforming as h↦g−1h.
Then Ah is invariant and h only appears in defect-localized
terms outside of a Wess-Zumino term:

Stot½Ah� ¼ Stot½A� þ SWZ½h� þ
Z
D
⟪A;dhh−1⟫

þ
Z
D
⟪Aþ dhh−1; ðAdhP⊥Ad−1h ÞðAþ dhh−1Þ⟫;

ð3Þ

where we use the adjoint action Adh· ¼ h · h−1. This action
generalizes the Lagrangian description of condensation
surfaces in Abelian CS theory [ [5], Sec. 6.2.2].
We address fusion by dividing M into three regions:

northN, south S, and equatorial belt I. The folded fields are
ANI ¼ ðAN; AIÞ and AIS ¼ ðAI; ASÞ, with defects on
DNI ¼ MN ∩ MI and DIS ¼ MI ∩ MS prescribed by

projectors PNI and PIS into Lagrangians hNI and hIS.
Fusion is achieved by shrinking the equatorial belt,
merging the defects DNI ¼ DIS ¼ D, such that AI survives
only as a nondynamical field on D.
Terms involving AI are of the form

SI ¼
Z
D

1

2
hAI; YAIi þ hAI; Bi; ð4Þ

with Y a constant skew matrix dependent on the input
projectors, and B a one-form depending on the remaining
fields. If Y is invertible [15], we can eliminate AI , yielding

SI ¼
Z
D
−
1

2
hB; Y−1Bi: ð5Þ

We will give an explicit example for Y and B in the
following sections. The fused theory takes the form of
Stot½ANS� of Eq. (2), with a new projector PNS, imposing
that ANS takes values in the Lagrangian hNS.
Within this treatment, calculating the resulting hNS from

hNI and hIS is somewhat opaque. To resolve this we now
turn to a Hamiltonian approach.

III. A HAMILTONIAN APPROACH TO FUSION

Recent work [8] by one of us demonstrated that there is a
one-to-one relation between lagrangian correspondences
and topological defects in Hamiltonian mechanics. We
explain how this applies to CS theory and determine a
composition rule for defect fusion.
The dynamics of a particle defines a curve γðτÞ on phase

space M ¼ T�Q, with action
R
γ⋆θ involving the tauto-

logical symplectic potential θ ¼ p · dq. (The expression γ⋆

is the pullback of differential forms along the map
γ∶R → M.) A canonical transformation, which we assume
is invertible here, defines new coordinates ðp̃; q̃Þ which we
implement via a worldline defect joining two paths γ and γ̃
at fixed time τ0. The folding trick in this context yields a

path ΓðτÞ ¼ ðγðτ − τ0Þ; γ̃ðτ0 − τÞÞ in the space M × fM
with “doubled” action

R
Γ⋆ðθ − θ̃Þ together with an appro-

priate boundary condition. The defect is topological, i.e.,
independent of τ0, because the map M → M̃ is a sym-
plectomorphism since the canonical transformation is
invertible.
This is an example of a Lagrangian correspondence in

the sense of Weinstein’s symplectic “category” [16]: the
graph of the map between the symplectic manifolds

ðM;ωÞ and ðfM; ω̃Þ defines a Lagrangian submanifold

L in the correspondence space ðM × fM;ω − ω̃Þ, on
which ω − ω̃ vanishes. Explicitly, if f∶M → M̃ is the
symplectomorphism, and the graph grf∶ M → M × M̃ is
given by z → ðz; fðzÞÞ, we have gr⋆f ðω − ω̃Þ ¼ ω − ω ¼ 0.
An arbitrary Lagrangian L in correspondence space is

ARVANITAKIS, COLE, DEMULDER, and THOMPSON PHYS. REV. D 111, 105014 (2025)

105014-2



viewed as a kind of generalized canonical transformation
that may be noninvertible. We refer to [16] for details. The
key to the interpretation of Lagrangians as canonical
transformations is that they admit a composition: if Lij ⊂
Mi ×Mj is a Lagrangian correspondence between Mi

and Mj, we define the composition Lij ∘ Ljk—which is
another Lagrangian submanifold whenever smooth—by
the formula

