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Abstract: The lettuce drop or white mold is an economically important disease as the causal
fungus Sclerotinia sclerotiorum can infect the lettuce at any stage of plant development.
Polyphagous nature of S. sclerotiorum, the longevity of soil-borne sclerotia and air-borne
ascospores makes the control difficult. Chemical fungicides are available only for foliar
application against infections by ascospores so, the development of bio-control is of great
importance. We tested antagonism of native isolate T. koningiopsis agg. (Hypocreales)
(STP8) under laboratory and greenhouse environments. In vitro tests showed excellent
STP8 antagonisms to S. sclerotiorum evidencing hyperparasitic activity on mycelia and
sclerotia as well as antibiosis. The sclerotia were completely degraded after two months.
In the greenhouse, infection of lettuce with S. sclerotiorum was reduced by treating the
seedlings with an STP8 spore suspension. Uninfected plants treated with STP8 were of
the best quality based on morphological parameters, confirming the ability of STP8 to
promote lettuce growth. Even the infected lettuce treated with STP8 were healthier and in
better condition than the control lettuce, suggesting that STP8 was also enhancing plant
defense system.

Keywords: antagonism; Ascomycota; beneficial fungi; Lactuca sativa L.; mycoparasitism;
white mold

1. Introduction
Lettuce (Lactuca sativa) is one of the most consumed vegetables among the Croatian

population with a cultivated area of 241 hectares and a yearly production rate of 6.479
tons [1]. Diseases that affect lettuce include lettuce drop or white mold, which is a major
concern for growers and producers. Lettuce drop occurrence results in severe damage
and yield loss up to 70% because the causal pathogen can infect all lettuce parts at any
stage of plant development [2,3]. The causal pathogen of the lettuce drop is the fungus
Sclerotinia sclerotiorum (Lib.) de Bary, which belongs to the phylum Ascomycota (Helotiales,
Sclerotiniaceae). It is a facultative soilborne pathogen which produces sclerotia, the pri-
mary long-term survival structures that remains viable in soil for up to 10 years [4]. The
fungus S. sclerotiorum parasitize approximately 500 species of plants worldwide, mostly
dicotyledonous, belonging to the families Solanaceae, Brassicaceae, Apiaceae, Asteraceae,
Chenopodiaceae, and Fabaceae [5,6] as well as some very aggressive weed species such
as Abutilon theophrasti Medick., Ambrosia artemisifolia L., and Amaranthus retroflexus L. [7].
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Recently, one of the newly discovered hosts of S. sclerotiorum is Nasturtium officinale W.P.
Aiton (Brassicaceae) [8].

The production and viability of sclerotia is essential to the survival of S. sclerotiorum
in soil and the onset of disease, as they provide a primary inoculum by myceliogenic
or carpogenic germination, depending on environmental conditions [9]. They can be
directly infectious to a nearby host when they germinate in the mycelium, and they can
be responsible for epidemics when they develop apothecia and produce ascospores that
bear anemochory in the spring. Infection can thus occur on any part of the lettuce plants
where the ascospores have been deposited. The life cycle is monocyclic since no secondary
inoculum is produced. The characteristic sign of S. sclerotiorum presence is patches of
cottony-white mycelium, often accompanied by hypogenous, black, irregularly shaped
sclerotia measuring 2–20 mm by 3–7 mm [3,9].

The control of lettuce drop is complex because of the nature of S. sclerotiorum
polyphagous, coupled with the longevity of soilborne sclerotia and airborne ascospores.
Therefore, the usual agricultural measure crop rotation is futile and even deep ploughing
to some extent. Control measures such as solarization, dry fallow land, and flooding fields
may reduce the number of sclerotia in the soil by inducing starvation, oxygen deprivation,
or desiccation [5], but these measures are partially successful and are unachievable in many
breeding conditions. Moreover, they are not environmentally friendly. Fungicides are
available only for foliar application in vegetation while soil application is environmentally
unacceptable. However, over-reliance on broad-spectrum chemical fungicides poses a
serious risk to the environment, disrupts the ecology, reduces the number of beneficial
microorganisms in the soil, and accelerates the development of fungicide-resistant strains
of S. sclerotiorum [10,11]. Therefore, the development of biological control is of great signifi-
cance. One type of biological control is soil suppression, which relies on the microbiological
activity of native microorganisms that develop after some plants, usually Brassicaceae, are
ploughed into soil [12,13]. However, true biocontrol requires the use of bio-agents, and
the most successful fungal antagonists that have been characterized for the control of S.
sclerotiorum are: Paraphaeosphaeria minitans (W.A. Campb.) Verkley, Göker & Stielow as
Coniothyrium minitans W. A. Camp [14], and Alternaria atra (Preuss) Woudenb. & Crous as
Ulocladium atrum Preuss [15].

