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1 Introduction

The theory of gravity in three dimensions has the remarkable feature that it does not
carry any dynamical degrees of freedom in the bulk. It is by now well known that general
relativity in three dimensions is a topological gauge theory which can be described as
a Chern-Simons theory for the appropriate gauge (super)group [1, 2]. The gauge group
reflects the isometries of the maximally symmetric vacuum of the theory, which depends on
the presence and sign of the cosmological constant Λ. In the present work, we will focus
on negative cosmological constant Λ = −1/`2, mainly due to the fact that the presence of
BTZ black hole solutions of [3] require a non-vanishing negative Λ. In three dimensional
gravity, all dynamical degrees of freedom live on the asymptotic boundaries. This interesting
property of the theory has spiked the interest in the theory as a candidate for a consistent
theory of quantum gravity in three dimensions [2, 4]. However, a direct computation of the
partition function of AdS3 gravity remained cumbersome or inconclusive [5, 6].

Recently in [7], it was shown that the complete Poisson structure at the boundary is
not given solely in terms of Kac-Moody currents, but also includes the zero modes of bulk
holonomies, which can be understood as Wilson lines stretched between the boundaries.
Indeed, these Wilson lines are classically traversable wormholes [8]. In the quantum theory
and in the presence of two boundaries, this is understood as a thermofield double description
of two entangled conformal field theory [9, 10]. This means that the quantum description of
the theory is based on a complete set of observables which are formed by the currents and
the Wilson lines/loops. The Hilbert space does not factorize into two copies of boundary
states, but the boundary theories are coupled through global zero modes. In [7], a complete
analysis was provided of such Wilson lines in pure Chern-Simons gravity on asymptotically
AdS geometries with two boundaries, as the simplest example. It was shown that, in the
presence of non-trivial holonomies in the bulk, the action obtained from a Hamiltonian
reduction of the 3D Einstein-Hilbert action is exactly the geometric action on the Virasoro
coadjoint orbit, with the holonomy being the orbit representative.

These results can be promoted to three dimensional supergravity models, because these
are also Chern-Simons theories with boundary conditions of the Drinfeld-Sokolov type,
implementing a Hamiltonian reduction at the boundary [11]. The resulting asymptotic
symmetry algebras are the N -extended superconformal algebras of [12–15], which are
linear for N ≤ 2. A similar discussion in two dimensions has been considered for the BF
formulation of dilaton supergravity [16].

In the case of an annulus topology, we include the holonomies along the lines of [7, 11]
by treating separately the two chiralities. For each chirality, it leads to a supersymmetric
chiral action at each boundary coupled by radial Wilson lines. One also finds that the
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system is physically described by two sets of generators of the superconformal algebras, one
at each boundary. These generators are constrained by the holonomy matching condition
and provide, together with the global modes, a complete description of the system. The
dynamics reduces to the dynamics of these generators and of the global modes, and can
therefore be expressed in terms of geometric actions.

In the geometric construction of the action based on Kirillov-Kostant prescription [17–
19], the existence of a coadjoint representation is an utmost necessity. However, this notion is
not sufficient and will be challenged when the boundary algebras are non-linear. This is the
case, for example, when the asymptotic charges of the theory form a non-linear algebra as in
supergravity with N > 2 or higher spin gauge theories with non-linear W-algebras [20, 21].
Then, the geometric actions can not be formulated in terms of orbits of the coadjoint
representation, since the phase space does not provide a linear representation, but rather
in terms of the more general concept of symplectic leaves [22, 23]. When the asymptotic
symmetry algebra is linear, the boundary action can be cast in the form of the Schwarzian
action [24, 25] which has been shown to be the geometric action on the coadjoint orbits
of the asymptotic symmetry group. From the point of view of Hamiltonian reduction, the
chiral boundary theory can be also shown to be a Schwarzian action where the holonomies
appear as the constant orbit representatives.

The generators of the asymptotic symmetry algebra form a Poisson manifold, with
a Poisson bracket that is degenerate if one focuses only on a single boundary algebra
without including the global radial Wilson lines. The symplectic leaves of this Poisson
manifold have a well-defined symplectic structure, which is the one that enters in the
action. Moreover, it happens that the Hamiltonian reduction in the presence of non-trivial
holonomy still indubiously provides the action on the boundary. Therefore, one is able to
perform a Hamiltonian reduction in supergravity or higher spin gravity in the presence of
bulk holonomies in order to obtain the boundary theory. These boundary actions should be
considered as a candidate for a geometric action on the symplectic leaves of the Poisson
manifold. The holonomies are related to the leave representatives; in fact, the intersections
of symplectic leaves are determined by the zero modes of asymptotic charges which in turn
are given by the holonomies.

A great advantage of our approach is that holonomies appear in the action as dynamical
fields. They are considered as time-dependent variables in the action. Their equations of
motion set them on-shell to constant variables determined by the zero modes of the asymp-
totic charges. These constant holonomies match with the constant orbit representatives.
This happens to be an important feature once one wants to quantize the theory, since in a
genuine quantum theory of gravity one should consider summing over all possible solutions
of the theory. The presence of holonomies in the action provides a control over the solution
space at the level of action.

Recently, there has been a surge of interest in the computation of the path integral of
two dimensional Jackiw-Teitelboim (JT) gravity. In two dimensions, the partition function
of gravity turns out to have a beautiful mathematical description. It is the volume of the
moduli space of hyperbolic manifolds with constant curvature and the boundary theory is
an ensemble of one dimensional quantum mechanical models, which can be captured by
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random matrix theory. An important piece of information is that in two dimensions, the
partition function is written as the exponential of a Schwarzian action functional [26]. This
Schwarzian action is the boundary theory of 2D JT gravity and can be obtained as the IR
limit of the SYK model [27–31]. In three dimensions, this piece of information happened to
be crucial, as the Hamiltonian on the boundary of 3D Chern-Simons gravity is given by
the sum of two Schwarzian actions with opposing chirality [7, 25, 32]. There has been a
plethora of works in 3D along this line of thoughts [33–38].

In this work, we provide a systematic recipe to write down the Schwarzian action for 3D
supergravity and higher spin gravity in the presence of non-trivial holonomy. While we pay
special attention to the role of bulk holonomies, we focus on the case where the holonomy
is in the hyperbolic conjugacy class. This is because we are mostly interested to exhibit
the result for BTZ black hole solutions and these solutions are in the hyperbolic holonomy
conjugacy class. Upon Hamiltonian reduction, the boundary Hamiltonian depends on
a choice of boundary conditions and is equivalent to the Schwarzian action for Brown-
Henneaux boundary conditions. This Schwarzian action may be considered as the starting
point for computing the partition function of the corresponding theory. There is a benefit
in using this action for computing the partition function. It already contains information on
the Wilson lines, and therefore it may be more suited in addressing the factorization problem
in 3D gravity. In this paper, we only focus on the construction of the boundary actions and
details regarding computation of the partition function will be discussed elsewhere.

Our paper is organized as follows. In section 2 we provide a short introduction to AdS3
supergravity and W3 higher spin theories in three dimensions. In each case, we discuss the
gauge fixing and the corresponding Brown-Henneaux boundary conditions. In section 3, we
perform the Hamiltonian reduction on the super Chern-Simons theory, or equivalently, AdS3
supergravity. We first show this explicitly for three dimensional AdS supergravity with
N = 1, 2 where one can use the Kirilov-Kostant construction to compare. The boundary
action of Chern-Simons AdS3 supergravity for an arbitrary number of supersymmetry N
is addressed in section 3.5. The honolomy part of the action remains undetermined for a
general case and requires a case by case study. We will comment on that in section 3.6.
Section 4 is aimed at the Hamiltonian reduction of W3 AdS3 higher spin theory. In this case,
there are two distinct boundary conditions depending on the sl(2) embedding of the sl(3)
algebra. We discuss both the principal and diagonal embedding and provide the boundary
action in each case.

In section 5, we discuss the geometric action on the coadjoint orbit of the group of
reparameterizations of the supercircle. We show that the result of section 3 for N = 1, 2 is
precisely the one of the geometric action. Appendix A provides some conventions regarding
Osp(2|2) representation, appendix B comprises a brief view of action on the symplectic
leaves and appendix C is a review of geometric quantization for (super)conformal groups.

2 Three dimensional AdS gravity

2.1 AdS3 supergravity

Three dimensional AdS supergravity is described by a Chern-Simons theory for a Lie super-
group G, where the even part of the group must contain SO(2, 2) ∼= SL(2,R)×SL(2,R). The
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Einstein Hilbert action can then be written as the difference of two Chern-Simons actions

Sgr[A, Ā] = Scs[A]− Scs[Ā] , (2.1)

where
Scs[A] = k

4π

∫
M

Str
(
A ∧ dA+ 2

3A ∧A ∧A
)
, (2.2)

and k = `
4GN . The gauge connections A, Ā take values in the superalgebra g0 ⊕ g1 where

g0 = sl(2,R)⊕ g̃0. Here g̃0 is the Lie algebra of the corresponding R-symmetry group. The
sl(2,R) generators are denoted by L−1, L0, L+1 and satisfy the commutation relations

[L0, L±] = ±L±, [L+, L−] = 2L0. (2.3)

When G = OSp(N|2) × OSp(N|2), the Lie algebra g̃0 of R-symmetry is so(N ). Let’s
consider T a (a = 1, . . . , D) to be generators of so(N ) where D = N (N − 1)/2 is the
dimension of the algebra so(N ). They satisfy the following commutation relations

[T a, T b] = fabcT
c, (2.4)

[T a, L±,0] = 0. (2.5)

Fermionic generators transform in the fundamental representation of SO(N ). Therefore
the odd part g1 consists of 2N generators Qα± where α = 1, . . . , d. Note that d = N is the
dimension of fundamental representation of SO(N ) in which fermionic generators transform.
The algebra osp(N|2,R) is then defined as

[L0, Q
α
±] = ±1

2Q
α
±, (2.6a)

[L±, Qα±] = 0, (2.6b)
[L±, Qα∓] = +Qα±, (2.6c)
[T a, Qα±] = −(λa)αβ Qβ±, (2.6d)
{Qα±, Q

β
±} = ±ηαβL±, (2.6e)

{Qα±, Q
β
∓} = −ηαβL0 ±

d− 1
2Cρ

(λa)αβT a. (2.6f)

Here λa are the basis of the representation ρ of SO(N ) in which fermions transform, ηαβ is
an SO(N ) invariant metric, Cρ is the second Casimir in the ρ representation, i.e. one has

λaλa = −CρI, tr(λaλb) = − d
D
Cρδ

ab. (2.7)

The graded super Jacobi identity for any X,Y, Z ∈ g is written as

(−1)ε(X)ε(Z)[X, [Y,Z]] + (−1)ε(X)ε(Y )[Y, [Z,X]] + (−1)ε(Z)ε(Y )[Z, [X,Y ]] = 0, (2.8)

where ε(X) is the parity of X and its value is determined depending on whether X is
Grassmann even or odd. It imposes a condition on λas,

(λa)βγ(λa)αδ + (λa)αγ(λa)βδ = Cρ
d− 1(2ηαβδγδ − η

αγδβδ − η
γβδαδ ). (2.9)
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The matrices ηαβ are symmetric, i.e. ηαβ = ηβα while the matrices λαβ are antisymmetric,
i.e. λαβ = −λβα.

A generic osp(N|2) connection A will be parameterized as

A = AnLn +BaT a + ψ±αQ
α
± = A+B + Ψ , (2.10)

and likewise for the barred sector.
The relation between the Chern-Simons formulation and the geometric formulation in

terms of the dreibein e and the (dualized) spin connection ω is obtained by identifying sl(2)
part of the super-connection as the dreibein and the spin connection, i.e. taking the sl(2|R)
connections A, Ā to be

e = `

2
(
A− Ā

)
, ω = 1

2
(
A+ Ā

)
. (2.11)

The metric is constructed as

gµν = 2tr(eµeν) = `2

2 tr
(
(A− Ā)µ(A− Ā)ν

)
. (2.12)

All solutions of three dimensional gravity are locally gauge equivalent to each other, but
differ up to boundary terms or global identifications. Therefore boundary conditions are
crucial in three dimensional gravity, which we will now digress on at some length.

2.1.1 Gauge fixing

The importance of boundary conditions for three dimensional gravity stems from the fact
that locally gauge equivalent solutions can differ by boundary terms. Imposing suitable
boundary conditions in three dimensional gravity then specifies which bulk solutions are
gauge inequivalent and lead to different boundary charges. Suitable in this context means:
leading to integrable boundary charges. In addition, the boundary conditions should not be
too strict, so that the boundary charges are non-trivial, but not too loose either, such that
the boundary charges are finite.

In the Chern-Simons formulation of three dimensional gravity the boundary conditions
on the gauge connection are most easily represented in a radial gauge. Let us suppose our
manifoldM has the topology of a filled cylinder and can be equipped with a coordinate
system (t, ϕ, r). There is a spatial boundary ∂M at r → ∞. The radial gauge fixing is
achieved by taking1

∂ϕAr = 0 . (2.13)

This implies that we can solve the Chern-Simons constraint Frϕ = 0 by writing

Ar = b(r)−1∂rb(r) , Aϕ = b(r)−1aϕ(t, ϕ)b(r) . (2.14)

Here b(r) is a group element depending only on r.
1For simplicity, here we work in one chiral sector of AdS3 Chern-Simons gravity, unless otherwise specified.
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The time component of the Chern-Simons connection At is a Lagrange multiplier for
the constraint Frϕ = 0 and asking this constraint to be preserved under time evolution
implies that we may write

At = b(r)−1at(t, ϕ)b(r) . (2.15)

In this gauge, the boundary conditions are completely specified by fixing aϕ(t, ϕ) and
at(t, ϕ). The functional variation of the asymptotic charges corresponding to an asymptotic
symmetry transformation δεai = ∂iε+ [ai, ε},2 are given by [39]

δQ = − k

2π

∮
dϕ Str (εδaϕ) . (2.16)

Hence, to specify suitable boundary conditions means in this context to find a form of aϕ
such that the above charges are finite and integrable for all ε which satisfy ∂iε+[ai, ε} = δεaϕ.
An important aspect of this is to include a specification of state dependence in ε and in aϕ
in order to perform the functional integration of the charges.

It is now clear that aϕ contains information on the asymptotic charges. On the
other hand at plays the role of chemical potential, or the sources. We may always write at
proportional to ε, as the field equations ∂taϕ−∂ϕat+[at, aϕ} = 0 will reduce to the statement
that the time derivative of the charges aϕ is determined by a symmetry transformation and
hence weakly vanishes. The on-shell Chern-Simons action is proportional to

∫
∂M tr(ataϕ)

and so by writing at proportional to the gauge parameter ε one immediately sees that it
becomes a chemical potential for the charges in aϕ.

