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ABSTRACT

We reconsider the Hamiltonian reduction of the action for three dimensional AdS su-
pergravity and W3 higher spin AdS gravity in the Chern-Simons formulation under
asymptotically anti-de Sitter boundary conditions. We show that the reduction gives
two copies of chiral bosons on the boundary. In particular, we take into account the
holonomy of the Chern-Simons connection which manifests itself as zero mode of the
momentum of the boundary chiral boson. We provide an equivalent formulation of the
boundary action which we claim to be the geometric action on symplectic leaves of
a (super-)Virasoro or a higher spin WN Poisson manifold in the case of supergravity
or higher spin gravity respectively, where the intersection of leaves (given in terms
of leaves representatives) can be identified as the bulk holonomy. This concludes the
extension to non-linear algebras where the notion of coadjoint representation is not
well-defined. The boundary Hamiltonian depends on a choice of boundary conditions
and is equivalent to the Schwarzian action for corresponding Brown-Henneaux bound-
ary conditions. We make this connection explicit in the extended supersymmetric case.
Moreover, we discuss the geometric action in the case of W3 AdS3 gravity in both sl(3)
highest weight representations based on principal and diagonal sl(2) embeddings.
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1 Introduction

The theory of gravity in three dimensions has the remarkable feature that it does
not carry any dynamical degrees of freedom in the bulk. It is by now well known
that general relativity in three dimensions is a topological gauge theory which can
be described as a Chern-Simons theory for the appropriate gauge (super)group [1, 2].
The gauge group reflects the isometries of the maximally symmetric vacuum of the
theory, which depends on the presence and sign of the cosmological constant Λ. In
the present work, we will focus on negative cosmological constant Λ = −1/`2, mainly
due to the fact that the presence of BTZ black hole solutions of [3] require a non-
vanishing negative Λ. In three dimensional gravity, all dynamical degrees of freedom
live on the asymptotic boundaries. This interesting property of the theory has spiked
the interest in the theory as a candidate for a consistent theory of quantum gravity
in three dimensions [2, 4]. However, a direct computation of the partition function of
AdS3 gravity remained cumbersome or inconclusive [5, 6].

Recently in [7], it was shown that the complete Poisson structure at the boundary
is not given solely in terms of Kac-Moody currents, but also includes the zero modes
of bulk holonomies, which can be understood as Wilson lines stretched between the
boundaries. Indeed, these Wilson lines are classically traversable wormholes [8]. In
the quantum theory and in the presence of two boundaries, this is understood as a
thermofield double description of two entangled conformal field theory [9, 10]. This
means that the quantum description of the theory is based on a complete set of observ-
ables which are formed by the currents and the Wilson lines/loops. The Hilbert space
does not factorize into two copies of boundary states, but the boundary theories are
coupled through global zero modes. In [7], a complete analysis was provided of such
Wilson lines in pure Chern-Simons gravity on asymptotically AdS geometries with two
boundaries, as the simplest example. It was shown that, in the presence of non-trivial
holonomies in the bulk, the action obtained from a Hamiltonian reduction of the 3D
Einstein-Hilbert action is exactly the geometric action on the Virasoro coadjoint orbit,
with the holonomy being the orbit representative.

These results can be promoted to three dimensional supergravity models, because
these are also Chern-Simons theories with boundary conditions of the Drinfeld-Sokolov
type, implementing a Hamiltonian reduction at the boundary [11]. The resulting
asymptotic symmetry algebras are the N -extended superconformal algebras of [12–15],
which are linear for N ≤ 2. A similar discussion in two dimensions has been considered
for the BF formulation of dilaton supergravity [16].

In the case of an annulus topology, we include the holonomies along the lines of [7,11]
by treating separately the two chiralities. For each chirality, it leads to a supersym-
metric chiral action at each boundary coupled by radial Wilson lines. One also finds
that the system is physically described by two sets of generators of the superconformal
algebras, one at each boundary. These generators are constrained by the holonomy
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matching condition and provide, together with the global modes, a complete descrip-
tion of the system. The dynamics reduces to the dynamics of these generators and of
the global modes, and can therefore be expressed in terms of geometric actions.