In recent decades Trichoderma Pers. spp. have gained importance due to their antago-
nistic abilities against S. sclerotiorum in various crops [3,16,17]. They are currently marketed
as biopesticides, biofertilizers, plant growth enhancers, and stimulants of plant natural
resistance [18–20]. Recent biogeography and diversity studies have identified Trichoderma
isolates from different localities around the world, confirming that their ecological spe-
cialization is modulated by climate, soil type, cropping system, and complex ecological
interactions that influence their effectiveness as biocontrol agents [21]. In addition, the ef-
fectiveness of Trichoderma-mediated suppression of plant pathogens and growth promotion
is species and strain dependent [22,23]. Given the growing concern about the impact that
invasive allochthonous Trichoderma strains introduced by commercial products may have
on the native rhizosphere community, it is important to investigate the antagonistic capa-
bilities of native strains of Trichoderma species [19]. The aim of this work was to investigate
the biocontrol potential of a native Croatian strain, Trichoderma koningiopsis agg., against S.
sclerotiorum under laboratory and greenhouse conditions in association with lettuce plants,
also considering its role as a growth and yield promoter of lettuce.
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2. Materials and Methods
2.1. Fungal Strains

In this study, native strains of Sclerotinia sclerotiorum and Trichoderma koningiopsis agg.
were used, both isolated from the humus soil in experimental vegetable garden site at the
Faculty of Agriculture (Zagreb, Croatia). The isolation of T. koningiopsis agg. strain was
carried out according to [24]. Axenic cultures are stored on potato dextrose agar (PDA)
media in the temporary laboratory collection of the first author under the codes STP8
(Trichoderma) and SS (S. sclerotiorum). Fungal isolates are taxonomically determined by
molecular methods, with available phenetic characters (sclerotia of Sclerotinia) used as
additional data for species identification.

2.2. DNA Isolation, PCR, Sequencing, Sequence Alignment and Phylogenetic Analysis

Total genomic DNA of SS was extracted from mycelium and STP8 from anamorphic
structures, both from axenic cultures, using the Quick-DNA Fungal/Bacterial Miniprep
kit (Zymo Research, Irvine, CA, USA) following the manufacturer’s instructions. The ITS
region was amplified using primer pair ITS4/ITS5, rpb2 gene region using fRPB2-5f/fRPB2-
7cr and tef 1 gene region using EF1/EF2 [25]. The 25 µL PCR mixtures contained 12.5 µL of
Go Taq G2 Green Master Mix (Promega, SAD, Madison, WI, USA), 1 µL of DNA template,
and 1 µL of each forward and reverse primer at the concentrations 5 ng/µL and 9.5 µL
ddH2O. PCR reaction was conducted under protocols specific for each primer pair [25]
in a PCRMax thermal cycler (Cole-Parmer, Cambridgeshire, UK). The sizes of PCR prod-
ucts were assessed by 1% agarose gel electrophoresis along with standard DNA markers.
All successfully amplified PCR products were purified by ExoSAP-IT™ (Thermo Fisher
Scientific, Waltham, MA, USA) cleanup reagent following the manufacturer’s protocol
prior to sending to Macrogen Europe (Amsterdam, The Netherlands) for bidirectional
Sanger sequencing.

Sequence reads were assembled and edited using Geneious Prime 2025.0.2. software
(https://www.geneious.com, accessed on 7 January 2025, Biomatters, Auckland, New
Zealand). Assembled sequences were deposited at the National Center for Biotechnol-
ogy Information (NCBI) GenBank database (https://www.ncbi.nlm.nih.gov/genbank/,
accessed on 8 January 2025,) under the following accession numbers: Sclerotinia sclerotiorum
strain SS (ITS = PQ849352), Trichoderma koningiopsis agg. strain STP8 (ITS = PQ849380,
rpb2 = PQ867587, tef 1 = PQ867588). The list of all sequences used in our phylogenetic
analyses is available in the Supplementary File S1 [26–48].