Now we should specify the boundary conditions by specifying the form of aϕ. The
gauge invariant observables in Chern-Simons theory are Wilson loops, or the holonomy of
the connection around the ϕ-cycle.

Hϕ = tr
(
P exp

(∮
aϕdϕ

))
(2.17)

The holonomies, and therefore the distinct solutions, can be characterized by the conjugacy
classes of the super-group G. In section 5.2, we discuss how this can be useful in distin-
guishing different bulk solutions and classifying them as certain orbits of the asymptotic
symmetry group in the bosonic example of Brown-Henneaux boundary conditions [40] for
asymptotically local AdS3 spacetimes.

2.1.2 Supersymmetric Brown-Henneaux

The supersymmetric extension of the Brown-Henneaux boundary conditions were obtained
in [11]. In our conventions they are most easily represented by taking

aϕ = L− + L(t, ϕ)L+ + Ψα(t, ϕ)Qα+ + Ba(t, ϕ)T a (2.18)

An asymptotic symmetry transformation δaϕ = ∂ϕΛ + [aϕ,Λ} is parameterized by

Λ = χnLn + ε±αQ
α
± + ωaT a . (2.19)

2Here [, } is shorthand notation for the graded commutator.
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Three components of Λ can be solved for as

χ0 = −∂ϕχ− , χ+ = −1
2∂

2χ− + Lχ− + 1
2Ψ · ε− , (2.20)

ε+
α = −∂ϕε−α + χ−Ψα + Baε−αλa , (2.21)

where · means contraction by ηαβ . The variation of the functions Ba,Ψα and L are given by:

δBa = ∂ϕω
a + fabcBbωc − d− 1

2Cρ
(Ψλaε−) , (2.22)

δΨα = L ε−α − ∂2
ϕε
−
α + 3

2∂ϕχ
−Ψα + χ−∂ϕΨα +

(
∂ϕBaε−α + 2Ba∂ϕε−α − BaBbε−αλb

)
λa

+ ωaΨαλ
a − Baχ−Ψαλ

a . (2.23)

δL = χ−∂ϕL+ 2∂ϕχ−L −
1
2∂

3
ϕχ
− + 1

2∂ϕΨ · ε− + 3
2Ψ · ∂ϕε− + Ba(Ψλaε−) . (2.24)

The transformation rule for Ψ contains a non-linear term ∼ BaΨ in the last line of (2.23).
This term can be removed by taking the R-symmetry gauge parameter ωa to be

ωa = Baχ− + Ωa . (2.25)

This changes ω into Ω and removes the last term in (2.23), while it also changes (2.22) to

δBa = ∂ϕ(Baχ−) + ∂ϕΩa + fabcBbΩc − d− 1
2Cρ

(Ψλaε−) . (2.26)

It also has an effect on the asymptotic charges where it implements a Sugawara shift in the
χ− charge. The charges are

Q[χ−] = − k

2π

∫
dϕ χ−

(
L+ Cρ

d− 1B
aBa

)
≡ − k

2π

∫
dϕ χ−L̂ , (2.27)

Q[ε−] = k

2π

∫
dϕ ε− ·Ψ , (2.28)

Q[Ω] = − k

2π
2Cρ
d− 1

∫
dϕ ΩaBa . (2.29)

The algebra of Fourier modes of the charges, defined as Ln = Q[χ− = einϕ], Gαn = Q[ε−α =
einϕ] and T an = Q[Ωa = einϕ], gives the generic N superconformal algebra

[Lm, Ln] = (m− n)Lm+n + k

2m
3δm+n,0 , (2.30a)

[Lm, Gαn] =
(
m

2 − n
)
Gαm+n , (2.30b)

[Lm, T an ] = −nT am+n , (2.30c)

{Gαm, Gβn} = ηαβ(Lm+n + km2δm+n,0) + i
d− 1
2Cρ

(m− n)(λa)αβT am+n (2.30d)

− k

2

(
d− 1
2kCρ

)2 (
{λa, λb}αβ + 2Cρ

d− 1η
αβδab

)
(T aT b)m+n , (2.30e)

[Gαm, T an ] = i(λa)αβGβm+n , (2.30f)

[T am, T bn] = ifabcT cm+n + 2Cρk
d− 1mδ

abδm+n,0 . (2.30g)
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where (T aT b)m+n are the Fourier modes of ( k
2π

2Cρ
d−1)2Ba(ϕ)Bb(ϕ). This algebras agrees

with [11] and corresponds to the non-linear superconformal algebras found in [12–15]. The
non-linear terms in the supercharge anti-commutators are only present for N > 2. For
N ≤ 2 the algebras are superconformal Lie algebras whose group is the centrally extended
group of diffeomorphisms of the supercircle.

2.2 W3 higher spin gravity

W3 gravity in three dimensions can be considered as a higher spin theory of gravity for a
spin-3 field and described by the Chern-Simons theory with the gauge group SL(3,R). This
can be obtained starting from higher spin theory in 2 + 1 dimensions [41, 42] and truncating
hs(1|1)-valued higher spin connections to its sl(3,R) components. The Einstein Hilbert
action is again written as the difference of two Chern-Simons actions as in (2.1) and (2.2),
where now k is the level of the Kac-Moody sl(3) algebra, the gauge connections A, Ā are
g = sl(3,R)-valued 1-form connections and the trace is over the sl(3) Lie algebra. To define
g we use the root space gradation g = ⊕g(i) with

g(0) = g0 = span{θa|a = 1, 2, . . . , rank g},
g(j) = span{Eα|[θa, Eα] = αaEα, a = 1, 2, . . . , rank g}, (2.31)

where g0 is the Cartan subalgebra of sl(3) spanned by two elements θa, a = 1, 2 and Eα
are associated to the root α of the root space of sl(3) Lie algebra. The Chevalley basis of
sl(3) are spanned by a set of 8 generators given by

{
Eα±, θ

a
}
, where Eα+, Eα− are respectively

raising operators corresponding to positive roots and lowering operators corresponding to
negative roots, and θa span the Cartan subalgebra. We recall that the eigenvalues of the
Cartan subalgebra are weights ωa and the vector with components ωa is a weight vector ~Ω,
i.e. θa|ω〉 = ωa|ω〉 where |ω〉 are eigenvectors of θa.

Let’s consider the following matrix representation of sl(3)

E1
+ =

0 1 0
0 0 0
0 0 0

 , E2
+ =

0 0 0
0 0 1
0 0 0

 , E3
+ =

0 0 1
0 0 0
0 0 0

 ,

E1
− =

0 0 0
1 0 0
0 0 0

 , E2
− =

0 0 0
0 0 0
0 1 0

 , E3
− =

0 0 0
0 0 0
1 0 0

 ,

H1 =

1 0 0
0 −1 0
0 0 0

 , H2 =

0 0 0
0 1 0
0 0 −1

 , (2.32)

and

θ1 = H1 +H2√
2

, θ2 = H1 −H2√
6

. (2.33)

Using the matrix representation of sl(3), we find three weight vectors of sl(3)

~Ω1 = 1√
2

(
1, 1√

3

)
, ~Ω2 = 1√

2

(
0,− 2√

3

)
, ~Ω3 = 1√

2

(
−1, 1√

3

)
. (2.34)

– 8 –



J
H
E
P
0
6
(
2
0
2
3
)
1
2
1

Roots are weights of the adjoint representation and root vectors ~αi can be defined as vectors
connecting the weight vectors in the root lattice, then we can easily write the positive roots

~α1 = ~Ω1 − ~Ω2 = 1√
2

(
1,
√

3
)
,

~α2 = ~Ω2 − ~Ω3 = 1√
2

(
1,−
√

3
)
,

~α3 = ~Ω1 − ~Ω3 =
(√

2, 0
)
. (2.35)

It is obvious that ~α1 and ~α2 are the simple roots of sl(3), and ~α3 = ~α1 + ~α2. This is
simply understood from the commutator of the Cartan generators with raising and lowering
operators as

[~θ,Ei
±] = ±~αiEi±, (2.36)

[Ei±, Ei∓] = ~αi.~θ (2.37)
[Ei±, E

j
±] = ±Ei+j± , (2.38)

where ~θ = (θ1, θ2). The rest of generators can be obtained by Serre relation or by the use
of Jacobi Identity. Note that here “.” refers to the inner product on the two dimensional
root vector space and moreover Ei± = 0 for i > 3.

2.2.1 Gauge fixing

A general sl(3) connection can be written as

A = Ai±E
i
± + ΘiH i, (2.39)

and likewise for Ā. Once again, the gauge inequivalent bulk solutions are specified by
suitable boundary conditions. Following the discussion of section 2.1.1, we can solve the
Chern-Simons constraint in radial gauge for the connections

Ar = b(r)−1∂rb(r), Aϕ = b(r)−1aϕ(t, ϕ)b(r), (2.40)

where b(r) is a group element which only depends on r. Moreover, requiring that the
Chern-Simons constraint remains unchanged under the time evolution leads to

At = b(r)−1at(t, ϕ)b(r). (2.41)

This means that the boundary conditions are completely determined by aϕ(t, ϕ) and at(t, ϕ),
see [20, 21, 43] for more details.

The Brown-Henneaux boundary conditions for W3 gravity in 3 dimensions depends on
the way that the SL(2) subgroup is embedded in SL(3). We will explore this in more detail
later in section 4.2 where we discuss the Hamiltonian reduction of SL(3,R) WZW action.
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3 Hamiltonian reduction of the super Chern-Simons action

In this section we will discuss the reduction of three dimensional super-Chern-Simons action
to a two dimensional field theory. We first reduce three dimensional AdS supergravity to
a sum of two chiral super Wess-Zumino-Witten models and then impose the boundary
conditions as constraints on the WZW super-currents. Furthermore, we will discuss the
effect of different boundary conditions and boundary terms on the two dimensional boundary
action, paying special attention to non-trivial holonomies in the bulk. The analysis is kept
general for extended supergravity with any number of supersymmetries. For N ≤ 2, we will
show how the boundary action is related to the geometric action on the coadjoint orbit of
the super-Virasoro group. For larger supersymmetries (N > 2), we compute the Schwarzian
action through the reduction, and suggest a form for the geometric action on the symplectic
leaves of corresponding super-Virasoro group manifold.

The first steps of the reduction follows along the lines of [11, 44] (see also [45] for a
recent review). What is new in our approach is that we will not try to combine the two
chiral sectors of the theory, but instead keep them disconnected. We also discuss the zero
modes of the fields and allow for non-trivial holonomies of the Chern-Simons connection.

We start with the Hamiltonian decomposition of the action (2.1). Let us focus on one
chiral sector (Scs[A]) for now, as the barred sector follows similarly. The Hamiltonian form
of the action (2.2) is defined on a manifoldM which we will take to be the disk D times
a time direction. The boundary S1 of the disk is at r → ∞ and we use an orientation
dt ∧ dϕ ∧ dr. The Hamiltonian action is

S[A] = k

4π

∫
M
dtdϕdr Str

(
ArȦϕ −AϕȦr + 2AtFϕr

)
+ IΣ , (3.1)

with
Frϕ = ∂rAϕ − ∂ϕAr + [Ar,Aϕ] , (3.2)

and IΣ is a boundary term adapted to the boundary conditions under consideration. This
boundary term is added to the action to ensure a well-defined variational principle. The
variation of the bulk action gives

δS[A] = . . .− k

2π

∫
∂M

dtdϕ StrAtδAϕ = . . .− k

2π

∫
∂M

dtdϕ Str atδaϕ . (3.3)

Here the ellipses stand for terms proportional to the bulk equations of motion. The boundary
term IΣ should be such that its variation cancels the term in (3.3). We should therefore
impose boundary conditions such that this expression is integrable and finite. We discuss
the boundary conditions in details later in section 3.2.

The action (3.1) consists out of two parts. There is a symplectic term and the boundary
term. The latter is responsible for the Hamiltonian of the boundary theory, while the
symplectic part reduces to the geometric action on the super-Virasoro coadjoint orbit. In
the non-supersymmetric theory, it will reduce to the geometric action on the Virasoro
coadjoint orbits of [24]. Let us discuss the reduction for both these terms in succession.
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3.1 The symplectic term

Focusing first on the bulk part of one chiral sector of the action, we see that At is a Lagrange
multiplier for the constraint Fϕr = 0. In general, the spatial sections can have a non-trivial
topology, which implies a non-trivial holonomy along non-contractible cycles in the manifold.
One can take this into account in the following way:

One demands the group elements G to be periodic; as a result of which the holonomy
appears explicitly in the local solution of the constraint Fϕr = 0,

Aϕ = G−1(∂ϕ +K(t))G , G(ϕ+ 2π) = G(ϕ). (3.4)

Here, K(t) is a Lie algebra valued function of time that parametrizes the holonomy.3 Note
that for periodic group elements G, the integral of G−1∂ϕG over the loop vanishes.

The action with explicit holonomy can be obtained by substituting (3.4) into (3.1).
The result is (formula (A.7) of [11])

SSCS[G,K(t)] = + k

4π

∫
M
d3x Str

(
∂r(G−1∂ϕGG

−1∂tG)
)

+ k

12π

∫
M

Str(G−1dG)3 (3.5)

+ k

4π

∫
M
d3x Str

(
2∂r(G−1K∂tG)− ∂t(G−1K∂rG)

)
+ IΣ ,

up to a total ϕ-derivative which is dropped due to the periodicity of G in ϕ. In addition,
we have also dropped boundary contributions at the time boundaries, and we will continue
to do so in the following, up to the point where we discuss them systematically.

In section 3.3, we continue by representing any group element with the use of the Gauss
decomposition of the group. It enables us to define Maurer-Cartan one-forms, G−1dG, and
to further implement constraints from the boundary conditions, i.e. aϕ = G−1∂ϕG, in terms
of the fields parameterizing the group. But first, we will discuss the Hamiltonian coming
from the boundary term in (3.1).

3.2 The Hamiltonian

Imposing different boundary conditions can lead to different boundary Hamiltonians. Fol-
lowing (3.3), the boundary term should be taken such that its variation is

δIΣ = k

2π

∫
dtdϕ Str (AtδAϕ) . (3.6)

The precise form of boundary action depends on the topology of spatial surfaces. In the
following we focus on a case where the spatial hypersurface has annulus topology S1× [0, 1].

In that case, we impose the boundary condition A− = 0 of [44] at the outer boundary.
We also choose the Hamiltonians on the respective boundaries to have the same (positive)
sign for definiteness, which one could interpret as having time evolution on both sides of
the black hole run in the same direction. This is achieved by taking A+ = 0 at the inner
boundary. These choices lead to the boundary terms (see section 2.3 of [7]):

IΣi,o = − k

4π

∫
Σi,o

dtdϕ StrA2
ϕ . (3.7)

3This choice is indeed a restriction we impose at this point, as it is only possible to eliminate the
ϕ-dependence in K(t) for simply connected groups.
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The boundary term in the action is thus seen as the time integral of the Noether charge
of an asymptotic symmetry transformation and hence the resulting action will remain
invariant under the asymptotic symmetries.