In the geometric construction of the action based on Kirillov-Kostant prescription
[17–19], the existence of a coadjoint representation is an utmost necessity. However,
this notion is not sufficient and will be challenged when the boundary algebras are non-
linear. This is the case, for example, when the asymptotic charges of the theory form
a non-linear algebra as in supergravity with N > 2 or higher spin gauge theories with
non-linear W-algebras [20, 21]. Then, the geometric actions can not be formulated in
terms of orbits of the coadjoint representation, since the phase space does not provide
a linear representation, but rather in terms of the more general concept of symplectic
leaves [22, 23]. When the asymptotic symmetry algebra is linear, the boundary action
can be cast in the form of the Schwarzian action [24, 25] which has been shown to be
the geometric action on the coadjoint orbits of the asymptotic symmetry group. From
the point of view of Hamiltonian reduction, the chiral boundary theory can be also
shown to be a Schwarzian action where the holonomies appear as the constant orbit
representatives.

The generators of the asymptotic symmetry algebra form a Poisson manifold, with
a Poisson bracket that is degenerate if one focuses only on a single boundary algebra
without including the global radial Wilson lines. The symplectic leaves of this Poisson
manifold have a well-defined symplectic structure, which is the one that enters in the
action. Moreover, it happens that the Hamiltonian reduction in the presence of non-
trivial holonomy still indubiously provides the action on the boundary. Therefore,
one is able to perform a Hamiltonian reduction in supergravity or higher spin gravity
in the presence of bulk holonomies in order to obtain the boundary theory. These
boundary actions should be considered as a candidate for a geometric action on the
symplectic leaves of the Poisson manifold. The holonomies are related to the leave
representatives; in fact, the intersections of symplectic leaves are determined by the
zero modes of asymptotic charges which in turn are given by the holonomies.

A great advantage of our approach is that holonomies appear in the action as
dynamical fields. They are considered as time-dependent variables in the action. Their
equations of motion set them on-shell to constant variables determined by the zero
modes of the asymptotic charges. These constant holonomies match with the constant
orbit representatives. This happens to be an important feature once one wants to
quantize the theory, since in a genuine quantum theory of gravity one should consider
summing over all possible solutions of the theory. The presence of holonomies in the
action provides a control over the solution space at the level of action.

Recently, there has been a surge of interest in the computation of the path integral
of two dimensional Jackiw-Teitelboim (JT) gravity. In two dimensions, the partition
function of gravity turns out to have a beautiful mathematical description. It is the
volume of the moduli space of hyperbolic manifolds with constant curvature and the
boundary theory is an ensemble of one dimensional quantum mechanical models, which
can be captured by random matrix theory. An important piece of information is that
in two dimensions, the partition function is written as the exponential of a Schwarzian
action functional [26]. This Schwarzian action is the boundary theory of 2D JT gravity
and can be obtained as the IR limit of the SYK model [27–30]. In three dimensions,
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this piece of information happened to be crucial, as the Hamiltonian on the boundary of
3D Chern-Simons gravity is given by the sum of two Schwarzian actions with opposing
chirality [7,25,31]. There has been a plethora of works in 3D along this line of thoughts
[32–37].

In this work, we provide a systematic recipe to write down the Schwarzian action
for 3D supergravity and higher spin gravity in the presence of non-trivial holonomy.
While we pay special attention to the role of bulk holonomies, we focus on the case
where the holonomy is in the hyperbolic conjugacy class. This is because we are
mostly interested to exhibit the result for BTZ black hole solutions and these solutions
are in the hyperbolic holonomy conjugacy class. Upon Hamiltonian reduction, the
boundary Hamiltonian depends on a choice of boundary conditions and is equivalent
to the Schwarzian action for Brown-Henneaux boundary conditions. This Schwarzian
action may be considered as the starting point for computing the partition function
of the corresponding theory. There is a benefit in using this action for computing the
partition function. It already contains information on the Wilson lines, and therefore
it may be more suited in addressing the factorization problem in 3D gravity. In this
paper, we only focus on the construction of the boundary actions and details regarding
computation of the partition function will be discussed elsewhere.