The Basic Local Alignment Search Tool (BLAST, https://blast.ncbi.nlm.nih.gov, ac-
cessed on 1 March 2023) was used for searching similar sequences in GenBank. Sequence
alignment of the dataset was achieved individually on ITS (Sclerotinia), rpb2 and tef1 (Tri-
choderma) using MAFFT vers. 7.490 [49,50] available as Geneious Prime plugin. After being
aligned and trimmed, both Sclerotinia ITS rDNA alignment and Trichoderma rpb2 and tef 1
alignments were accomplished using Geneious Prime 2025.0.2. Monilinia johnsonii was
selected as the outgroup for phylogenetic analysis of Sclerotinia dataset, while Protocrea
farinosa was used as the outgroup in the Trichoderma dataset. Phylogenetic analyses were
conducted using Maximum Likelihood (ML) in IQTREE v1.6.12 [51,52] by applying the
ultrafast bootstrap approximation with 10,000 replicates. The best model was selected
by ModelFinder implemented in IQTREE (TIM2e model for Sclerotinia alignment and
TNe + G4 for the Trichoderma dataset). Phylogenetic trees were visualized and annotated
using FigTree 1.4.4 (http://tree.bio.ed.ac.uk/software/figtree/, accessed on 7 January 2025)
and PowerPoint as part of Microsoft Office Professional Plus 2021.

https://www.geneious.com
https://www.ncbi.nlm.nih.gov/genbank/
https://blast.ncbi.nlm.nih.gov
http://tree.bio.ed.ac.uk/software/figtree/
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2.3. Antagonism on Agar Culture Plates

The antagonistic effects of T. koningiopsis agg. (STP8) on the growth inhibition of S.
sclerotiorum (SS) were investigated according to [53] using the dual-culture method. The
fungal cultures were grown on PDA (Biolife, Italy) at 21 ◦C in 90 mm diameter Petri dishes.
Mycelial discs with a diameter of 6 mm were removed from the edge of the seven-day-old
cultures and transferred to 90 mm diameter Petri dishes containing PDA to form dual
cultures. A mycelial disc of SS containing a well-developed sclerotium was placed on
one side of a PDA plate, while a disc of STP8 was placed on the opposite side. For the
control plates, a sterile agar disc was used instead of the STP8 mycelial disc. The testing
for production of volatile metabolite was performed using the dual-culture method [54],
in which the SS mycelial plug was placed on the agar in the center of the Petri dish lid
and the STP8 was placed on the agar in the center of the Petri dish container. In both tests
each treatment was carried out in five plates with four replicates (N = 40). The dishes were
sealed with paraffin tape (Parafilm, Brand GMBH + CO KG, Germany) and incubated in
the dark at 20 ◦C ± 1 ◦C for seven days. During the incubation period, the fourth and
seventh day radial fungal colony growth of both species in the direction of the opposite
colony was measured manually using a ruler. The maximum and minimum radial growth
were measured and the average radial growth was calculated. The average radial growth
was used to calculate the inhibition index (I = %) as follows: I (%) = (C − T/C) × 100,
where I is the inhibition percentage; C is the radial growth of SS (mm) alone (control); and
T is the radial growth of SS (mm) in the presence of STP8 [55]. An index value of 50% or
more is considered as excellent performance. After measurement, the dishes containing the
dual-cultures were incubated for 2 months to evaluate parasitism on sclerotia.