IΣ = IΣi + IΣo = − k

4π

∫
dtHbdy = −

∫
dtQ[Λ = At], (3.8)

where Λ is a Lie algebra valued function of the gauge parameters. If we choose χ− = 1
and ε− = 0 = Ωa, then the asymptotic symmetry corresponds to time translations. The
Noether charge for this would make a suitable Hamiltonian and it’s given by

IΣ = k

2π

∫
dtdϕ L̂ (3.9)

with L̂ defined in (2.27).
For the annulus topology, the action includes a contribution from each boundary,

coupled through the holonomy parameterized by K.

SCS[h, l,K(t)] = + k

4π

∫
Σo
dtdϕ Str

(
h−1∂ϕhh

−1∂−h+ 2h−1K∂−h−K2
)

(3.10)

− k

4π

∫
Σi
dtdϕ Str

(
l−1∂ϕll

−1∂+l + 2l−1K∂+l +K2
)

+ IWZ [G] ,

where:
h = G(t, r = router, ϕ), l = G(t, r = rinner, ϕ) , (3.11)

and hereon we use the notation ∂∓ = ∂t ∓ ∂ϕ.
The Wess-Zumino term

IWZ [G] = k

12π

∫
M

Str(G−1dG)3 , (3.12)

can be written as a total derivative and hence it also only depends on the boundary values
of the group element G.

The action (3.10) is invariant under the gauge symmetry G → ω(t)G and K →
ω(t)Kω−1(t), which implies in terms of the boundary fields,

h→ ω(t)h, l→ ω(t)l, K → ω(t)Kω−1(t) . (3.13)

This gauge invariance results from the redundancy of the parametrization of the group
element G [46] and can straightforwardly be verified in the above action.

3.3 On the holonomy

In this section, we continue the discussion of section 3.1 by explicitly computing the
reduction for a super-Chern-Simons action with N extended supersymmetry and the gauge
group OSp(N|2). However before doing so, we need to clarify few important aspects of
the presence of holonomy. As described in [7], the inequivalent physical contribution of
holonomy K is classified by its conjugacy classes, and moreover, conjugacy classes are
constant in time.
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Due to the theorem 3.9 of [47] (see also [48]), the holonomy group of OSp(N|2) can
be always put in a block diagonalized form. This means that one can always make the
holonomy to be in the even subgroup of the supergroup. Another way to see this is by
looking at the classification of coadjoint orbits of super Virasoro group [49]. One notices
that the coadjoint orbits that one obtains by considering the holonomy in the odd subspace
of the superspace are not new ones and one could equivalently obtain them by setting the
holonomy to be in the even subgroups.

In the case of N = 1 the choice of holonomy is insensitive to the supersymmetry. This
is because for N = 1 there is no R-symmetry and as a result the holonomy is classified by
the conjugacy classes of SL(2), similar to the non-supersymmetric case. However, for N ≥ 2
there is an SO(N ) R-symmetry and the holonomy must be classified by the conjugacy
classes of the even subgroup of OSp(N|2).

Another remark on the choice of holonomy conjugacy classes is that we only focus on
the hyperbolic holonomy class for the rest of this paper. This class of holonomies includes
BTZ solutions and therefore is important in the study of two-sided eternal BTZ black holes
which is the primary (but not the only) concern of this paper. For the practical reasons and
for the sake of simplicity we only focus on the hyperbolic class. The analysis of the other
classes is similar to the hyperbolic case. For such an analysis in the bosonic case see [7].

3.4 N = 1 super Chern-Simons

We will now continue to discuss the reduction to the boundary action for N = 1 AdS3
supergravity, focusing on the case where the holonomy is in the hyperbolic conjugacy class
of SL(2).

3.4.1 Hyperbolic holonomy

Using the Gauss decomposition, we can parameterize any element of OSp(1|2) as

h = G[r = ro, t, ϕ] = eY L−+ψ−Q−eΦL0eXL++ψ+Q+ ≡ E−E0E+ (3.14)

l = G[r = ri, t, ϕ] = eUL++χ+Q+eΦ̃L0eV L−+χ−Q− ≡ Ẽ+Ẽ0Ẽ− (3.15)

where Φ, X, Y, ψ± are fields at outer boundary and Φ̃, U, V, χ± are fields defined at inner
boundary and all are depending on spacetime coordinates (t, ϕ).4 They are the pullback of
the r-dependent G to the corresponding boundaries.

Inserting (3.14) and (3.15) inside the action (3.10), upon using the algebra osp(1|2,R)
given in (2.6) and

Str(L+L−) = 1, Str(L0L0) = 1
2 , Str(Q−Q+) = −Str(Q+Q−) = 2, (3.16)

the action now reads off as
S = So − Si + Shol, (3.17)

4We emphasize that the parametrization (3.15) is only at the inner boundary. One can see it as a field
redefinition of the fields which appear in a similar parametrization as (3.14).
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where5

So = k

4π

∫
Σo

dtdϕ
[1
2Φ′∂−Φ + 2eΦ(∂−X − ψ+∂−ψ

+)(Y ′ − ψ−ψ−′)− 4eΦ/2ψ−′∂−ψ
+
]
,

Si = k

4π

∫
Σi

dtdϕ
[1
2Φ̃′∂+Φ̃ + 2e−Φ̃(∂+V + χ−∂+χ

−)(U ′ + χ+χ+′)− 4e−Φ̃/2∂+χ
−χ+′

]
,

(3.18)

and

Shol = k

4π

∫
dtdϕ

[
k0

(
∂−Φ− ∂+Φ̃ + 2eΦ/2ψ−∂−ψ

+ − 2e−Φ̃/2χ+∂+χ
−

− 2eΦY (∂−X − ψ+∂−ψ
+)− 2e−Φ̃U(∂+V + χ−∂+χ

−)
)
− k2

0

]
. (3.19)

The Lagrangian is invariant (up to total derivatives) under the residual gauge symmetry,

Φ→ Φ̂ = Φ + λ0 Φ̃→ ˆ̃Φ = Φ̃ + λ0, (3.20a)

Y → Ŷ = Y e−λ
0

U → Û = Ueλ
0
, (3.20b)

X → X̂ = X V → V̂ = V, (3.20c)

ψ− → ψ̂− = ψ−e−λ
0/2 χ− → χ̂− = χ−, (3.20d)

ψ+ → ψ̂+ = ψ+ χ+ → χ̂+ = χ+e−λ
0/2, (3.20e)

k0 → k̂0 = k0 . (3.20f)

A convenient rewriting of the action is

SCS[k0, Y,Φ, X, ψ±, V, Φ̃, U, χ±] = SΣo
bdy[k0, Y,Φ, X, ψ±]− SΣi

bdy[k0, V, Φ̃, U, χ±] , (3.21)

with

SΣo
bdy = k

4π

∫
dtdϕ

[1
2∂−Φ(Φ′ + 2k0) + 2eΦ

(
∂−X − ψ+∂−ψ

+
)

(Y ′ − ψ−ψ−′ − k0Y )

+ 4eΦ/2∂−ψ
+(ψ−′ − k0

2 ψ
−)− 1

2k
2
0

]
,

SΣi
bdy = k

4π

∫
dtdϕ

[1
2∂+Φ̃(Φ̃′ + 2k0) + 2e−Φ̃(∂+V + χ−∂+χ

−)(U ′ + χ+χ+′ + k0U)

− 4e−Φ̃/2∂+χ
−
(
χ+′ + k0

2 χ
+
)

+ 1
2k

2
0

]
, (3.22)

3.4.2 Boundary conditions

We are now at the stage where we can impose the reduction conditions on the super
Chern-Simons connection that expresses the asymptotic behaviour of extended (super)
AdS3 [11]. We consider explicitly one asymptotic boundary only (the outer boundary).

5Here and in the rest of the paper we use prime as a shorthand notation for ∂ϕ.
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Similar considerations apply to the inner boundary. The only difference in their treatment is
the choice of OSp(N |1,R) representation at each boundary. While the boundary conditions
on the fields at outer boundary are in accordance with highest-weight representation, those
on the fields at inner boundary are in accordance with the lowest-weight representation. As
shown in [44] and discussed in [7, 11] the boundary conditions on the fields at r = r2 ≡ ro are

Ar = 0, Aϕ = L− + L(t, ϕ)L+ + Ψ+(t, ϕ)Q+. (3.23)

Similarly, the boundary conditions on the fields at r = r1 ≡ ri are

Ar = 0, Aϕ = L+ +M(t, ϕ)L− + Ψ−(t, ϕ)Q−. (3.24)

In terms of the field appearing in the Gauss decomposition, this gives the conditions
On Outer Boundary On Inner Boundary

eΦ(Y ′ − ψ−ψ−′ − k0Y ) = 1 e−Φ̃(U ′ + χ+χ+′ + k0U) = 1

Φ′ + k0 = 2X Φ̃′ + k0 = −2V

ψ+ + eΦ/2(ψ−′ − k0
2 ψ
−) = 0 χ− + e−Φ̃/2(χ+′ + k0

2 ψ
+) = 0

(3.25)

Inserting these conditions in the action (3.22), we find

SΣo
bdy = k

4π

∫
dtdϕ

[1
2∂−Φ(Φ′ + 2k0) + 2ψ+∂−ψ

+ − 1
2k

2
0

]
,

SΣi
bdy = k

4π

∫
dtdϕ

[1
2∂+Φ̃(Φ̃′ + 2k0)− 2χ−∂+χ

− + 1
2k

2
0

]
. (3.26)

Putting these together, the final form of action is written

S = k

4π

∫
dtdϕ

[1
2(∂−ΦΦ′ − ∂+Φ̃Φ̃′) + k0(∂−Φ− ∂+Φ̃) + 2(ψ+∂−ψ

+ + χ−∂+χ
−)− k2

0

]
.

(3.27)

This action describes the dynamic of two chiral bosons (one at each boundary) linked
through the holonomy and two free chiral fermions (one at each boundary). This action is
exactly the one described in [7] with the exception of the free chiral fermions present at
each boundary and similarly enjoys invariance under a redundant gauge symmetry

Φ→ Φ + ε(t), Φ̃→ Φ̃ + ε(t), k0 → k0 ,

ψ+ → ψ+, χ− → χ− . (3.28)

It is of no surprise that fermions remained uncoupled as the holonomy belongs only to
the diagonal subgroup which only allows bosonic degrees of freedom to couple. In the next
section, we should see an extension of this to include R-symmetry.

Before proceeding any further lets make a comment on the other conjugacy classes of
SL(2); elliptic and parabolic conjugacy classes. As we just pointed out since for N = 1,
holonomy only couples to the bosonic fields, the treatment of elliptic and parabolic cases
are similar to [7] in each case. The only difference is the presence of free chiral fermions in
the action which will appear as in the action (3.27).
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3.5 N = 2 super Chern-Simons

The case of N = 2 seems fairly easy to deal with. In fact, one can write down the So
and Si for a general N > 2. The difficulty lies in what is the contribution of Shol which
depends on the choice of holonomy. Our guideline motivated by the theorem on supergroup
diagonalization [47, 48] is that the holonomy can be always put in the form where it belongs
to the even subgroup of the supergroup. For N = 2 this simplifies drastically, since there
is only one R-symmetry generator and the holonomy will be given by a direct sum of the
N = 1 holonomy (i.e. it belongs to one of SL(2,R) conjugacy classes) and the so(2) Lie
algebra of the N = 2 R-symmetry subgroup.6 This boils down to three distinct classes:

• Hyperbolic holonomy described by hyperbolic conjugacy class of sl(2) ⊕ so(2).
Explicitly, the holonomy group element is H = expK with K(t) = k0(t)L0 + kr(t)T .
All elements conjugate to K belong to this class.

• Elliptic holonomy described by the elliptic conjugacy class of sl(2), or explicitly: all
elements conjugate to K(t) = 1

2ke(t)(L− − L+).

• Parabolic holonomy, which is described by the parabolic conjugacy class of sl(2), or
explicitly: all elements conjugate to K(t) = kp(t)L+.

Before discussing the details for N = 2, let us first write down the outer and inner
contributions to the action So and Si, for general N .

Once again we are only discussing the hyperbolic holonomy conjugacy classes which
contains BTZ back holes. The Gauss decomposition is a natural parametrization for the
hyperbolic holonomy. It occurs that the R-symmetry generator for N = 2 is also diagonal,
which makes the choice of Gauss decomposition much more suitable for this case.

Using the Gauss decomposition, we can parameterize any element of OSp(N|2) as

h = G[r = ro, t, ϕ] = eY L−+ψ−αQα−eΦL0+iCaTaeXL++ψ+
αQ

α
+ ≡ E−E0E+ (3.29)

l = G[r = ri, t, ϕ] = eUL++χ+
αQ

α
+eΦ̃L0+i C̃aTaeV L−+χ−αQα− ≡ Ẽ+Ẽ0Ẽ− (3.30)

where Φ, X, Y, Ca, ψ±α are fields at outer boundary and Φ̃, U, V, C̃a, χ±α are fields defined
at inner boundary and all are depending on spacetime coordinates (t, ϕ). They are the
pullback of the r-dependent G to the corresponding boundaries.

Inserting (3.29) and (3.30) inside the action (3.10) and using the osp(N |2,R) algebra
given in (2.6) and

Str(L+L−) = 1, Str(L0L0) = 1
2 ,

Str(T aT b) = 2Cρ
d− 1δ

ab, Str(Qα−Q
β
+) = −Str(Qα+Q

β
−) = ηαβ , (3.31)

the action now reads:
S = So − Si + Shol, (3.32)

6This choice of holonomy can be also shown to be the case for a constant orbit representative, when one
considers the effect of the holonomy implicitly through non-periodicity of the fields.
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where

So = k

4π

∫
Σo

dtdϕ
[1

2Φ′∂−Φ + 2eΦ
(
∂−X − ψ+

α

ηαβ

2 ∂−ψ
+
β

)
(Y ′ − ψ−α

ηαβ

2 ψ−β
′)

− 2eΦ/2ψ−β
′mβα∂−ψ

+
α

]
+ So[u],

Si = k

4π

∫
Σi

dtdϕ
[1

2Φ̃′∂+Φ̃ + 2e−Φ̃
(
∂+V + χ−α

ηαβ

2 ∂+χ
−
β

)
(U ′ + χ+

α

ηαβ

2 χ+
β
′)

+ 2e−Φ̃/2χ+
β
′m̃βα∂+χ

−
α

]
+ Si[w]. (3.33)

Here mα
β = eiCa(λa)αβ , m̃α

β = ei C̃a(λa)αβ , mαβ = mα
γη

γβ , and m̃αβ = m̃α
γη

γβ , with λa the
basis of the so(N ) algebra under which fermions transform, and

So[u] = k

4π

∫
Σo
dtdϕ Str

(
u−1∂ϕuu

−1∂−u
)

+ IWZ [U ]|Σo (3.34)

Si[u] = k

4π

∫
Σi
dtdϕ Str

(
w−1∂ϕww

−1∂+w
)

+ IWZ [W ]|Σi .