Our paper is organized as follows. In Section 2 we provide a short introduction to
AdS3 supergravity and W3 higher spin theories in three dimensions. In each case, we
discuss the gauge fixing and the corresponding Brown-Henneaux boundary conditions.
In Section 3, we perform the Hamiltonian reduction on the super Chern-Simons theory,
or equivalently, AdS3 supergravity. We first show this explicitly for three dimensional
AdS supergravity with N = 1, 2 where one can use the Kirilov-Kostant construction
to compare. The boundary action of Chern-Simons AdS3 supergravity for an arbitrary
number of supersymmetry N is addressed in Section 3.5. The honolomy part of the
action remains undetermined for a general case and requires a case by case study. We
will comment on that in Section 3.6. Section 4 is aimed at the Hamiltonian reduction
of W3 AdS3 higher spin theory. In this case, there are two distinct boundary conditions
depending on the sl(2) embedding of the sl(3) algebra. We discuss both the principal
and diagonal embedding and provide the boundary action in each case.

In Section 5, we discuss the geometric action on the coadjoint orbit of the group
of reparameterizations of the supercircle. We show that the result of Section 3 for
N = 1, 2 is precisely the one of the geometric action. Appendix A provides some
conventions regarding Osp(2|2) representation, appendix B comprises a brief view of
action on the symplectic leaves and appendix C is a review of geometric quantization
for (super)conformal groups.

2 Three dimensional AdS gravity

2.1 AdS3 supergravity

Three dimensional AdS supergravity is described by a Chern-Simons theory for a Lie
super-group G, where the even part of the group must contain SO(2, 2) ∼= SL(2,R)×
SL(2,R). The Einstein Hilbert action can then be written as the difference of two
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Chern-Simons actions
Sgr[A, Ā] = Scs[A]− Scs[Ā] , (1)

where

Scs[A] =
k

4π

∫
M

Str

(
A ∧ dA+

2

3
A ∧A ∧A

)
, (2)

and k = `
4GN

. The gauge connections A, Ā take values in the superalgebra g0 ⊕ g1

where g0 = sl(2,R)⊕ g̃0. Here g̃0 is the Lie algebra of the corresponding R-symmetry
group. The sl(2,R) generators are denoted by L−1, L0, L+1 and satisfy the commutation
relations

[L0, L±] = ±L±, [L+, L−] = 2L0. (3)

When G = OSp(N|2)×OSp(N|2), the Lie algebra g̃0 of R-symmetry is so(N ). Let’s
consider T a (a = 1, ..., D) to be generators of so(N ) where D = N (N − 1)/2 is the
dimension of the algebra so(N ). They satisfy the following commutation relations

[T a, T b] = fabcT
c, (4)

[T a, L±,0] = 0. (5)

Fermionic generators transform in the fundamental representation of SO(N ). There-
fore the odd part g1 consists of 2N generators Qα

± where α = 1, ..., d. Note that d = N
is the dimension of fundamental representation of SO(N ) in which fermionic generators
transform. The algebra osp(N|2,R) is then defined as

[L0, Q
α
±] = ±1

2
Qα
±, (6a)

[L±, Q
α
±] = 0, (6b)

[L±, Q
α
∓] = +Qα

±, (6c)

[T a, Qα
±] = −(λa)αβ Q

β
±, (6d)

{Qα
±, Q

β
±} = ±ηαβL±, (6e)

{Qα
±, Q

β
∓} = −ηαβL0 ±

d− 1

2Cρ
(λa)αβT a. (6f)

Here λa are the basis of the representation ρ of SO(N ) in which fermions transform,
ηαβ is an SO(N ) invariant metric, Cρ is the second Casimir in the ρ representation,
i.e. one has

λaλa = −CρI, tr(λaλb) = − d
D
Cρδ

ab. (7)

The graded super Jacobi identity for any X, Y, Z ∈ g is written as

(−1)ε(X)ε(Z)[X, [Y, Z]] + (−1)ε(X)ε(Y )[Y, [Z,X]] + (−1)ε(Z)ε(Y )[Z, [X, Y ]] = 0, (8)

where ε(X) is the parity of X and its value is determined depending on whether X is
Grassmann even or odd. It imposes a condition on λas,

(λa)βγ(λa)αδ + (λa)αγ(λa)βδ =
Cρ
d− 1

(2ηαβδγδ − η
αγδβδ − η

γβδαδ ). (9)
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The matrices ηαβ are symmetric, i.e. ηαβ = ηβα while the matrices λαβ are antisym-
metric, i.e. λαβ = −λβα.