2.4. Biological Assay in Greenhouse Lettuce

The greenhouse experiment was set up according to a randomized complete block de-
sign in five replicates with five plants per replicate. Commercial lettuce seeds of the variety
Sunny, which had been treated with carbendasim-thiram by the manufacturer (Nickerson-
Zwaan Menaco B.V., Tuitjenhorn, The Netherlands), were sown in polystyrene boxes (con-
tainers for vegetable cultivation) in the potting mixture Klasmann-Delimann P 002 (Geeste,
Germany). The potting substrate was previously autoclaved (2 h, 121 ◦C). Three-leaved
seedlings (N = 100) were transferred to pots with a diameter of 9 cm and divided in four
different treatments: (1) SS—seedlings infected with S. sclerotiorum by inserting a mycelial
disc with a diameter of 6 mm and a sclerotium manually using a spatula near the root collar
into the substrate; (2) STP8 + SS—seedlings inoculated with S. sclerotiorum additionally
inoculated with STP8 spore suspension at a concentration of 4 × 106 spores mL−1 by pour-
ing suspension into the substrate along the root collar; (3) STP8—seedlings inoculated with
STP8 spore suspension at a concentration of 4 × 106 spores mL−1; (4) control—untreated
seedlings. The plants were harvested nine weeks after sowing and the following character-
istics were evaluated: the number of leaves per plant, leaf length, leaf width, fresh weight,
and dry weight of the plants.

Recovery of STP8 from the soil was performed after plants were harvested to evaluate
its colonization. A soil sample was collected from each pot and each replicate (25 per
treatment) in the STP8 and STP8 + SS treatments. Soil samples were brought to the
laboratory and air-dried in paper bags at room temperature for seven days. The soil was
subjected to the procedure for isolation of Trichoderma [24].

Obtained data were statistically analyzed: ANOVA, LSD for 5% and 1%, and Duncan’s
multiple-range test (MS Excel version 2306, MS Office 365).
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3. Results
3.1. Taxonomic Identification of Fungal Strains

Phylogenetic analysis of SS ITS rDNA sequence and closely related species from the
genus Sclerotinia showed strong affiliation of SS to a S. sclerotiorum (Figure 1). Sequence
identity of SS was 100% with all analyzed S. sclerotiorum isolates [28–34]. The identity of
Sclerotinia strain SS was further checked by available phenetic characters. Thus, all sclerotial
characters fully complied with those of Sclerotinia sclerotiorum [56].
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To identify Trichoderma strain STP8 at the species rank, we followed the guidelines
of Cai i Druzhinina [25] using three DNA barcode sequence data (ITS, rpb2, and tef 1 gene
regions). Megablast search of NCBIs GenBank nucleotide database using the rpb2 and
tef 1 sequences of Trichoderma strain STP8 showed that several closest hits belong to T.
koningiopsis Samuels, Carm. Suárez & H.C. Evans. Phylogenetic analysis of STP8 and
closely related taxa confirmed clear affiliation of STP8 to T. koningiopsis species group
(Figure 2).

Comparison of STP8 sequence data to the reference (type) strain of T. koningiopsis (GJS
93-20, CBS 119075; rpb2 = EU241506, and tef 1 = DQ284966) resulted in 97.91% of identity in
rpb2, and 94.81% of identity in tef 1, respectively. Since the STP8 sequences did not reach
the similarity value to a reference strain as rpb2 ≥ 99% and tef1 ≥ 97% [25], we did not
name STP8 isolate as T. koningiopsis sensu stricto but rather as a member of T. koningiopsis
agg. until more taxonomic research is done.
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3.2. Antagonism on Agar Culture Plates

Biocontrol of S. sclerotiorum (SS) was performed with the selected native strain T.
koningiopsis agg. (STP8) under laboratory and greenhouse-controlled conditions. In vitro
tests showed excellent antagonisms to S. sclerotiorum through competitiveness, antibiosis,
and mycoparasitism. The mechanism of competition for space and resources was shown by
the fact that isolate STP8 colonized the substrate faster, so that it occupied at least 54% of
the Petri dish after only four days and the hyphae intermingled with those of S. sclerotiorum.
In seven days, it had overgrown the mycelium of S. sclerotiorum with an inhibition of 77%
(Table 1).

Table 1. Antagonism of Trichoderma koningiopsis agg. STP8 against Sclerotinia sclerotiorum.

Average Colony Radius of Sclerotinia sclerotiorum (cm)

Incubation Day: 4 Incubation Day: 7

Rep. Control 1 Test 2 I (%) 3 Control 1 Test 2 I (%) 3

1. 35 17 51.4 90 21 76.7
2. 39 17 56.4 90 21.8 75.8
3. 39 19 51.3 90 19.9 77.9
4. 37 16 56.8 90 21.16 76.5
x 37.5 17.3 54 90 20.97 76.7

1 Control = Culture SS + sterile mycelial plug instead of STP8. 2 Test = Dual cultures STP8 + SS. 3 I = Inhibition
index.