Here, once again, u(t, ϕ) = eiCa(t,ϕ)Ta , and w(t, ϕ) = ei C̃a(t,ϕ)Ta are the r-independent
pullback of U(t, ϕ, r) = eiCa(t,ϕ,r)Ta and W (t, ϕ, r) = ei C̃a(t,ϕ,r)Ta , respectively.

3.5.1 Hyperbolic holonomy

As explained in the previous section, we consider that K(t) = k0L0 + krT . For such a
holonomy, the contribution of holonomy in the action is given by

Shol = Sk0
hol + Skrhol (3.35)

with

Sk0
hol =

k

4π

∫
dtdϕ

[
k0

(
∂−Φ−∂+Φ̃+eΦ/2

(
ψ− ·m·∂−ψ+

)
−e−Φ̃/2

(
χ+ ·m̃·∂+χ

−
)

−2eΦY

(
∂−X−

1
2ψ

+ ·∂−ψ+
)
−2e−Φ̃U

(
∂+V + 1

2χ
− ·∂+χ

−
))
−k2

0

]
,

(3.36)

and

Skrhol = k

4π

∫
dtdϕ

[
kr

(
−i
(
∂−C − ∂+C̃

)
− eΦ (ψ− · λ · ψ−) (∂−X − 1

2ψ
+ · ∂−ψ+

)
+ e−Φ̃(χ+ · λ · χ+)

(
∂+V + 1

2χ
− · ∂+χ

−
)

+ 2eφ/2(ψ− · λ ·m · ∂−ψ+)

− 2e−φ̃/2(χ+ · λ · m̃ · ∂+χ
−)
)

+ k2
r

]
. (3.37)

Here we have used a shorthand notation “·” to avoid writing all spinorial indices
explicitly. As an example, it reads as ψ+ · ∂−ψ+ = ψ+ · η · ∂−ψ+ = ψ+

α η
αβ∂−ψ

+
β and
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ψ− · m · ∂−ψ+ = ψ−αm
αβ∂−ψ

+
β . Notice that here λ (and consequently m) is given by the

osp(N |2) representation of appendix A and we have set 2Cρ
d−1 = −1

2 accordingly.
The full N = 2 super Chern-Simons action can then be written as

SCS[k0,Kr, Y,Φ, X, ψ±α , V, Φ̃, U, χ±α ] = SΣo
bdy[k0, kr, Y,Φ, X, ψ±α ]− SΣi

bdy[k0, kr, V, Φ̃, U, χ±α ] ,
(3.38)

with

SΣo
bdy = k

4π

∫
dtdϕ

[1
2∂−Φ(Φ′+2k0)+ 1

2∂−C(C ′−2ikr)

+2eΦ(∂−X−
1
2ψ

+ ·∂−ψ+)
(
Y ′− 1

2ψ
− ·ψ−′−k0Y −

1
2kr(ψ

− ·λ·ψ−)
)

−2eΦ/2
(
ψ−
′− k0

2 ψ
−−krψ− ·λ

)
·m·∂−ψ+− 1

2(k2
0−k2

r)
]

(3.39)

and

SΣi
bdy = k

4π

∫
dtdϕ

[1
2∂+Φ̃(Φ̃′+2k0)+ 1

2∂+C̃(C̃ ′−2ikr)

+2e−Φ̃(∂+V + 1
2χ
− ·∂+χ

−)
(
U ′+ 1

2χ
+ ·χ+′+k0U−

1
2kr(χ

+ ·λ·χ+)
)

+2e−Φ̃/2(χ+′+ k0
2 χ

++krχ+ ·λ)·m̃·∂+χ
−+ 1

2(k2
0−k2

r)
]
. (3.40)

3.5.2 Boundary condition

Next, we impose the boundary conditions on the N = 2 super Chern-Simons connection,
corresponding to asymptotically AdS3 spacetimes [11]. The boundary conditions on the
fields at outer boundary are in accordance with highest-weight representation, those on the
fields at inner boundary are in accordance with the lowest-weight representation. As shown
in [44] and discussed in [7, 11], the boundary conditions on the fields at r = r2 ≡ ro are

Ar = 0, Aϕ = L− + L(t, ϕ)L+ + Ψ+
α (t, ϕ)Qα+ + B(t, ϕ)T. (3.41)

Similarly, the boundary conditions on the fields at r = r1 ≡ ri are

Ar = 0, Aϕ = L+ +M(t, ϕ)L− + Ψ−α (t, ϕ)Qα− +R(t, ϕ)T. (3.42)

In terms of the field appearing in the Gauss decomposition, this gives the conditions

On Outer Boundary On Inner Boundary

eΦ[Y ′ − 1
2ψ
− · ψ−′ − k0Y − 1

2kr(ψ
− · λ · ψ−)] = 1 e−Φ̃[U ′ + 1

2χ
+ · χ+′ + k0U − 1

2kr(χ
+ · λ · χ+)] = 1

Φ′ + k0 = 2X Φ̃′ + k0 = −2V

ψ+
α + eΦ/2[ψ−′ − k0

2 ψ
− − kr(ψ− · λ)]βmβα = 0 χ−α + e−Φ̃/2[χ+′ + k0

2 ψ
+ + kr(χ+ · λ)]βm̃βα = 0

(3.43)
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Inserting these conditions in the action (3.38), we find

SΣo
bdy = k

4π

∫
dtdϕ

[1
2∂−Φ

(
Φ′ + 2k0

)
+ 1

2∂−C
(
C ′ − 2ikr

)
+ 2ψ+ ·

(
m− 1

2η
)
· ∂−ψ+

− 1
2
(
k2

0 − k2
r

)]
,

SΣi
bdy = k

4π

∫
dtdϕ

[1
2∂+Φ̃

(
Φ̃′ + 2k0

)
+ 1

2∂+C̃
(
C̃ ′ − 2ikr

)
− 2χ− ·

(
m̃− 1

2η
)
· ∂+χ

−

+ 1
2
(
k2

0 − k2
r

)]
. (3.44)

Putting these together, the final form of action is written with pairs (Φ, Φ̃) and (C, C̃) of
chiral bosons linked through the holonomy and two pairs of chiral fermions with a dilaton
coupling to the C field

S = k

4π

∫
dtdϕ

[1
2∂−ΦΦ′ − 1

2∂+Φ̃Φ̃′ + k0
(
∂−Φ− ∂+Φ̃

)
+ 1

2∂−CC
′ − 1

2∂+C̃C̃
′ − ikr

(
∂−C − ∂+C̃

)
+ 2ψ+ ·

(
m− 1

2η
)
· ∂−ψ+ + 2χ− ·

(
m̃− 1

2η
)
· ∂+χ

−

−
(
k2

0 − k2
r

)]
. (3.45)

For N = 2, see appendix A, we have

m− 1
2η =

(
0 2e− iC2 − 1

2e iC2 − 1 0

)
. (3.46)

This action enjoys invariance under a redundant gauge symmetry

Φ→ Φ + ε1(t), Φ̃→ Φ̃ + ε1(t) ,
C → C + ε2(t), C̃ → C̃ + ε2(t) ,
k0 → k0, kr → kr ,

ψ+
α → ψ+

α , χ−α → χ−α . (3.47)

The action (3.45) is one of the main result of this paper. Even though this action is
written for N = 2 supergravity yet it contains general feature that holds for any N . The
holonomy independent part of the action always will be written in this form considering
a generalization of R-symmetry term. For larger N the holonomy dependent part is very
much related to the chosen conjugacy class of holonomy.

Another observation regarding the action (3.45) is that it is equivalent to the sum of
two chiral actions of [11] when the holonomies are set to zero. In another words, this is a
generalization of [11] by including the zero modes and holonomies. In [11] it was shown
that for the bosonic part and ignoring zero modes and holonomies, this is equivalent to the
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Liouville action. A detail analysis of such a relation in the case of super Liouville action
and in the presence of zero modes and holonomies will be discussed elsewhere [50].

Last comment regarding the action (3.45) is that this is indeed the action on the super
Virasoro coadjoint orbit. We will come back to this point in section 5.4 where we explicitly
show that the action (3.45) is equivalent to the geometric action on the coadjoint orbit of
the group of reparameterizations of N = 2 supercircle.

3.6 Comments on general N

For N > 2, the R-symmetry group is larger, and there are many more conjugacy classes.
The number of spinors will also be much more, leading to higher than quadratic orders of
interactions. Although the basic idea of holonomy is the same, the detailed analysis will be
much more complicated.

However, for the case when the holonomy is given by K(t) = k0L0 + krT , where T
is one of the Cartan elements of the R-symmetry algebra, the action (3.44) is indeed the
reduced Hamiltonian action.

Moreover, for a constant orbit representative, we are able to write down the complete
action for any N , by considering the holonomy as non-periodicity in the fields. However,
this comes at a price. The drawback of treating the holonomies as non-periodicity in the
fields is that the holonomy is no longer a dynamical field. In the quantized theory of
gravity one expects to have all the possible solutions such that the dynamics of the theory
allows changing between the solutions. In the geometric picture all these solutions are
determined by different orbits and therefore a sensible classical action requires to have the
orbit representatives (holonomies) as dynamical fields, such that in the partition function
one can sum over all the possible solutions of them.

All this makes us believe that writing the action in the presence of a dynamical holonomy
requires a case-by-case study that we do not intend to pursue here.

4 Hamiltonian reduction of W3 higher Chern-Simons action

As we have repeatedly mentioned, the goal of this paper is to provide a boundary action
through Hamiltonian reduction of various extension of Chern-Simons theory where the
algebra of asymptotic charges is non-linear while emphasizing the role of zero modes and
holonomies. Until now, we discussed the supersymmetric extension of Chern-Simons theory
of gravity where the non-linear terms will appear in N > 2 supergravity models. Another
place where a non-linear algebra of charges will appear is in higher spin extension of Chern-
Simons gravity [20, 21]. For a spin-N field the asymptotic charges form a WN algebra. This
algebra is non-linear for N > 2, however we have much less fields compared to supergravity
and a simpler classification of holonomy conjugacy classes. In this section, we will focus on
a Chern-Simons theory for a spin-3 fields with W3 asymptotic symmetry algebra and we
write down the boundary action via Hamiltonian reduction. We will show this for different
representations of SL(3) and we claim that the boundary action in each case is the geometric
action on the symplectic leaves of W3 manifold.
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4.1 Chern-Simons action in the presence of zero modes

In this section, we follow closely the discussion of section 3, however now the gauge fields
are sl(3,R) valued. As explained, the Chern-Simons action (2.2) can be written as

S[A] = k

4π

∫
M
dtdϕdr tr

(
AϕȦr −ArȦϕ + 2AtFrϕ

)
+ IΣi + IΣo , (4.1)

with
Frϕ = ∂rAϕ − ∂ϕAr + [Ar,Aϕ] , (4.2)

and IΣi,o are boundary terms adapted to the boundary conditions under consideration.
Imposing the boundary condition A− = 0 at outer boundary and A+ = 0 at inner

boundary, we have for the boundary Hamiltonian actions IΣi,o

IΣi,o = − k

4π

∫
Σi,o

dtdϕ trA2
ϕ . (4.3)

The field At is a Lagrange multiplier for the constraint Frϕ = 0 which can be solved for if

Aϕ = G−1 (∂ϕ +K(t))G, Ar = G−1∂rG. (4.4)

Here G is an SL(3,R) element and K(t) is the Lie-algebra valued holonomy. For our purpose
of dealing with hyperbolic holonomy, it is suitable to choose a representative in the Gauss
decomposition of SL(3,R), i.e.

G = eE
α
−eθ

a
eE

α
+ , (4.5)

where {Eα±, θa}, α = 1, 2, 3, a = 1, 2 are generators of sl(3,R), which form the Chevalley
basis of sl(3,R). A matrix representation in terms of this basis is given by (2.32) and (2.33).

As we have discussed in the sl(2) case, the zero modes are related to the non-trivial
holonomies in the bulk, which are characterized by both the conjugacy classes of sl(3),
and the classification of symplectic leaves [51, 52]. In the case of SL(3), there are seven
different conjugacy classes; two hyperbolic, one elliptic, three parabolic and the exceptional
conjugacy classes. A complete list of conjugacy classes of the SL(3) group based on its
possible isotropy subgroups can be found in [52]. It might be interesting to note that
a classification of irreducible unitary representation of “flat” W3 algebra was provided
in [53]. Such a classification is very useful in the study of three dimensional gravity in
Minkowski spacetime.

Once again we focus in our discussion only on holonomies in the non-degenerate
hyperbolic conjugacy class since BTZ black holes have hyperbolic holonomies. This holonomy
class can be represented by diagonalizable matrices with three distinct real eigenvalues
which are determined with two parameters.7 These two parameters can be completely fixed
by asymptotic symmetry transformations which set them to the asymptotic charges L and
W. This is similar to the Chern-Simons theory with Virasoro symmetry of charges. In

7The dimension of isotropy subgroups of SL(3) is 2, 4 or 8 which means the holonomies can be parametrized
with these number of parameters [52].
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that case the holonomies are determined by isotropy groups of SL(2) group, which leads
to three conjugacy classes. These classes are determined only with one parameter which
upon fixing by an appropriate Virasoro transformation is set to the Virasoro charge L.
Indeed for the hyperbolic holonomy with a fixed orbit representative b0, the zero modes
of L is determined by b0 which is related to the only parameter in the holonomy matrix
k0. For the details see section 5.2. In the case of SL(3) group, zero modes of L and W are
determined by the intersections of two symplectic leaves with the representatives b0 and b1.
These representatives are related to two holonomy parameters k0 and k1.

4.1.1 Hyperbolic holonomy

When dealing with hyperbolic holonomies, a suitable parametrization of group elements G
is given by the Gauss decomposition, where we have:

G = eγ3E3
−eγ2E2

−+γ1E1
−e

1√
2
φ1θ1+

√
3
2φ2θ2eξ1E

1
++ξ2E2

+eξ3E
3
+ . (4.6)

Here
{
Eα±, θ

a
}
are Chevalley basis of sl(3) and are defined in (2.32) and (2.33).