Lij ∘ Ljk ¼ Πik½ðLij × LjkÞ ∩ ðMi × Δj ×MkÞ�; ð6Þ

where Πik projects onto Mi ×Mk and Δj is the diagonal
embedding Mj ↪ Mj ×Mj. This provides the fusion
rules for topological defects in this context [8].
These arguments apply to the folded Chern-Simons

theory in the neighborhood of a defect D where the
spacetime M takes the form Rτ ×D without loss of
generality. After splitting A ¼ A0dτ þ α with respect to
“time” τ normal to the defect, A0 serves as a Lagrange
multiplier enforcing Gauss’s law, and the remaining action
is that of a particle moving on the symplectic manifold
Mðd; DÞ of d-valued connections:

SCS½A� ¼
Z �

Γ�θ þ
Z
D
⟪A0dτ; F½α�⟫

�
;

θ ¼
Z
D
⟪α; δα⟫; ω ¼ δθ ¼

Z
D
⟪δα; δα⟫: ð7Þ

As d ¼ gN ⊕ gS is equipped with the split signature
pairing, we view Mðd; DÞ as the correspondence space
MðgN;DÞ ×MðgS; DÞ.
Ignoring the Gauss law constraint initially, defects are

identified with Lagrangian submanifolds inMðd; DÞ. Such
defects are topological with respect to displacement in the
τ-direction chosen above. Defects invariant under arbitrary
infinitesimal diffeomorphisms correspond to Lagrangians
in Mðd; DÞ of the specific form Ω1ðDÞ ⊗ h, where h ⊂ d
is a maximal isotropic subspace. Compatibility with the
Gauss law implies h is closed, i.e., a Lagrangian
subalgebra [17]. Thus, ANS restricts, on D, to a gauge
field valued in h, up to gauge transformations.
The fusion of Lagrangian correspondences given by

Eq. (6) simplifies to a composition of Lie algebras:

hNI ∘ hIS ¼ ΠNS½ðhNI × hISÞ ∩ gN × ΔgI × gS�; ð8Þ

where ΔgI is the diagonal embedding gI ↪ gI × gI .
Algorithmically, if vNI¼ðvN;vIÞ∈hNI and uIS¼ðuI;uSÞ∈
hIS, Eq. (8) tells us to consider elements of the form
ðvN; uSÞ subject to the relation vI ¼ uI . This operation is
the associative, but non-Abelian, composition of relations
in set theory.

IV. ABELIAN DEFECTS

Let gN ¼ gS ¼ uð1Þd with the definite inner product
κN ¼ κS ¼ diagðþ;þ; � � � ;þÞ. A family of Lagrangians
parametrized by a skew-symmetric matrix β is

hβ ¼ fðQþx;Q−xÞ∈ djx∈ gg; Q� ¼ id� βκ: ð9Þ

This contains the diagonal Lagrangian h0¼fðx;xÞ∈djx∈gg.
A projector [18] whose image is hβ is given by

Pβ ¼
1

2

�
Qþ Qþ
Q− Q−

�
: ð10Þ

As Q� are invertible, we can use the Cayley transform
Mβ ¼ QþQ−1

− ∈ SOðdÞ to write hβ ¼ fðMβx; xÞg. In fact,
the space of Lagrangians is Oðd;RÞ.
Consider fusing defects with PNI ¼ Pβ and PIS ¼ Pβ̃. In

the Hamiltonian approach, applying Eq. (8) yields

hβ ∘ hβ̃ ¼ fðMβ ·Mβ̃x; xÞjx∈ gg; ð11Þ

i.e., fusion realizes the group multiplication law inOðdÞ. In
the Lagrangian approach to fusion, the data defining the
intermediate action in Eq. (4) are

Y ¼ β þ β̃; B ¼ Q−AN − Q̃þAS: ð12Þ

Performing the elimination of AI we recover a defect action
defined by a projector PNS whose image matches Eq. (11),
and whose kernel is the diagonal h0.
A very different feature becomes apparent when κ is

indefinite. While hβ of Eq. (9) remains a Lagrangian, Q�
need not be invertible. Not coincidentally, such hβ can
never fuse into the diagonal (identity) defect.
Example: d ¼ 2 with κ ¼ diagðþ;−Þ. In this setting

Eq. (9) defines a one-parameter family of Lagrangians

hβ ¼ fðuþ βv; vþ βu; u − βv; v − βuÞju; v∈Rg: ð13Þ

Here, and in the sequel, we denote elements of a
Lagrangian by their coordinates in the basis where
κN − κS ¼ diagðþ − −þÞ; gN being spanned by the
first two.
For β ≠ �1 we use an Oð1; 1Þ Cayley transform to

rewrite hω¼fðcoshωuþsinhωv;sinhωuþcoshωv;u;vÞg,
for which fusion acts by addition on the rapidities defined
by β ¼ tanhω=2.
However, at β ¼ �1 (i.e., in the infinite rapidity limit)

we find four Lagrangians of the form

a� ¼fðu;�u;v;∓ vÞg; b� ¼fðu;�u;v;�vÞg: ð14Þ
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These Lagrangians form a direct product of two two-
element rectangular band semigroups, B2 ¼ fa�; b∓g,
with fusion given by (to be read as a− ∘ aþ ¼ b−):