Microbiol. Res. 2025, 16, 35 7 of 15

The parasitism of isolate STP8 on the S. sclerotiorum mycelium appeared as browning in
a 18.9 mm wide zone. No sclerotia were formed in the presence of T. koningiopsis agg. strain
STP8, while the test of mycoparasitism of sclerotia resulted in complete decomposition of
the sclerotia after two months. The parasitized sclerotia were smaller and had a completely
macerated interior (medulla), while the rind (cortex) was softened and easily broken
(Figure 3).
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Figure 3. Sclerotia of Sclerotinia sclerotiorum: (A) parasitized by Trichoderma koningiopsis STP8 (above),
healthy (below); (B) macerated (middle); (C) healthy, cross section (right).

When tested for antibiosis, the presence of volatile metabolites was confirmed by
the growth inhibition of S. sclerotiorum at 75% after four days and 86% after seven days
compared to the control (Table 2). Altogether, the strain STP8 showed the characteristics of
a good biocontrol agent in vitro as it has the potential to significantly inhibit growth and
development of S. sclerotiorum colonies and sclerotia.

Table 2. Antibiosis of Trichoderma koningiopsis agg. STP8 against Sclerotinia sclerotiorum.

Average Colony Radius of Sclerotinia sclerotiorum (cm)

Incubation Day: 4 Incubation Day: 7

Rep. Control 1 Test 2 I (%) 3 Control 1 Test 2 I (%) 3

1. 39 9 76.9 90 9.8 89
2. 39 12 69.2 90 19.5 78.3
3. 35 7.5 78.6 90 8.5 90.5
4. 37 9.5 74.3 90 12.6 86
x 37.5 9.5 74.8 90 12.6 86

1 Control = Culture SS + sterile mycelial plug instead of STP8. 2 Test = Dual cultures STP8 + SS. 3 I = Inhibition
index.

3.3. Antagonism in Greenhouse Lettuce

The greenhouse experiments showed that STP8 reduce the onset of S. sclerotiorum
infection and the infection rate, and could solubilize nutrients and stimulate plant growth.
The differences were relevant in all treatments in which STP8 was added compared to the
control. Statistically significant differences were observed between the T. koningiopsis agg.
(STP8, STP + SS), the S. sclerotiorum (SS) treatment and the control in the morphological
parameters evaluated (number of leaves per plant, leaf length and width, and fresh weight)
(Table 3).
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Table 3. Biocontrol of Sclerotinia sclerotiorum SS by Trichoderma koningiopsis agg. STP8 in greenhouse
lettuce.

Treatment Leaves/Plant Leaf Length (cm) Leaf Width (cm) F.wt. (g) 1 D.wt. (g) 2

STP8 10.2 a 5 17.5 a 8.6 a 11.3 a 0.1
STP8 + SS 9.0 b 5 15.6 b 7.6 b 8.2 b 0.1

SS 5.8 c 5 11.8 c 5.5 d 3.8 c 0.1
Control 8.7 b 14.7 b 6.7 c 8.1 b 0.1

LSD 3 5% 0.4 1.0 0.1 1.3 n.s. 4

LSD 1% 0.3 0.7 0.1 0.9 n.s.
1 F.wt. = Fresh weight. 2 D.wt. = Dry weight. 3 LSD = Least significant difference. 4 n.s. = Non-significant
difference. 5 a, b, c, d = Mean in each column, with same letters are not significantly different at p < 0.05,
Duncan test.

The non-infected plants treated only with STP8 isolate (STP8) showed the best quality
in terms of all morphological parameters. Plants infected with S. sclerotiorum (SS) resulted
in the highest number of dead plants and the highest disease severity scores. Sclerotinia scle-
rotiorum infected the stem tissue and lower leaves and led to the death of the lettuce plants
within seven to 10 days. There were no statistically significant differences in dry weight.
Even the lettuce infected with S. sclerotiorum and treated with STP8 isolate (STP8 + SS)
remained healthy and in better condition than the infected lettuce (SS) and the control
lettuce plants. This indicates that STP8 also enhances plants’ defense systems. Non-infected
plants treated with STP8 were of the best quality based on the morphological parameters
(number of leaves per plant, leaf length and width, and fresh weight) confirming the ability
of STP8 to promote plant growth.