In terms of these group elements, the action can be written as

SCS[G,K(t)] = + k

4π

∫
M
d3x tr

(
∂r(G−1∂ϕGG

−1∂tG)
)

+ k

12π

∫
M

tr(G−1dG)3 (4.7)

+ k

4π

∫
M
d3x tr

(
2∂r(G−1K∂tG)− ∂t(G−1K∂rG)

)
+ IΣi + IΣo .

Let’s consider an annulus geometry with two boundaries ro = router and ri = rinner such that

h = G(t, r = router, ϕ), l = G(t, r = rinner, ϕ) . (4.8)

Similarly to our previous discussions, we would like to impose lowest weight gauge
condition on the inner boundary and it is more practical to use a field redefinition on the
inner boundary in order to parametrize the group elements l as

l = eξ̃3E
3
+eξ̃2E

2
++ξ̃1E1

+e
1√
2
φ̃1θ1+

√
3
2 φ̃2θ2eγ̃1E1

−+γ̃2E2
−eγ̃3E3

− . (4.9)

Then, the action on the r-boundaries reduces to

SCS[h, l,K(t)] = + k

4π

∫
Σo
dtdϕ tr

(
h−1∂ϕhh

−1∂−h+ 2h−1K∂−h−K2
)

(4.10)

− k

4π

∫
Σi
dtdϕ tr

(
l−1∂ϕll

−1∂+l + 2l−1K∂+l +K2
)

+ IWZ [G] ,

As usual, the Wess-Zumino term

IWZ [G] = k

12π

∫
M

tr(G−1dG)3 , (4.11)

can be written as a total derivative and hence it also only depends on the boundary values
of the group element G.
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For the non-degenerate hyperbolic holonomy, we have

K(t) = k0(t)(H1 +H2) + k1(t)H2. (4.12)

This is the hyperbolic class with three distinct real eigenvalues parameterized by two
arbitrary functions of t.

Now, given the reparametrization (4.6), the action (4.7) takes the form

So = k

4π

∫
Σo
dt dϕ

(
2e

φ1+3φ2
2

[
γ′1 − (k0 − k1)γ1

]
∂−ξ1

+ 2e
φ1−3φ2

2
[
γ′2 − (k0 + 2k1)γ2

]
∂−ξ2

+ 1
2e

φ1F (γ1, γ2, γ3; k0, k1) (ξ2∂−ξ1 − ξ1∂−ξ2 − 2∂−ξ3)

+ 1
2
[(
φ′1 + 4k0 + 2k1

)
∂−φ1 + 3

(
φ′2 − 2k1

)
∂−φ2

]
− 2

(
k2

0 + k0k1 + k2
1

))
, (4.13)

where

F (γ1, γ2, γ3; k0, k1) = γ2γ
′
1 − γ1γ

′
2 − 2γ′3 + k1(2γ3 + 3γ1γ2) + 4k0γ3. (4.14)

The action on the inner boundary Si is a completely similar expression to the action on the
outer boundary except written in terms of the fields on inner boundary γ̃, φ̃, ξ̃ instead of
γ, φ, ξ respectively.

4.2 Different SL(3) representations and highest weight gauge condition

The finite dimensional representations of SL(3) can be obtained from those of SL(2) by
considering different non-isomorphic SL(2) subgroups embedded in SL(3). This can be
understood for example from the decomposition of finite dimensional representation of
SL(3) group into the eigenspaces of the vector space formed from the Cartan elements of
sl(3) algebra [54]. These representations come with a unique highest weight. For SL(3)
there are two distinct representations: principal and diagonal SL(2) embeddings. In each
case, the root space decomposition differ which in turn leads to a different (but unique in
each representation) highest weight. In the following we discuss each representation and
the corresponding boundary actions. The boundary actions will be different given that the
highest weight gauge condition for the reduction is different in each representation.

4.2.1 Boundary condition and Hamiltonian reduction

In this section we follow closely the reduction procedure discussed in sections 3.4 and 3.5.
Therefore, we impose an appropriate boundary condition at each boundary. As before,
we consider that the angular component of sl(3) Chern-Simons connection to be fixed by
the highest weight or the lowest weight representations on the outer or inner boundaries
respectively. This is consistent with the asymptotic behaviour of AdS3.
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4.2.2 Principal embedding

With the principal embedding, one can choose the basis such that the sl(3) algebra is
written as

[Lm, Ln] = (m− n)Lm+n, (4.15)
[Lm,Wi] = (2m− i)Wm+i, (4.16)

[Wi,Wj ] = −1
3(i− j)(2i2 + 2j2 − ij − 8)Li+j , (4.17)

where Lm’s with m = ±1, 0 are the sl(2) generators and Wi’s with i = ±2,±1, 0 are the rest
of sl(3) generators. One can obtain these generators directly from the Chevalley basis [55] as

L0 ≡
1
2

2∑
i=1

(ciH i), (4.18)

L±1 ≡ ±
2∑
i=1

2∓
1
2
√
ciE

i
∓, (4.19)

Wi ≡ (−1)2−i (2 + i)!
12

(
adjL−1

)2−i
(L+1)2 , (4.20)

with ci = 2∑j(C−1)ij where C is the Cartan matrix of sl(3) algebra

C =
(

2 −1
−1 2

)
. (4.21)

An explicit basis for this algebra is then given by [21]

L−1 =

0 −2 0
0 0 −2
0 0 0

 , L0 =

1 0 0
0 0 0
0 0 −1

 , L+1 =

0 0 0
1 0 0
0 1 0

 ,

W−1 =

0 −2 0
0 0 2
0 0 0

 , W0 = 2
3

1 0 0
0 −2 0
0 0 1

 , W+1 =

0 0 0
1 0 0
0 −1 0

 ,

W−2 =

0 0 8
0 0 0
0 0 0

 , W+2 =

0 0 0
0 0 0
2 0 0

 .
The highest and lowest weight gauge conditions in terms of the sl(2)-principal embedding

basis takes the following form [20, 21]

Ar = 0, Aϕ = L+1 + L(t, ϕ)L−1 +W(t, ϕ)W−2 at outer boundary (4.22)
Ar = 0, Aϕ = L−1 + L(t, ϕ)L+1 +W(t, ϕ)W+2 at inner boundary. (4.23)
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At the outer boundary, this results in the following conditions

e
φ1+3φ2

2
[
γ′1 − (k0 − k1)γ1

]
= 1, (4.24)

e
φ1−3φ2

2
[
γ′2 − (k0 + 2k1)γ2

]
= 1, (4.25)

F (γ1, γ2, γ3; k0, k1) = 0, (4.26)

ξ2 − (k0 + k1)− 1
2
(
φ′1 − φ′2

)
= 0, (4.27)

ξ1 − k0 −
1
2
(
φ′1 + φ′2

)
= 0, (4.28)

together with the expressions for L and W

L = −1
4
(
ξ2

1 + 3ξ2
2 − 2ξ1ξ2 + 2ξ3 + ξ′1 + ξ′2

)
, (4.29)

W = 1
8

(
ξ′3 + 1

2(ξ2ξ
′
1 − ξ′2ξ1) + ξ2(ξ2

1 − 2ξ1ξ2 + 2ξ3)
)
. (4.30)

Inserting these condition in the action, we obtain the reduced boundary action on the
outer boundary

SΣo
bdy[k0, k1, φ1, φ2] = k

4π

∫
dtdϕ

(1
2∂−φ1(φ′1 + 4k0 + 2k1) + 3

2∂−φ2(φ′2 − 2k1)

− 2(k2
0 + k0k1 + k2

1)
)
. (4.31)

Following the same steps at the inner boundary, the complete boundary action can be
written as

Sbdy[k0, k1, φ1, φ2, φ̃1, φ̃2] = k

4π

∫
dtdϕ

(1
2∂−φ1 φ

′
1 −

1
2∂+φ̃1 φ̃

′
1 + 3

2∂−φ2 φ
′
2 −

3
2∂+φ̃2 φ̃

′
2

+ (2k0 + k1)(∂−φ1 − ∂+φ̃1)− 3k1(∂−φ2 − ∂+φ̃2)

− 4(k2
0 + k0k1 + k2

1)
)
, (4.32)

where ψ1 and ψ2 are the fields on the inner boundary.
This action has a redundant gauge symmetry

φ1 → φ1 + ε1(t), φ̃1 → φ̃1 + ε1(t) ,
φ2 → φ2 + ε2(t), φ̃2 → φ̃2 + ε2(t) ,
k0 → k0, k1 → k1 . (4.33)

In order to write the action (4.31), we have eliminated γ1 and γ2 while keeping φ1
and φ2. One can instead keep γ1, γ2 in which case one can write the action as the sl(3)
generalization of the Schwarzian action upon the following field redefinitions:

γ1 = e−(k0−k1)(f(t,ϕ)−ϕ), (4.34)
γ2 = e−(k0+2k1)(g(t,ϕ)−ϕ). (4.35)
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At the outer boundary, the action is now

S = k

4π

∫
dtdϕ

[
−4

3

([
∂−f

′′

f ′
−
(3

2
f ′′

f ′
+ 1

4
g′′

g′

)
∂−f

′

f ′

]
+
[
∂−g

′′

g′
−
(3

2
g′′

g′
+ 1

4
f ′′

f ′

)
∂−g

′

g′

])]
+ k

4π

∫
dtdϕ

[2
3

(
(k0 − k1)2f ′∂−f + (k0 + 2k1)2g′∂−g

+ (k0 − k1)(k0 + 2k1)
2

[
f ′∂−g + g′∂−f

] )]
+ k

4π

∫
dtdϕ

[
−2

3

[
(k0 − k1)f ′∂−g

′

g′
+ (k0 + 2k1)g′∂−f

′

f ′

]]
. (4.36)

This is the action on the outer boundary of an annulus (trumpet) geometry in the
presence of dynamical holonomies (zero modes). We claim that this action is the action
on the symplectic leaves of the W3 Poisson manifold for the constant representatives k0
and k1. It generalizes the result of [56] in the presence of non-trivial holonomies. Indeed
when there is no non-trivial holonomy, i.e. k0 = k1 = 0, the Hamiltonian reduces to the
two-dimensional generalization of the W3 Schwarzian action [56].

At this point lets point out a few interesting observations about these boundary actions.
The first remark is regarding the field redefinitions (4.34) and (4.35). Since γ1 and γ2 are
periodic, one can immediately notice that f(t, ϕ) and g(t, ϕ) get a 2π shift when going
around a circle, i.e.

f(t, ϕ+ 2π) = f(t, ϕ) + 2π,
g(t, ϕ+ 2π) = g(t, ϕ) + 2π. (4.37)

This is indeed very similar to SL(2) Chern-Simons theory where such a field appears in the
Schwarzian action. In that case f(t, ϕ) was an element of reparametrization of the circle or
equivalently an element of Diff(S1). However, for SL(3) theory the set (f, g) is an element of
diffeomorphisms of RP2 real projective plane [57]. In fact, for SL(n) theory the Schwarzian
action is written in terms of fields parametrizing symplectic leaves of Diff(RPn−1). Notice
that RP1 ∼= S1.

Another remark is regarding the invariance of the SL(3) Schwarzian action. In the
case of SL(2), there was a U(1) gauge redundancy which is the isotropy group of SL(2) for
the hyperbolic conjugacy class. This resulted in the invariance of the SL(2) Schwarzian
action under Diff(S1)/S1. For more details, see [7] and section 5 for the same discussion
from the perspective of the geometric action. The isotropy group of SL(3) for the non-
degenerate hyperbolic holonomy is R∗ × R∗ where R∗ is the projectively extended real line
(one point compactification of R). It is topologically isomorphic to S1. Another way to
realize this isotropy group is the gauge redundancy (4.33) which is U(1)× U(1). Therefore,
the Schwarzian action (4.36) is invariant under Diff(RP2)/R∗ × R∗ ∼= Diff(RP2)/S1 × S1.
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4.2.3 Diagonal embedding

We can also choose a basis for the sl(3) representation known as the diagonal embedding,
in which the sl(3) generators satisfy the algebra [58]

[Um, Un] = (m− n)Um+n, (4.38)
[Um, J0] = 0, (4.39)

[Um, G±n ] = (m2 − n)G±m+n, (4.40)

[J0, G
±
m] = ±G±m, (4.41)

[G+
m, G

−
n ] = Um+n −

3
2(m− n)J0. (4.42)

A matrix representation for these generators is

U−1 =

0 0 −1
0 0 0
0 0 0

 , U0 = 1
2

1 0 0
0 0 0
0 0 −1

 , U+1 =

0 0 0
0 0 0
1 0 0

 ,

J0 =


1
3 0 0
0 −2

3 0
0 0 1

3

 , G+
+1/2 =

0 0 0
0 0 0
0 1 0

 , G−+1/2 =

0 0 0
1 0 0
0 0 0

 ,

G+
−1/2 =

0 1 0
0 0 0
0 0 0

 , G−−1/2 =

0 0 0
0 0 −1
0 0 0

 .
The highest and lowest weight gauge conditions in terms of the sl(2)-diagonal embedding

basis take the following form

Ar = 0, Aϕ = U+1 −
8π
k

[(
L(t, ϕ)− 6π

k
U(t, ϕ)

)
U−1 + 3

2 U(t, ϕ)J0 + Ψ±G±−1/2

]
onΣo

Ar = 0, Aϕ = U−1 −
8π
k

[(
L(t, ϕ)− 6π

k
U(t, ϕ)

)
U+1 + 3

2 U(t, ϕ)J0 + Ψ±G±+1/2

]
onΣi.

At the outer boundary, this results in the following conditions

−1
2e

φ1F (γ1, γ2, γ3; k0, k1) = 1, (4.43)

e
φ1+3φ2

2
[
γ′1 − (k0 − k1)γ1

]
− ξ2 = 0, (4.44)

e
φ1−3φ2

2
[
γ′2 − (k0 + 2k1)γ2

]
+ ξ1 = 0. (4.45)

Inserting these conditions into the action (4.13), we obtain the reduced action on the
outer boundary

SΣo
bdy[k0, k1, φ1, φ2] = k

4π

∫
dtdϕ

(1
2∂−φ1(φ′1 + 4k0 + 2k1) + 3

2∂−φ2(φ′2 − 2k1)

+ (ξ2∂−ξ1 − ξ1∂−ξ2)− 2(k2
0 + k0k1 + k2

1)
)
. (4.46)
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Following the same steps at the inner boundary, the complete boundary action can be
written as

Sbdy = k

4π

∫
dtdϕ

(1
2∂−φ1 φ

′
1 −

1
2∂+φ̃1 φ̃

′
1 + 3

2∂−φ2 φ
′
2 −

3
2∂+φ̃2 φ̃

′
2

+ (ξ2∂−ξ1 − ξ1∂−ξ2)−
(
ξ̃2∂+ξ̃1 − ξ̃1∂+ξ̃2

)
+ (2k0 + k1)(∂−φ1 − ∂+φ̃1)− 3k1(∂−φ2 − ∂+φ̃2)

− 4(k2
0 + k0k1 + k2

1)
)
, (4.47)

where φ̃1, φ̃2, ξ̃1, ξ̃2 are the fields on the inner boundary.
It is interesting to notice that the second line is the free field theory of spinors with

bosonic statistics. It can be understood by comparing this action to the one of N = 2
supergravity (3.45) and setting the R-symmetry to zero. The sign difference between these
two descriptions is because the fields ξ1, ξ2, ξ̃1, ξ̃2 are not Grassmann variables, unlike the
corresponding fields in supergravity.