∘ aþ a− bþ b−

aþ aþ bþ bþ aþ

a− b− a− a− b−

bþ aþ bþ bþ aþ

b− b− a− a− b−

ð15Þ

One can never obtain the diagonal/identity defect h0 from
fusions of a� or b� with each other or indeed with hω; they
are noninvertible.
Example: d ¼ 3 with κ ¼ diagðþ;þ;−Þ. Away from the

locus 1 ¼ β21 þ β22 − β23, where βab ¼ ϵabcβc, we can take
Mβ ¼ QþQ−1

− as an SOð2; 1Þ matrix and construct invert-
ible Lagrangians as before. On that locus we have
(β-dependent) elements t� ∈ g obeying

Q�t� ¼ 0; Q�t∓ ¼ 2t∓; κðt�; t�Þ ¼ 0: ð16Þ

We can express a generic element x ¼ utþ þ vt− þ wt⊥
where t⊥ is κ-orthogonal to t�. This gives rise to non-
invertible Lagrangians of the form

hβ ¼ spanfðutþ þ wt⊥; vt− þ wt⊥Þg: ð17Þ

Fusion of these results in a slightly more general type of
lagrangian (not necessarily of the form hβ):

hβ ∘ hβ̃ ¼ spanfðutþ þ wt⊥; ṽt̃− þ wt̃⊥Þg: ð18Þ

With the choices of t� ¼ T1 � T3 and t⊥ ¼ T2 (i.e.,
β1 ¼ β3 ¼ 0; β2 ¼ 1) we construct a set of eight distinct
noninvertible Lagrangians given in Table I. The fusion of
these using formula (8) is given in Table II.
Our examples illustrate that fusion endows the manifold

of Lagrangians [which is diffeomorphic to Oðd;RÞ] for a
split-signature symmetric form on R2d with a semigroup
structure depending on the signature of κ. If κ is positive-
definite, this semigroup is in fact a group, the group
Oðd;RÞ. Noninvertibility occurs when κ admits null (light-
like, or isotropic) vectors, i.e., for an indefinite signature
and has a direct physical interpretation: e.g., the Lagrangian

aþ (14) relevant for defects between Uð1Þ2 CS theories
imposes the boundary conditions

AN1 ¼ AN2; AS1 ¼ −AS2; ð19Þ

where the gauge fields AN and AS do not glue across D so
that the topological boundary condition aþ in this folded
CS theory unfolds to a pair of topological boundary
conditions, one for each side of the defect.
The algebraic structure of the semigroup of Lagrangians

under fusion is thus controlled by the signature of κ,
i.e., s pluses, t ≤ s minuses. The semigroup is a union of
sub-semigroups S0;S1;…; Ss−t whose fusions obey
Sn ∘ Sm ⊆ Smaxðm;nÞ, of which S0 ¼ OðκÞ is a group of
invertibles and Sn>1 are semigroups consisting of the
noninvertibles.

V. QUANTIZATION CONDITIONS

For defects between Abelian CS theories with compact
gauge groups GN ¼ GS ¼ Uð1Þd, one demands that a
Lagrangian h exponentiates into a compact [19] sub-
group H ¼ Uð1Þd of GN × GS ¼ Uð1Þ2d. For invertible
Lagrangians, which take the form fðMx; xÞjx∈ gNg for
M∈OðκÞ classically, one would expect that this quantiza-
tion condition would select Lagrangians in Oðκ;ZÞ.
It does not. To illustrate, consider d ¼ 1, κ ¼ 1 (we

anticipate the following extends to higher dimensions). The
allowed Lagrangians are hm;� ¼ fmðx;�xÞjx∈Rg for
m∈Z×, where the generators (1,0) and (0,1) are basis
vectors for the lattices defining GN ¼ GS ¼ R=Z. OðκÞ ¼
Oð1Þ does not generate the allowed Lagrangians.
A subset ofOð1; 1;QÞ does instead. In the ð1;�1Þ basis,

SOð1; 1;QÞ is the 2 × 2matrix diagðr; r−1Þ for r∈Qwhich
acts as ð1; 1Þ ↦ rð1; 1Þ which along with the map ð1; 1Þ ↦
ð1;−1Þ generates the collection of hm;�. However, in
general the full action of Oð1; 1;QÞ does not respect the
quantization. The fusion of Eq. (8) does not preserve the
quantization condition in general.