4. Discussion
The production and viability of sclerotia is essential for S. sclerotiorum survival, propa-

gation and onset of disease. Therefore, reducing the production of sclerotia is critical in
the control of this pathogen. Since sclerotia are overwintering structures that are subject to
dormancy, they need a conditioning period of a one to three months in soil to overcome
constitutive dormancy before germination, and the main onset of Sclerotinia disease mostly
occurs two months after planting [11,57,58]. Isolated T. koningiopsis agg. STP8 inhibited
in vitro growth of formed sclerotia after one week (more than 70% in the first week) and
completely decomposed them within two months due to mycoparasitism. Also, STP8
prevented the formation of new sclerotia by simultaneously parasitizing on mycelia, which
was in line with the research of [59]. According to [60], the high antagonism of Trichoderma
spp. against S. sclerotiorum is due to the increasing productions of cell wall-degrading en-
zymes. The main extracellular cell wall-degrading enzymes responsible for mycoparasitism
include chitinases and β-glucanases [61], which directly degrade host cell walls [19].

However, promising in vitro results do not often translate into successful in vivo
(field) results [62]. Therefore, the Trichoderma isolate selected in vitro as suitable as bio-
agent, needs to be validated in research either in vivo under systems that resemble natural
conditions or under field conditions [63]. Application of isolate STP8 in greenhouse trial
showed that STP8 treatment when planting lettuce seedlings was beneficial, as it reduced
the infection by S. sclerotiorum and promoted the growth of lettuce. Comparable results in
lettuce were also obtained in a study by [64] with native Brasilian Trichoderma isolates, in
which all 12 isolates of four different Trichoderma species promoted the growth of lettuce
in the presence and absence of S. sclerotiorum. The positive effects on the lettuce growing
in soil infested with S. sclerotiorum and eradication of sclerotia from soil using the native
Trichoderma isolates were also observed in Poland [6,65]. Further, our results confirm
previous findings that the most effective Trichoderma strains colonize the roots and are
beneficial at least for the life span of annual plants, and that even if Trichoderma is only
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present on the roots, the improvement in growth can be assessed on both the root and the
foliage [3,7,17,65–68]. In similar trials on the S. sclerotinia control in onions by the native
isolate of T. atroviride from New Zeland [58] the disease also occurred two months after
planting, and authors concluded that the performance of Trichoderma bioagent can be much
more influenced by the time it remains in contact with the pathogen than by the pressure
of the disease itself. The results obtained here provide an idea for future research on the
possible application of STP8 as a potential bioagent through preventive application to
the soil.

Some studies of biological control targeting sclerotia of S. sclerotiorum have focused on
the effectiveness of commercial products based on Trichoderma spp. [63,64,69–71]. Currently,
there are nearly 400 species of Trichoderma [25], and more than 10 species have strains
that are used commercially as a biological solution to control plant diseases [72] through
77 biopesticides on the world market [19] against more than 100 different phytopathogen
fungal species [73]. Commercial Trichoderma products are based on an encapsulated fungal
inoculum designed to maintain fungal propagules viable during transportation, storage,
and application. During each phase, the loss of part of the propagules is possible, as they
may die under inadequate conditions, or the lifespan of the product may be shortened [74].
Further, reintroduction into the soil, even of the most strongly rhizosphere competent Tricho-
derma bioagent, can be difficult [20]. When introduced into a new rhizosphere environment,
Trichoderma must compete with a spectrum of native microbes, and is often affected by
various natural abiotic factors. Thus, when it is applied in the field, the biological control
effect is weakened [18,74]. However, even the ability to colonize the soil to a high degree
is not a determining factor in evaluating the biocontrol potential of Trichoderma, as was
noted by [75] where commercial Trichoderma-based biocontrol products were not effective in
suppressing S. sclerotiorum, even though the treated soils were shown to be abundantly colo-
nized with Trichoderma. The authors even emphasized the possibility that the allochthonous
Trichoderma stimulated infection of lettuce by S. sclerotiorum as the number of healthy let-
tuce heads were in general lower than those in the control. A similar insignificant effect
on disease control or sclerotial infection showed two Trichoderma strains imported in the
UK, despite their high activity in original infection tests carried out in southern France,
where they originated [69]. The authors speculated that this may have been due to the
lower soil temperatures (18 ◦C) compared to the soil temperatures (28 ◦C) in the south
of France, which makes these isolates poorly capable of infecting the sclerotia of native
S. sclerotiorum isolate. Different behaviors in the control of S. sclerotiorum were shown by
Trichoderma isolates from soils with different uses [63] indicating that under field conditions
there are other biotic or abiotic factors that may influence the expression of the antagonism
and that Trichoderma may have preference for the substrate. The type of crop is another
factor influencing the Trichoderma species diversity in the soil [76]. Investigations of the
rhizosphere in agricultural ecosystems around the world have established the dominance
of Trichoderma species in the microbiota and a high level of their inter- and intraspecific
genotypic diversity depending on crop type [77]. These findings confirm the need for
careful selection of commercial Trichoderma antagonists for use in specific environments
and under specific conditions.