The action (4.47) has a gauge redundancy given by

φ1 → φ1 + ε1(t), φ̃1 → φ̃1 + ε1(t) ,
φ2 → φ2 + ε2(t), φ̃2 → φ̃2 + ε2(t) ,
ξ1,2 → ξ1,2, ξ̃1,2 → ξ̃1,2 ,

k0 → k0, k1 → k1 . (4.48)

This is once again related to the fact that the isotropy group of SL(3) group for the
non-degenerate holonomy conjugacy class is given by R∗ ×R∗ ∼= U(1)×U(1). Therefore
the action (4.47) is invariant under Diff(RP2)/S1 × S1. The Schwarzian can be obtained
by an appropriate change of variables. However, we will not present it here and we end
this discussion by pointing out that given the similarities between the action (4.47) and the
action for N = 2 Neveu-Schwarz supergarvity (3.45) one can find the change of variables
by following the discussion of N = 2 supergravity in section 5.4.

It is important to make a comment about the boundary action (4.47). This action
which is obtained through the Drinfeld reduction should be thought as the candidate for the
action on the symplectic leaves of W3 manifold. Even though it is straightforward to write
it down from the Hamiltonian reduction, it is not obvious how to obtain it in the geometric
approach. And moreover we consider the presence of non-trivial holonomies which not
only allows for solutions like BTZ but also provides a geometric sense. This is because
the holonomies are related to the representatives of symplectic leaves and the invariant
charges of the theory, L(t, ϕ),U(t, ϕ),Ψ±(t, ϕ), are determined by the intersections of the
symplectic leaves.

In the next section, we show explicitly the construction of Schwarzian boundary actions
for N = 1, 2 supergravity with the Kirillov-Kostant construction of geometric actions.
Given that for these theories the symplectic leaves are the coadjoint orbits, the procedure
is tedious but straightforward. We will show that these geometric actions match the

– 28 –



J
H
E
P
0
6
(
2
0
2
3
)
1
2
1

ones obtained through Hamiltonian reduction where non-trivial holonomies appear as the
orbit representatives.

5 Diffeomorphisms of the supercircle

In this section we study explicitly the case of N = 0, 1 and 2 from the general results of
sections 3.4 and 3.5 and we will show that the actions (3.27) and (3.45) can be understood
as the geometric action on the coadjoint orbit of the group of reparameterizations of the
supercircle. The bosonic case proceeds similarly to the case discussed in [59, 60], although
here we clarify the role of the bulk holonomy as the orbit representative. The N = 1
supersymmetric case was also discussed in [60]. Here we generalize the results to arbitrary
bulk holonomy and extend it to N = 2 supersymmetry.

The case of N > 2 is interesting because the asymptotic symmetry algebra (2.30)
becomes non-linear. Due to this non-linearity there is no clear interpretation in terms of
coadjoint orbit of some supergroup. Instead, one can think about these cases by suitably
generalizing the concept of symplectic leaves of a Poisson manifold, which in the case of
linear algebras corresponds to the coadjoint orbits. We will briefly comment on this in
appendix B. In this section, we start by reviewing the Kirillov-Kostant construction of
geometric actions on the coadjoint orbits in the case of the centrally extended groups of
reparameterizations of the supercircle.

5.1 Reparameterizations of the (super)circle

The coadjoint action on a generic element of the dual space b0 ∈ g∗ of any Lie algebra defines
a particular coadjoint orbit. The coadjoint orbits are symplectic manifolds isomorphic to
the coset G/Hb0 , where G is the Lie group in question and Hb0 the stabilizer subgroup of
the orbit, defined by all elements h ∈ G which leave the orbit representative b0 invariant
under the coadjoint action Ad∗h. The symplectic form on the orbit is the Kirillov-Kostant
symplectic form Ω. As it is closed, locally it is also exact Ω = dα. Then α can be used
to define an action on the orbit S[g; b0] =

∫
γ α, whose symplectic structure by definition

coincides with the Kirillov-Kostant symplectic structure. This action is known as the
geometric action on the coadjoint orbit. The addition of invariant Hamiltonians was
discussed in [59] and the general construction is reviewed in appendix C.1. From there we
see that the Kirillov-Kostant symplectic form for centrally extended groups consists of two
terms; one proportional to the orbit representative b0 and one proportional to the central
charge c

Ω = dα = d〈Ad∗g−1 b0, Y 〉 −
c

2〈dS(g), Y 〉 (5.1)

= d〈Ad∗g−1(b0, c), (Y, nY )〉.

Here Ad∗g−1 b0 is the coadjoint action of g ∈ G on the orbit representative b0, 〈, 〉 is the
pairing between the Lie algebra and its dual space and hence defines a map g∗ × g→ R.
S(g) is the Souriau cocycle defining the central extension of G to Ĝ = G× R.
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In the above equation, nY solves equation (C.16) and Y can be obtained from the
following equality

db = − ad∗Y b. (5.2)

For b = Ad∗g−1 b0 this gives

d(Ad∗g−1 b0) = − ad∗Y (Ad∗g−1 b0). (5.3)

From (5.2) it follows that Y solves the Maurer-Cartan equation dY = −1
2 adY Y , whose

solution is locally Y = g−1dg. So to find the geometric action, one needs to compute the
Maurer-Cartan form Y and write the Kirillov-Kostant symplectic form (5.1) as a total
exterior derivative, or find nY as a solution to (C.16). In practice it will also be useful to
do the former and to obtain Y from (5.3).

The Kirillov-Kostant symplectic form will give the symplectic part of the action. The
geometric action can be extended by adding the Noether charge for a global symmetry
as Hamiltonian [59]. The resulting action is by construction invariant under the same
symmetries as the symplectic term. The Noether charge associated to a symmetry generated
by a vector field (X,n) in the centrally extended Lie algebra ĝ = g⊕ R is given by

Q(X,n) = −〈(b, c), (X,n)〉 . (5.4)

Hence as Hamiltonian we may simply add

H(X,n) = −
∫
γ
Q(X,n), (5.5)

for γ a path along the orbit. The total geometric action as a function of group elements g
and for a given (b0, c) is then [61]

SĜ[g; b0, c] =
∫
γ
α−Q(X,n) =

∫
γ
〈Ad∗g−1(b0, c), (Y, nY )− (X,n)〉 . (5.6)

We will now work out the different ingredients in this expression for the centrally extended
group of diffeomorphisms of the supercircle.

5.1.1 Geometric action for superconformal groups

When the Lie group is taken to be the centrally extended group of diffeomorphisms of
the supercircle D̂iff(S1|N ), the geometric action constructed from (5.1) corresponds to the
kinetic term of the reduced AdS3 supergravity action (3.45) up to the N = 2 case, as we
will now demonstrate. Let us denote the general N -extended superspace by superspace
coordinate z = {ϕ, θi} where 0 < ϕ ≤ 2π is a bosonic coordinate (the angle on the circle)
and θi is a collection of N Grassmann coordinates. The supercovariant derivative is

Di = ∂θi + θi∂ϕ , (5.7)

such that
{Di, Dj} = 2δij∂ϕ . (5.8)
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Reparameterizations of the supercircle consists of coordinates transformations

ϕ→ ϕ̃(ϕ, θi) , θj → θ̃j(ϕ, θi) , (5.9)

subject to the constraint that the supercovariant derivative transforms covariantly, or

Di = (Diθ̃j)D̃j . (5.10)

This condition implies the following useful identities

Diϕ̃ = θ̃Diθ̃, (5.11)
(Diθ̃j)(Dkθ̃j) = δik(∂ϕϕ̃+ θ̃j∂ϕθ̃

j), (5.12)

det
(
Dθ̃
)

= ±(∂ϕϕ̃+ θ̃j∂ϕθ̃
j)N/2. (5.13)

Elements of the super-Virasoro algebra consists of the pair (X(z), n) and this is paired with
elements of the dual space (B(z), c) (we will denote the superspace dual elements by capital
B, keeping b and b0 reserved for the bosonic orbit representative) as

〈(B, c), (X,n)〉 = 〈b,X〉+ cn =
∫

dz B(z)X(z) + cn , (5.14)

where dz = dϕdθ1 . . .dθN . The adjoint and coadjoint action of the centrally extended
superconformal group are

Adz̃(X(z), n) =
(

det(Dθ̃)−
2
NX(z̃), n−

∫
dz S(N )(z; z̃−1)X(z)

)
, (5.15)

Ad∗z̃(B(z), c) =
(
det(Dθ̃)

4−N
N B(z̃)− cS(N )(z; z̃), c

)
. (5.16)

Here S(N )(z; z̃) are the super Schwarzian derivatives for N extended supersymmetry. They
satisfy the cocycle condition

S(N )(z, ˜̃z) = (det(Dθ̃))
4−N
N S(N )(z̃, ˜̃z) + S(N )(z, z̃) (5.17)

and S(N )(z; z) = 0 so that S(N )(z; z̃) = −Ad∗z̃ S(N )(z; z̃−1). The condition (5.17) can be
solved only for N ≤ 4 [62] and the limiting N = 4 case is special as there are two independent
non-trivial (and non-local) solutions. The upper bound N = 4 is natural as the stress
tensor sits in a supermultiplet of conformal dimension (2− N2 ), which becomes negative
for N > 4. In our case, however, the asymptotic symmetry algebras (2.30) correspond to
the superconformal Lie algebras of D̂iff(S1|N ) only for N = 0, 1, 2. For N > 2 there is a
non-linear term in the superconformal algebras (2.30), which makes the interpretation in
terms of coadjoint orbits difficult. Hence here we will discuss the case up to N = 2.

The result for the (super)-Schwarzians is

N = 0 S(0)(ϕ; ϕ̃) = 1
24π

(
ϕ̃′′′

ϕ̃′
−
(
ϕ̃′′

ϕ̃′

)2)
, (5.18)

N = 1 S(1)(z; z̃) = 1
12π

(
∂2
ϕθ̃

Dθ̃
− 2D∂ϕθ̃∂ϕθ̃

(Dθ̃)2

)
, (5.19)

N = 2 S(2)(z; z̃) = 1
24πε

ij 2(Di∂ϕθ̃
k)(Dj θ̃k)− 2(DiDj θ̃k)(∂ϕθ̃k)

(Dpθ̃q)(Dpθ̃q)
. (5.20)
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To proceed we need to find the Maurer-Cartan form. We can do so by solving for the ∂ϕ̃B0
part of (5.3). For the centrally extended group of diffeomorphisms of the supercircle, the
relevant part of (5.3) becomes

d
(
det(Dθ̃)

4−N
N B0(z̃)− cS(N )(z; z̃)

)
= − ad∗Y

(
det(Dθ̃)

4−N
N B0(z̃)− cS(N )(z; z̃)

)
. (5.21)

The B0, ∂ϕ̃B0, D̃
iB0 and c dependent parts of this equation should vanish individually.

Expanding this equation using the following useful formulas

adY X = Y ∂ϕX −X∂ϕY + 1
2D

iY DiX, (5.22)

dB0(ϕ̃, θ̃i) = ∂ϕ̃B0(ϕ̃, θ̃i)(dϕ̃+ θ̃jdθ̃j) + dθ̃jD̃jB0(ϕ̃, θ̃i), (5.23)

and
∂ϕ = ∂ϕθ̃

kD̃k + (detDθ̃)2/N∂ϕ̃, (5.24)

we find an over-constrained set of equations for Y which is solved by

Y = − dϕ̃+ θ̃idθ̃i

(detDθ̃)2/N . (5.25)

We now have all the ingredients to write down the geometric actions on the coadjoint orbit
for the N -extended superconformal group. The c-independent part of the symplectic term
can be written down for generic N . It is (writing d = dt ∂t):

−
∫

dt dz det(Dθ̃)
2−N
N B0(ϕ̃, θ̃i)( ˙̃ϕ+ θ̃j ˙̃θj) (5.26)

The c-dependent part should be obtained by writing the second term in (5.1) as a total
exterior derivative for the relevant Schwarzian listed in (5.18)–(5.20). We will study this on
a case by case basis in the next sections.

Before doing so we comment on the Hamiltonian. In the case of interest the action
is invariant under a shift symmetry generated by vector fields −∂ϕ. So we may add to
the symplectic part a Hamiltonian (5.5) with (X,n) = (−1, 0).8 This, together with (5.16)
gives the Hamiltonians

H(N )(z̃;B0, c) = −
∫

dt dz
(
det(Dθ̃)

4−N
N B0(z̃)− cS(N )(z; z̃)

)
. (5.27)

Due to the cyclic property of the Schwarzian derivative (5.17), the orbit representative
term of the Hamiltonian (5.27) can be absorbed into the super-Schwarzian by a second
reparameterization of the supercircle ˜̃z such that

cS(N )(z̃; ˜̃z) = −B0(z̃) . (5.28)

The Hamiltonian then becomes H(N )(˜̃z; 0, c) =
∫

dtdz
(
cS(N )(z; ˜̃z)

)
and the orbit rep-

resentative terms will translate into periodicity conditions of the new variable ˜̃z. The
8The symmetry generator (X,n) = (0, n) generate constant shifts of n which are trivial as the vectors

belong to the extended little algebra [59].
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same transformation will remove the orbit representative term (5.26) from the symplectic
term [59].

Next we will discuss explicitly the N = 0, 1, 2 cases to show that the actions (3.27)
and (3.45) are indeed the geometric actions on the coadjoint orbit of the centrally extended
group of diffeomorphisms of the supercircle. The orbit representative terms are given by
the holonomy of the Chern-Simons connection by comparing the periodicities of the fields
to those of ˜̃z satisfying (5.28).

5.2 Bosonic case

The geometric action on the coadjoint orbit of the Virasoro group of diffeomorphisms
of the circle D̂iff(S1) was worked out by Alekseev and Shatashvili [24] and reported to
be relevant to three dimensional AdS3 gravity in [59] and later expanded upon in [60].
In [7] it was shown that for the bosonic theory, the action obtained from the Hamiltonian
reduction coincides with Alekseev-Shatashvili action where the holonomy plays the role of
orbit representative. In order to set the ground for the supersymmetric case, we briefly
review the discussion here.