TABLE I. Some noninvertible Lagrangians (see text).

TABLE II. Fusion of R-defects. This table describes a direct
product Z2 × B2 × Bop

2 where B2 and Bop
2 denote the two

2-element band semigroups (the subset of greens alone defines
Bop
2 , while blockwise green and blue yield B2).
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VI. R-DEFECTS

Let us now turn to the tools we will need to exhibit
topological defects in non-Abelian CS. The additional
requirement that the Lagrangians be subalgebras (compat-
ibility with Gauss’ law) is restrictive; while the diagonal

gΔ ¼ fðx; xÞ∈ djx∈ gg ð20Þ

is a subalgebra of d, the antidiagonal (though isotropic) is
not. To rectify this, we equip g with an endomorphism R,
skew symmetric with respect to κ, for which the c2 ¼ 1
modified classical Yang-Baxter equation (mCYBE)

½Rx;Ry� −Rð½Rx; y� þ ½x;Ry�Þ ¼ −c2½x; y� ð21Þ

holds for x; y∈ g. We then form a Lagrangian subalgebra

gR ¼ fððRþ 1ÞX; ðR − 1ÞXÞ∈ dg: ð22Þ

Since its intersection with gΔ is trivial, we have the
vector space decomposition d ¼ gΔ ⊕ gR. To construct
appropriate defect actions we employ the projectors

PΔ ¼ 1 − PR ¼ 1

2

�
1 −R 1þR

1 −R 1þR

�
: ð23Þ

We let R̄ ¼ −R, which also solves the mCYBE, and
denote its corresponding Lagrangian gR̄.
For compact semisimple g there are no solutions to the

c2 ¼ 1 mCYBE, while the Drinfeld-Jimbo (DJ) R-matrix
provides a canonical solution for the split-signature real
form of any complex Lie algebra gC. In a Cartan-Weyl basis
for gC this acts as

RðHiÞ¼ 0; RðEαÞ¼Eα; RðE−αÞ¼−E−α: ð24Þ

R descends to the split real form (g), and enjoys R3 ¼ R.
The Lagrangian gR has nontrivial fusion properties

which we can relate to the defects given in Table I with
the following identifications:

It is useful to introduce two involutive automorphisms on
d. The first, J , acts by swapping “north” and “south” i.e.,
J ∶ðx; yÞ ↦ ðy; xÞ. The second, Wðx; yÞ ↦ ðx;wðyÞÞ,
uses the Weyl automorphism, w∶Hi ↦−Hi;Eα ↦−E−α.
These act as

where we use R ¼ gR, etc. The relations R ∘ R ∘ R ¼ R
and R̄ ∘ R̄ ∘ R̄ ¼ R̄ hold, cf.R3 ¼ R, and ensure closure
of the defects.

VII. APPLICATIONS TO 3D GRAVITY

Three-dimensional gravity admits a formulation in terms
of CS theory [12,13]. The Einstein-Hilbert action for the
negative cosmological constant is equivalent to

SCS½A� − SCS½Ā� þ
Z
∂M

trðA ∧ ĀÞ; ð25Þ

in which the sl2 connections are related to the dreibein and
dualized spin connection according to Aa ¼ ωa þ ea and
Ā ¼ ωa − ea. The boundary term here reproduces the
Gibbons-Hawking-York term. To ensure a well-defined
variational principle that keeps fixed the metric on the
boundary a further contribution is required. In Fefferman-
Graham (FG) gauge the combined boundary terms
are [14,20,21]

Sbdy ¼
Z
∂M

trðA ∧ ĀÞ − trððA − ĀÞ ∧ ðA − ĀÞL0Þ; ð26Þ

with sl2 generators obeying ½Lm; Ln� ¼ ðm − nÞLmþn.
This can be related to our discussion above by noting that

Rð•Þ ¼ −½L0; •� provides a DJR-matrix. Indeed, if we take
A ¼ ðA; ĀÞ, we have that

SCS½A� − SCS½Ā� þ Sbdy½A; Ā� ¼ SCS½A� þ
Z

⟪A; P⊥
RA⟫:

We can immediately extend this to higher spins by
replacing sl2 with slN ; the case of N ¼ 3 yielding a
precise match to the generalization of Eq. (26) pre-
sented in [14].
Previously, we described defects in a folded theory. Now,

we shift focus to asymptotic boundary conditions in the
gravitational theory obtained from R-matrices. From a
Chern-Simons perspective, the topological boundary con-
dition Aj

∂M ∈ gR translates to

ðR − 1ÞA ¼ ðRþ 1ÞĀ ⇔ ½e; L0� ¼ ω: ð27Þ

These differ from the boundary conditions conventionally
applied in gravity since we do not impose conditions on
individual components of A; Ā but instead restrict their Lie-
algebraic structure. One then asks: is this boundary con-
dition consistent with asymptotically AdS behavior, and
what are the associated asymptotic symmetries?
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We view AdS3 as a solid cylinder Σ ¼ R ×D2 with
boundary ∂Σ ¼ R × S1. The real axis R parametrizes the
time t direction while we denote by φ and ρ the angle and
radius of the disk D2, respectively. In the chosen para-
metrization the boundary of the disk lies at ρ ¼ ∞. In these
coordinates, and for later use, it will be convenient to
express the gauge connection in the so-called radial gauge

A ¼ b−1 dbþ bðρÞ−1aðt;φÞbðρÞ;
Ā ¼ b db−1 þ bðρÞāðt;φÞbðρÞ−1; ð28Þ

where xi ¼ ðt;φÞ, a ¼ aidxi is a one-form on the boundary
and the element b is the group element chosen to be
b ¼ expðL0ρÞ, which depends only on the radial coordinate
ρ. The one-form a is again an slðNÞ-valued flat gauge
connection, specializing for simplicity to N ¼ 2, and we
will parametrize as a ¼ P

1
n¼−1 l

nLn, and similar for the
barred gauge connection. In radial gauge the R-boundary
condition then fixes

a ¼ lþ1Lþ1 þ l0L0; ā ¼ l−1L−1 − l0L0; ð29Þ

where l0;lþ1, and l−1 are one-forms on the boundary.
These differ from the general asymptotically AdS3 boun-
dary conditions of [22], which state that as ρ → ∞,

Aφ − AAdS
φ ¼ Oð1Þ; Āφ − ĀAdS

φ ¼ Oð1Þ: ð30Þ

Specializing to the radial gauge, i.e., imposing the con-
straints l1

m − δmþ1 ≈ 0 and l−1
m ≈ 0 on the Fourier modes of

the filed a, the asymptotically AdS conditions can be
expressed in terms of the fields a by

aAAdS ¼ Lþ1 þ l0L0; āAAdS ¼ L−1 þ l0L0: ð31Þ

In [23] it was shown that the asymptotic symmetry
algebra corresponding to Eq. (31) is Vir × Vir realized in
free-field variables. Setting lþ1 ¼ l−1 ¼ 1 in our boun-
dary conditions (29) gives us a special case of the boundary
conditions (31). Since in (29) l0 ¼ −l0, only a diagonal
embedding of Vir survives as the asymptotic symmetry
algebra of the boundary condition (27).

VIII. DISCUSSION

Our construction provides a novel perspective on topo-
logical defects in both Abelian and non-Abelian CS theories.
Our methods might point the way toward topological
symmetry theories (SymTFTs) for continuous, and even
non-Abelian, symmetries (see recent attempts [24–26]).

We speculate this would require a map from the
Lagrangian subalgebra h in the Drinfel’d double g ⊕ g,
identified here, to Lagrangian objects in a representation
category of the quantum group arising from that double.
We note that the noninvertibility in our defect fusions is

complementary to that observed in, e.g., [5]. They find, in
the context of Abelian CS theories, that some fusions lead
to superpositions of defects. We expect that this is related to
the quantization condition we outlined in a previous
section. One might speculate that noninvertible defects
in that sense arise from elements of Oðd; d;QÞ which
would lead to connectionsANS to be such that some integer
power of its holonomies are in Uð1Þd; similar ideas are
considered in [4]. In a string-theoretic context the interplay
of Oðd; d;QÞ with quantization of Lagrangians was con-
sidered in [27].
With regard to gravity applications, our AdS3 boundary

conditions led to an asymptotic symmetry algebra which is
a single copy of the Virasoro algebra. This approach might
thus be especially interesting for chiral higher-spin
gravity [28,29] for which one expects a similar structure.
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