Nowadays, as a stable taxonomic framework for the genus Trichoderma is available [25]
different Trichoderma species have different biogeographic distribution patterns and, to
some extent there is a preference for the substrate in natural [24,48,78,79] and agricultural
environments [80–84]. The negative impact of Trichoderma species from bioproducts on the
biodiversity of not only native Trichoderma species but also other organisms (e.g., plants,
bacteria, fungi) is receiving more attention in research studies. The study of soil biodiversity
on the island of Tenerife confirmed a low diversity of Trichoderma-specific communities
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and the presence of ubiquitous, widespread species rather than endemic species [85]. All
isolates showed high antagonistic and competitive ability, confirming extensive colonization
by allochthones Trichoderma species and suppression of native strains. On the island of
Sardinia similar results of reduction of native Trichoderma diversity because of replacement
by extensive invasion of species from Eurasia, Africa, and the Pacific Basin were found, and
possible introductions by humans or another biota were not excluded [86,87]. Allochthones
Trichoderma strain can be introduced even with commercial potting substrate. According
to [88], a higher level of diversity in Trichoderma species exists in potting media and as this
material consists of different organic and inorganic ingredients but could therefore have
been naturally occurring in these products or been introduced after composting [89,90]. In
conclusion, since the efficacy of Trichoderma is related to the soil type, a suspension based on
an autochthonous Trichoderma strain is more suitable than an allochthones strain introduced
by commercial Trichoderma products.

5. Conclusions
Alongside the immense potential of Trichoderma, its effects as a plant partner go

beyond the biocontrol of plant pathogens. The positive effect of Trichoderma on plant
growth is recognized as an independent ability and is as remarkable and significant as its
antifungal ability, as growth improvement was observed in the absence of any detectable
disease and in sterile soil [91–95]. Trichoderma may cause significant biochemical changes
in plant content of carbohydrates, amino acids, organic acids, and lipids [96]. Trichoderma
researchers emphasize that considering biocontrol as the primary capability of Trichoderma
may compromise the evolution of the biocontrol system, as it means that conditions
are optimized for the wrong mechanism [18]. Therefore, it is proposed to expand the
importance of Trichoderma-fungicide and extend its role in biocontrol to the promotion
of plant growth (bio-stimulant) and disease resistance in addition to classical antibiosis
and mycoparasitism, as there is overlap between biocontrol by Trichoderma and plant
performance-enhancing activities. Bio-stimulants can benefit in greenhouse production and
eco-farming of lettuce and can be applied in addition to standard fertilization treatments
to improving nutrient use efficiency. In greenhouses water suspension of Trichoderma
propagules are generally introduced into hydroponic systems infused directly into the
nutrient solution. They can also be mixed into soil-less media, any inert growth media will
suffice. Also, can be sprinkled directly onto plant roots like application in this study.

The application of native T. koningiopsis agg. strain STP8 in this study increased yield
parameters of lettuce and helped to inhibit S. sclerotiorum. Considering all, obtained results
warrant further investigation toward field application of T. koningiopsis agg. STP8 as a bio-
stimulant where its impact on yield parameters and chemical constituents in head lettuce
would be evaluated. Since there is great interest in researching the molecular mechanisms
by which plants perceive and respond to microbial signals [96] we plan to carry out further
studies to understand the physiological and biochemical mechanisms of lettuce growth
promotion by T. koningiopsis agg. STP8 and assess the possibility of commercializing the
product for the market as a bio-stimulant.
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