From the last two subsections, we reproduce the Alekseev-Shatashvili action from (5.6)
in the bosonic case. This is

SD̂iff(S1)[f(ϕ); b0, c] =
∫
dtdϕ

[
c

24π

(3
2
f ′′∂−f

′

f ′2
− ∂−f

′′

f ′

)
+ b0(f)f ′∂−f

]
, (5.29)

where we have taken ϕ̃ = f(ϕ) subject to the periodicity condition f(ϕ+ 2π) = f(ϕ) + 2π.
From (3.44) we see that in the bosonic case (i.e., no fermions, no R-symmetry and kr = 0)
the reduction from Chern-Simons theory on the outer boundary gives

S = k

8π

∫
dt dϕ

[(
∂− log(Y ′ − k0Y )

)(
∂ϕ log(Y ′ − k0Y )

)
− k2

0

]
, (5.30)

up to total derivative terms. Moreover, in order to make a link with the classification of
(super-)Virasoro coadjoint orbits, in this section we focus on the case where the holonomy
is constant and time-independent, which is the case for constant orbit representatives.
However, the field Y (ϕ) here is periodic, i.e. Y (ϕ + 2π) = Y (ϕ) which is not the usual
Y (ϕ+ 2π) = Y (ϕ) + 2π as it is for elements of D̂iff(S1). Therefore, in order to relate these
two actions we consider a field transformation

˜̃ϕ ≡ Y (f(ϕ)) = e−k0(f(t,ϕ)−ϕ), (5.31)

such that f(ϕ + 2π) = f(ϕ) + 2π while Y (ϕ) is periodic. In the new variable f(ϕ) the
action takes the form of (5.29) with the central charge and the orbit representative given as

c = 6k, b0 = k

8πk
2
0. (5.32)

In the case in hand, the holonomy is in the hyperbolic conjugacy class and therefore we
have k2

0 = 4L0. One then finds that the orbit representative b0 is related to the zero mode
of the bulk Chern-Simons solution as

b0 = c

12πL0 = k

2πL0 . (5.33)
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We have thus illustrated that the zero mode of the bulk solutions correspond directly to the
constant representatives of the Virasoro coadjoint orbits. In the case of the BTZ solutions,
where L0 is positive, these correspond to the generic Virasoro orbit with a U(1) little
group generated by the action of L0. The Noether charge for this L0 action is exactly the
Hamiltonian (5.27) that was added to the geometric action.

The exceptional orbits of Virasoro have constant representative terms b0 = − cn2

48π for
integer n. At these points, the little group on the orbit is enlarged to SL(n)(2,R). From the
bulk perspective these orbits correspond to (the left-moving sector of) Bañados geometries
with L0 = −1

4n
2 for integer n. For n = 1 this is the global AdS3 ground state, while for

larger n the geometries have an angular access of a multiple of 2π. For those solutions the
Hamiltonian of (5.29) becomes unbounded from below [63] and hence this is a good reason
to discard them.

The bulk solutions with conical defects correspond to orbits with negative b0 6= − cn2

48π .
At this point k0 =

√
4L0 becomes imaginary and hence the holonomy h = exp(4π

√
L0L0)

becomes complex and is not an element of SL(2,R) anymore. This is the Chern-Simons
perspective for discarding solutions with conical singularities. For the exceptional orbits
where b0 = − cn2

48π the holonomy is still an element of SL(2,R) since exactly at those values
we have h = exp(2πniL0). The complete discussion of the geometric action with holonomies
in different conjugacy classes of SL(2,R) can be found in [7].

5.3 N = 1 supersymmetry

Let us now consider the centrally extended group of diffeomorphisms of the N = 1 supercircle
D̂iff(S1|1). Writing the geometric action (5.6) using the N = 1 super-Schwarzian (5.19) we
find the superspace action worked out in [61], up to total derivative terms

SD̂iff(S1|1)(z̃;B0, c) =
∫

dt dz
[
c

12π

(
∂ϕDθ̃ ∂−θ̃

(Dθ̃)2

)
+B0(z̃)Dθ̃(∂−ϕ̃+ θ̃∂−θ̃)

]
(5.34)

In order to compare this to the action obtained from the Chern-Simons reduction (3.44),
we need a suitable parameterization of θ̃ to perform the superspace integral and write the
N = 1 superspace action in components.

The N = 1 constraint Dϕ̃ = θ̃Dθ̃ is solved by parameterizing the diffeomorphism of
the supercircle as

ϕ̃ = f(ϕ+ θη(ϕ)) (5.35)

θ̃ =
√
f ′(ϕ)

(
η(ϕ) + θ

(
1 + 1

2ηη
′
))

(5.36)

Here f(ϕ+ 2π) = f(ϕ) + 2π. Taking the orbit representative term to be purely bosonic, i.e.
B0(z̃) = b0(f)θ̃ and using the above parameterization, the action (5.34) becomes (up to
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total derivatives)

SD̂iff(S1|1)(f, η; b0, c) =
∫
dtdϕ

[
− c

24π

(
∂−f

′′

f ′
− 3

2
∂−f

′f ′′

f ′2
− S(0)(ϕ, f) η∂−η + 2η′∂−η′

− 1
2ηη

′η′′∂−η

)
+ b0(f)(f ′∂−f − f ′2η∂−η)

]
. (5.37)

In order to compare the N = 1 Chern-Simons action (3.44) with the above action, we can
write (3.44), up to total derivatives, as

SN=1 = k

8π

∫
dt dϕ

[(
∂− log(Y ′ − k0Y − ψ−ψ−′)

)(
∂ϕ log(Y ′ − k0Y − ψ−ψ−′)

)
− k2

0

+ 4

(
ψ−′ − k0

2 ψ
−
)(
∂−(ψ−′ − k0

2 ψ
−)− ∂− log(Y ′ − k0Y − ψ−ψ−′)

1
2
)

Y ′ − k0Y − ψ−ψ−′
]
,

(5.38)

where we have considered a single pair of fermionic generators and no R-symmetry. We
have also set ηαβ = −2,m = 1 and since there is no R-symmetry we have λa = 0.

Like in the bosonic case, both fields Y (ϕ) and ψ−(ϕ) are periodic. In order to relate
these fields to those parameterizing the super circle, i.e. fields with the periodicity condition
of elements of the D̂iff(S1|1), we consider the following field transformations

Y (f(ϕ)) = e−k0(f(t,ϕ)−ϕ), (5.39)

ψ−(f(ϕ), η(ϕ)) =
√
Y ′ − k0Y η(ϕ) =

√
−k0f ′e

− k0
2 (f(t,ϕ)−ϕ)η(ϕ), (5.40)

which can be obtained from

˜̃ϕ = e−k0(ϕ̃−ϕ), ˜̃θ =
√
−k0e−k0(ϕ̃−ϕ)θ̃, (5.41)

with ˜̃ϕ = Y (ϕ+ θχ).
For the new fields f(ϕ) and η(ϕ) we have

f(ϕ+ 2π) = f(ϕ) + 2π, η(ϕ+ 2π) = η(ϕ), (5.42)

while Y (ϕ) and ψ−(ϕ) are periodic.
In the new variables, the action takes the form (5.37) with the central charge and the

orbit representative given as

c = 6k, b0 = k

8πk
2
0. (5.43)

And so we find the bulk holonomy is still related to the orbit representative b0 as in (5.33).
This proves our earlier claim that N = 1 boundary action on the outer bound-

ary (3.26) obtained from the Hamiltonian reduction in the presence of non-trivial holonomy
parametrized with k0 is the geometric action on the coadjoint orbit of group of reparametriza-
tion of S1|1 where the orbit representative b0 is identified with the holonomy as in (5.43).
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5.4 N = 2 supersymmetry

Here we will discuss the case of N = 2 supersymmetry. The N = 2 supercircle can be
studied in a complex basis where

θ = 1√
2

(θ1 + iθ2) , θ̄ = 1√
2

(θ1 − iθ2) . (5.44)

Defining the supercovariant derivatives as

D = ∂θ + θ̄∂ϕ , D̄ = ∂θ̄ + θ∂ϕ , (5.45)

we have D2 = 0 = D̄2 and {D, D̄} = 2∂ϕ. Equation (5.10) now implies that

D = Dθ̃D̃ , D̄ = D̄ ˜̄θ ˜̄D , and D ˜̄θ = 0 = D̄θ̃ (5.46)

and detDθ̃ = Dθ̃D̄ ˜̄θ.
The N = 2 Schwarzian derivative in this notation becomes

S(2)(z; z̃) = 1
24π

(
∂ϕD̄

˜̄θ
D̄ ˜̄θ

− ∂ϕDθ̃

Dθ̃
− 2∂ϕθ̃∂ϕ

˜̄θ
Dθ̃D̄ ˜̄θ

)
(5.47)

and the Maurer-Cartan form is Y = −dϕ̃+θ̃d˜̄θ+˜̄θdθ̃
Dθ̃D̄ ˜̄θ

≡ − δl̃

Dθ̃D̄ ˜̄θ
. Useful relations to write (5.1)

as a total exterior derivative are d(δl̃) = 2dθ̃d˜̄θ, D(δl̃) = 2Dθ̃d˜̄θ and D̄(δl̃) = 2D̄ ˜̄θdθ̃. The
answer for the geometric action of the N = 2 theory is

SD̂iff(S1|2)(z̃;B0, c) =
∫

dtdz
(

c

24π

(
∂ϕθ̃∂−

˜̄θ − ∂ϕ ˜̄θ∂−θ̃
Dθ̃D̄ ˜̄θ

)

+B0(z̃)(∂−ϕ̃+ θ̃∂−
˜̄θ + ˜̄θ∂−θ̃)

)
. (5.48)

In order to relate this to the component action coming from the reduction of the Chern-
Simons theory we need a suitable parameterization of ϕ̃, θ̃ and ˜̄θ. We can obtain this by
writing the most general diffeomorphism of the N = 2 super-circle compatible with the
constraints (5.10), which in the complex basis read:

D ˜̄θ = 0 , Dϕ̃ = ˜̄θDθ̃ , (5.49)

D̄θ̃ = 0 , D̄ϕ̃ = θ̃D̄ ˜̄θ . (5.50)

A general super-reparameterization satisfying these constraints can be written in terms
of two bosonic fields: f(t, ϕ), which parameterizes the D̂iff(S1) element and satisfies
f(ϕ+ 2π) = f(ϕ) + 2π and σ(t, ϕ) which is a U(1) R-symmetry field. There are also two
Grassmann valued fields ψα(t, ϕ) with α = 1, 2,

ϕ̃ = f(t, ϕ)− θψ1(t, ϕ)ḡ(t, ϕ) + θ̄ψ2(t, ϕ)g(t, ϕ) + h(t, ϕ)θθ̄ , (5.51a)

θ̃ = ψ2(t, ϕ) + θ
(
ḡ(t, ϕ) + θ̄ψ′2(t, ϕ)

)
, (5.51b)

˜̄θ = −ψ1(t, ϕ) + θ̄
(
g(t, ϕ)− θψ′1(t, ϕ)

)
, (5.51c)
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where

g(t, ϕ) =
√
f ′(t, ϕ)eiσ(t,ϕ)/2

(
1− 1

4
ψ · ψ′

f ′
− 1

32

(
ψ · ψ′

f ′

)2)
(5.52)

ḡ(t, ϕ) =
√
f ′(t, ϕ)e−iσ(t,ϕ)/2

(
1− 1

4
ψ · ψ′

f ′
− 1

32

(
ψ · ψ′

f ′

)2)
(5.53)

h(t, ϕ) = −1
2 (ψλψ)′ (5.54)

where we remind the reader that · is contraction with ηαβ and ψλψ = ψαλ
αβψβ. Our

conventions for ηαβ and λαβ are listed in the appendix A.
In order to show that the action obtained from the Hamiltonian reduction is indeed

the geometric action, we proceed with a bit different approach.
When the geometric action for N = 2 (5.48) is expanded using the above parameter-

ization, the c-dependent term becomes equal to the action obtained from Chern-Simons
theory (3.44) for N = 2 on the outer boundary, when the holonomy contributions set to zero
with Ỹ (t, ϕ), ψ̃−α (t, ϕ) and C̃a(t, ϕ) replaced by f(t, ϕ), ψα and σ(t, ϕ) respectively. That
confirms the equivalence of the theories. However, the fields Ỹ (t, ϕ), ψ̃−α (t, ϕ) and C̃a(t, ϕ)
are no longer periodic. The amount of non-periodicity is encoded in the phase that these
fields pick up under the action of the holonomy on the group elements. All there is to do
now is to find the transformation which reinstates the B0(z̃) term and read of the relation
between the zero modes and the orbit representative B0. To this end we should solve (5.28)
for N = 2. The orbit representative has only non-zero bosonic values, which we will take to
be constant.

B0(z̃) = bσ + θ̃ ˜̄θb0 . (5.55)

A super-reparameterization which solves (5.28) is

˜̃ϕ = e−µϕ̃ , ˜̃θ = e
12πbσ
c

ϕ̃θ̃
√
−µe−µϕ̃ , ˜̄̃

θ = e−
12πbσ
c

ϕ̃ ˜̄θ
√
−µe−µϕ̃ , (5.56)

where now

µ =
√

48π
(
b0
c

+ 12πb
2
σ

c2

)
(5.57)

This transformation relates the different components of ˜̃z to the components of z̃ as given
in (5.51). If one parameterizes ˜̃z in the same way, but with fields Ỹ (t, ϕ), C̃(t, ϕ) and
ψ̃−(t, ϕ) instead of f(t, ϕ), σ(t, ϕ) and ψα, then the field redefinitions which reinstate the
orbit representative term, as deduced from (5.56) are

Ỹ (t, ϕ) = e−µf(t,ϕ) , (5.58a)

C̃(t, ϕ) = σ(t, ϕ) + 24πibσ
c

f(t, ϕ) + µψ1(t, ϕ)ψ2(t, ϕ) , (5.58b)

ψ̃−1 (t, ϕ) = e−
12πbσ
c

f(t,ϕ)
√
−µe−µf(t,ϕ)ψ1(t, ϕ) (5.58c)

ψ̃−2 (t, ϕ) = e
12πbσ
c

f(t,ϕ)
√
−µe−µf(t,ϕ)ψ2(t, ϕ) (5.58d)
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The periodicities of the fields Ỹ (t, ϕ), C̃(t, ϕ) and ψ̃−(t, ϕ) as dictated by the holonomy of
the Chern-Simons connection are for N = 2

Ỹ (ϕ+ 2π) = e−2π
√

4L0 Ỹ (ϕ) , (5.59a)
C̃(ϕ+ 2π) = C̃(ϕ)− 2πiB0 (5.59b)

ψ̃−α (ϕ+ 2π) = e−π
√

4L0ψ̃−β (ϕ)e−2πB0λβα , (5.59c)

This is compatible with (5.58) whenever

L̂0 = L0 −
1
4B

2
0 = 12π

c
b0 , B0 = −24π

c
bσ (5.60)

So we see that the orbit representative b0 corresponds to the zero-mode of the Sugawara-
shifted stress tensor L̂ (2.27).

One can now go back to the original periodic fields Y (t, ϕ), C(t, ϕ) and ψ−(t, ϕ) with
the following field redefinitions

Y (ϕ) = eµϕỸ (t, ϕ) , (5.61a)
C(ϕ) = C̃(t, ϕ) + iB0ϕ, (5.61b)

ψ−α (ϕ) = ψ̃−β (t, ϕ)e
µ
2ϕeB0λβαϕ. (5.61c)

Here one sets

µ =
√
k2

0 + k2
r , (5.62)

where
b0 = k

8πk
2
0, b2σ = k2

16π2k
2
r . (5.63)

We have now shown explicitly that the Hamiltonian reduction of Chern-Simons theory
for the Osp(2|2) group under the highest-weight boundary conditions (2.18) gives a two
dimensional field theory equivalent to the geometric action of the centrally extended group
of diffeomorphisms of the N = 2 supercircle on its coadjoint orbit. The orbit representatives
are related to the zero modes of the Chern-Simons charges by (5.60).

6 Conclusions

The main result of this paper is to address in a precise and detailed way the boundary actions
for extended supergravity and higher spin W3 gravity in three dimensions in the presence
of non-trivial bulk holonomies. We provide the complete analysis where the topology of the
manifold is R× S1 × [0, 1]. The spatial surfaces with the annulus topology S1 × [0, 1] are
then describing an AdS3 space with two boundaries. Even though we discuss the details for
this case, the extension to the topologies with more boundaries is straightforward.

Similar to three dimensional Chern-Simons pure gravity, the boundary actions both for
extended supergravity and higher spin W3 gravity are written in terms of two free chiral
theories living on each boundary, coupled through the zero modes of bulk holonomy which
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constitutes global degrees of freedom. These so-called Wilson lines are stretched between
the boundaries and can be considered as the wormholes in the bulk. This is indeed the
reason that the Hilbert space of the quantized boundary field theory is not just a cross
product of the states on two boundaries, the so called factorization problem in gravity.

The novelty of this work is that we are able to write down the boundary action, including
the boundary Hamiltonian, as a generalization of the Schwarzian action in the cases where
the asymptotic symmetry algebra is non-linear. In this situation, the prescription of writing
the geometric action based on the coadjoint representation is no more accessible. The action
on the boundary must be seen as the action on the symplectic leaves of a Poisson manifold of
the corresponding Poisson algebra of the phase space variables. The Hamiltonian reduction
in each case will result in the action on the symplectic leaves. In the case that the asymptotic
symmetry algebra is linear, the symplectic leaves are coadjoint orbits and the result coincides
with the geometric action on the coadjoint orbits. Moreover, we discussed the invariance
of the boundary actions in each case. The action is invariant under Diff(S1|1)/S1 and
Diff(S2|2)/S1 × S1 for N = 1 and N = 2 AdS3 supergravity respectively. The boundary
actions of the W3 gravity were also shown to be invariant under Diff(RP2)/S1 × S1.

The boundary action of W3 theory in the diagonal sl(2) embedding has striking
similarities with N = 2 supergravity Schwarzian action. The difference, that can also
be inferred from the difference between sl(3) algebra in this representation and N = 2
Neveu-Schwarz supergravity algebra, is that in the case of sl(3) we have two fermionic
fields with bosonic statistics, while in the supergravity the fermions anticommute. This
resemblance gets more interesting when one realizes the isomorphism RP2|2 ∼= S2|2 with S2|2

being the double covering space. Finding an appropriate way to go from RP2|2 to RP2 to
make a link between these two theories is an interesting question given that one is able to
construct the geometric action via the Kirilov-Kostant construction for N = 2 supergravity.

Recent studies pointed to the crucial role of the Schwarzian action in the computation
of the partition functions of 2D and 3D gravity, see [32] and references therein. It would
be interesting to compute partition functions for the Schwarzian actions obtained in this
work. The advantage here is that not only these actions control the solution space via the
(constant) holonomies, but also they contain information on global degrees of freedoms
related to the bulk holonomy. These holonomies must be then considered as dynamical
degrees of freedom that have to be varied in the action. They also appear in the measure of
the partition function and must be integrated over. This matches with the expectation that
in obtaining the partition function of a quantum theory of gravity by performing a path
integral on a classical theory one expects to sum over all the solutions in the solution space
of the theory. This line of thought will be pursued elsewhere.
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A Conventions

In this appendix we list some conventions used throughout the text

A.1 Matrix representation for Osp(2|2)

For the sake of simplicity and in order to be able to have an explicit calculation we restrict
ourselves to N = 2 supersymmetry. In that case, the even subalgebra g0 = sl(2,R)⊕ so(2).
The superalgebra osp(2|2,R) is generated with 8 generators of which 4 are generators of g0.
We can write explicitly9

L0 = 1
2

0 0
0 1 0

0 −1

 , L+ =

0 0
0 0 1

0 0

 , L− =

0 0
0 0 0

1 0

 ,

Q1
+ =


0 0 −1

0 0
0 −1
0 0 0

 , Q1
− =


0 1 0

0 0
0 0
0 −1 0

 ,

Q2
+ =


0 0 0

0 −1
−1 0
0 0 0

 , Q2
− =


0 0 0

1 0
0 0
−1 0 0

 ,

T = 1
2

1 0
0 −1 0
0 0

 . (A.1)

9A generic form of matrix representation of osp(2`+ 1|2,R) generators can be written as
a b u

c −aT v

−vT −uT 0

x x1

y y1

z z1

yT1 xT1 zT1
−yT −xT −zT

SL(2)

 ,

where a is any `× ` matrix, b, c are antisymmetric `× ` matrices, u, v are `× 1 column matrices, x, x1, y, y1

are `× 1 column matrices and z, z1 are real numbers. A generic form of matrix representation of osp(2`|2,R)
generators can be obtained by eliminating the middle row and column of the osp(2`+1|2,R) matrix forms, i.e.

a b

c −aT
x x1

y y1

yT1 xT1
−yT −xT

SL(2)

 .
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These generators satisfy the algebra (2.3)–(2.6) with α = 1, 2, d = 2, Cρ = −1/4. Also
we have

αβ =
(

0 2
2 0

)
, ηαβ =

(
0 1

2
1
2 0

)
, (A.2)

λαβ =
(

0 −1
1 0

)
, λαβ =

(
−1

2 0
0 1

2

)
. (A.3)

B Action on the symplectic leaves

The Poisson algebra of charges of W3 gravity, which was discussed in section 4, upon
reduction forms a finite dimensional algebra known as finite W -algebra. In the case of the
principal embedding, we will end up with an Abelian algebra. In the case of the diagonal
embedding, it forms a 4-dimensional algebra known as w(2)

3 , however, it has a trivial one
dimensional unitary representation. The symplectic leaves in this case are determined by
the intersection of coadjoint orbits of sl(3,R) and Glw = {x ∈ sl(3) | [U+1, x] = 0}. It was
shown in [64] that it is topologically equivalent to a two dimensional surface in C3 given by
the equation

z2z3 = c2 − 2c1z1 + z3
1 , (B.1)

where c1, c2 are two arbitrary constants.
The symplectic form on the symplectic leaves is not obtained trivially in the case of

non-linear algebras. This has to do with the fact that the Cartan formula which is used
to define the Schwarzian in the linear algebras is no longer providing an expression for
the Schwarzian [65]. This is the case for superalgebras with N > 2 and WN algebras
with N > 2.

There exists a tower of Poisson algebras (Gel’fand-Dikii brackets) on linear differential
operators of an arbitrary order with periodic coefficients on the circle. The first algebra
in this hierarchy is the Virasoro algebra. It is known that in that case the question of
classification of symplectic leaves of a Poisson manifold with the Gel’fand-Dikii algebra, is
equivalent to the classification i) of orbits of the coadjoint representation of the Virasoro
group, ii) of normal forms of Hill equations, and iii) of types of projective structures on the
circle [66–69].

Similarly and along the same line, the classification of contact-projective structures
on a supermanifold RP2|N and its double covering S2|N was discussed in [70]. For N < 3
it is equivalent to the classification of the orbits of the coadjoint representation of a Lie
superalgebra of NS-R type and the supersymmetric analogue of the Hill equation.

What all these cases have in common is that the classification of symplectic leaves is
connected with the computation of homotopy classes of nondegenerate curves on S1, RP2|N

or S2|N . The monodromy operator is the only local invariant of a symplectic leaf of the
Gel’fand-Dikii bracket associated with one of the classical groups and it determines the
conjugacy class in the corresponding matrix Lie group.
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In the case of N > 2, the differential equation will turn to a pseudo-differential equation.
For N = 3, a solution to such an equation was found [71] and therefore one could write the
Schwarzian, however it is not possible in any general case to find a solution.

All these make it difficult (if not impossible) to write down the action in the case of a
non-linear algebras. We claim that the boundary actions derived in sections 3 and 4, obtained
through Hamiltonian reduction, should be considered as the actions on the symplectic
leaves which otherwise are difficult to obtain. We provide a practical approach to find these
actions while the geometric approach seems to be much more involved.

C Geometric quantization for (super)conformal groups

In this section, we provide a short review of geometric quantization for (super)conformal
group based on [24, 25, 59, 61, 72].

C.1 Geometric actions on the coadjoint orbit

For any Lie group G with Lie algebra g, the adjoint action of G on g is

AdgX = gXg−1 . (C.1)

The coadjoint action of G on the dual space g∗ is defined as

〈Ad∗g−1 b,X〉 = 〈b,AdgX〉 , (C.2)

where b ∈ g∗ and 〈 , 〉 is the pairing between g and g∗.
For a fixed element b0 of g the coadjoint action of G spans the orbit Ob0 , defined as

the set of elements b ∈ g∗ such that

b = Ad∗g−1 b0 . (C.3)

Coadjoint orbits are symplectic manifolds isomorphic to G/Hb0 where Hb0 is the stabilizer
subgroup of the orbit, i.e. all elements h ∈ G such that Ad∗h b0 = b0. The symplectic form
on the coadjoint orbit is the Kirillov-Kostant symplectic form and it is defined by

Ω = 1
2〈b, adY Y 〉 , (C.4)

here adY is the adjoint action of g on itself and Y is obtained as the solution to

db = − ad∗Y b (C.5)

For b = Ad∗g−1 b0 this gives

d(Ad∗g−1 b0) = − ad∗Y (Ad∗g−1 b0) (C.6)

From (C.5) it follows that Y solves the Maurer-Cartan equation dY = −1
2 adY Y , whose

solution is locally Y = g−1dg. In practice it will also be useful to obtain Y from (C.6).
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An action whose phase space coincides with the coadjoint orbit can be obtained by
writing the Kirillov-Kostant symplectic form (C.4) as a total exterior derivative

Ω = dα . (C.7)

The geometric action on the coadjoint orbit is then obtained by integrating the presymplectic
potential α over the orbit

I[g; b0] =
∫
γ
α =

∫
γ
〈Ad∗g−1 b0, Y 〉 (C.8)

where γ parameterizes a curve on the orbit Ob0 .
We are interested in the geometric action for centrally extended Lie groups, such as

the superconformal groups. A centrally extended group Ĝ = G×R with Lie algebra ĝ has
elements (X,n) ∈ ĝ and (b, c) ∈ ĝ∗ such that the bilinear form reads

〈(b, c), (X,n)〉 = 〈b,X〉+ cn (C.9)

The adjoint and coadjoint action of Ĝ now reads:

Adg(X,n) = (AdgX,n− 〈S(g), X〉) , (C.10)
Ad∗g(b, c) = (Ad∗g b− cS(g−1), c) . (C.11)

Here S(g) is the Souriau cocycle, satisfying the condition

S(g1g2) = Ad∗
g−1
2
S(g1) + S(g2) , (C.12)

together with S(I) = 0, such that S(g) = −Ad∗g−1 S(g−1). The adjoint action of g on
itself is

ad(X1,n1)(X2, n2) = [(X1, n1), (X2, n2)] = ([X1, X2],−〈s(X1), X2〉) (C.13)

where s(X) is the infinitesimal limit of S(g).
The coadjoint action on g is defined correspondingly as 〈ad∗(X1,n1)(b, c), (X2, n2)〉 =

−〈(b, c), ad(X1,n1)(X2, n2)〉 and reads

ad∗(X,n)(b, c) = (ad∗X b+ c s(X), 0) . (C.14)

The Kirillov-Kostant symplectic form now becomes

Ω = 1
2〈(b, c), [(Y, nY ), (Y, nY )]〉 = d〈Ad∗g−1(b0, c), (Y, nY )〉 (C.15)

where nY solves
dnY = 1

2〈s(Y ), Y 〉 . (C.16)

This makes the geometric action on the coadjoint orbit of a centrally extended group

I[g; b0, c] =
∫
γ
α = −

∫
γ
〈Ad∗g−1(b0, c), (Y, nY )〉 . (C.17)
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An alternative way to obtain the geometric action on the coadjoint orbit is to use the identity

dS(g) = − ad∗Y S(g) + s(Y ) (C.18)

and write the Kirillov-Kostant symplectic form (C.15) as:

Ω = dα = d〈Ad∗g−1 b0, Y 〉 −
c

2〈dS(g), Y 〉 . (C.19)

So to find the geometric action we can either find (Y, nY ) by solving (C.6) and (C.16),
or alternatively, we may solve (C.6) for Y and write the last term in (C.19) as a total
exterior derivative.

C.2 Hamiltonians

The geometric action on the coadjoint orbit only gives the symplectic part of the action.
The evolution on the orbit is determined by adding a suitable Hamiltonian. In [59] it
was shown how to add Hamiltonians in such a way as to preserve the gauge symmetries
(generated by the stabilizer subgroup) on the orbit. One can do so by adding the Noether
charge associated to a global symmetry as the Hamiltonian.

Suppose the geometric action has a global symmetry generated by a left invariant vector
field V(X,n) = (gX, n), satisfying LV(X,n)α = 0, where LV(X,n) is the Lie derivative. Then

iV(X,n)Ω = dQ(X,n) , with: Q(X,n) = −〈(b, c), (X,n)〉 . (C.20)

Here Q(X,n) is the Noether charge associated to the global symmetry generated by V(X,n).
The Noether charge can be added to the geometric action a Hamiltonian without changing
the gauge symmetries generated by the little group on the orbit Hb0 .

I[g;b0, c,H(X,n)] = I[g;b0, c]−
∫
γ
Q(X,n)dt=

∫
γ
〈Ad∗g−1(b0, c),(Y,nY )+(X,n)dt〉 . (C.21)
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