A generic osp(N|2) connection A will be parameterized as

A = AnLn +BaT a + ψ±αQ
α
± = A+B + Ψ , (10)

and likewise for the barred sector.
The relation between the Chern-Simons formulation and the geometric formulation

in terms of the dreibein e and the (dualized) spin connection ω is obtained by identifying
sl(2) part of the super-connection as the dreibein and the spin connection, i.e. taking
the sl(2|R) connections A, Ā to be

e =
`

2

(
A− Ā

)
, ω =

1

2

(
A+ Ā

)
. (11)

The metric is constructed as

gµν = 2tr(eµeν) =
`2

2
tr
(
(A− Ā)µ(A− Ā)ν

)
. (12)

All solutions of three dimensional gravity are locally gauge equivalent to each other, but
differ up to boundary terms or global identifications. Therefore boundary conditions
are crucial in three dimensional gravity, which we will now digress on at some length.

2.1.1 Gauge fixing

The importance of boundary conditions for three dimensional gravity stems from the
fact that locally gauge equivalent solutions can differ by boundary terms. Imposing
suitable boundary conditions in three dimensional gravity then specifies which bulk
solutions are gauge inequivalent and lead to different boundary charges. Suitable in
this context means: leading to integrable boundary charges. In addition, the boundary
conditions should not be too strict, so that the boundary charges are non-trivial, but
not too loose either, such that the boundary charges are finite.

In the Chern-Simons formulation of three dimensional gravity the boundary con-
ditions on the gauge connection are most easily represented in a radial gauge. Let us
suppose our manifoldM has the topology of a filled cylinder and can be equipped with
a coordinate system (t, ϕ, r). There is a spatial boundary ∂M at r → ∞. The radial
gauge fixing is achieved by taking1

∂ϕAr = 0 . (13)

This implies that we can solve the Chern-Simons constraint Frϕ = 0 by writing

Ar = b(r)−1∂rb(r) , Aϕ = b(r)−1aϕ(t, ϕ)b(r) . (14)

Here b(r) is a group element depending only on r.

1For simplicity, here we work in one chiral sector of AdS3 Chern-Simons gravity, unless otherwise
specified.
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The time component of the Chern-Simons connectionAt is a Lagrange multiplier for
the constraint Frϕ = 0 and asking this constraint to be preserved under time evolution
implies that we may write

At = b(r)−1at(t, ϕ)b(r) . (15)

In this gauge, the boundary conditions are completely specified by fixing aϕ(t, ϕ) and
at(t, ϕ). The functional variation of the asymptotic charges corresponding to an asymp-
totic symmetry transformation δεai = ∂iε+ [ai, ε} 2 are given by [38]

δQ = − k

2π

∮
dϕ Str (εδaϕ) . (16)

Hence, to specify suitable boundary conditions means in this context to find a form
of aϕ such that the above charges are finite and integrable for all ε which satisfy
∂iε + [ai, ε} = δεaϕ. An important aspect of this is to include a specification of state
dependence in ε and in aϕ in order to perform the functional integration of the charges.

It is now clear that aϕ contains information on the asymptotic charges. On the
other hand at plays the role of chemical potential, or the sources. We may always
write at proportional to ε, as the field equations ∂taϕ − ∂ϕat + [at, aϕ} = 0 will reduce
to the statement that the time derivative of the charges aϕ is determined by a sym-
metry transformation and hence weakly vanishes. The on-shell Chern-Simons action is
proportional to

∫
∂M tr(ataϕ) and so by writing at proportional to the gauge parameter

ε one immediately sees that it becomes a chemical potential for the charges in aϕ.
Now we should specify the boundary conditions by specifying the form of aϕ. The

gauge invariant observables in Chern-Simons theory are Wilson loops, or the holonomy
of the connection around the ϕ-cycle.

Hϕ = tr

(
P exp

(∮
aϕdϕ

))
(17)

The holonomies, and therefore the distinct solutions, can be characterized by the con-
jugacy classes of the super-group G. In Section 5.2, we discuss how this can be useful
in distinguishing different bulk solutions and classifying them as certain orbits of the
asymptotic symmetry group in the bosonic example of Brown-Henneaux boundary
conditions [39] for asymptotically local AdS3 spacetimes.

2.1.2 Supersymmetric Brown-Henneaux

The supersymmetric extension of the Brown-Henneaux boundary conditions were ob-
tained in [11]. In our conventions they are most easily represented by taking

aϕ = L− + L(t, ϕ)L+ + Ψα(t, ϕ)Qα
+ + Ba(t, ϕ)T a (18)

An asymptotic symmetry transformation δaϕ = ∂ϕΛ + [aϕ,Λ} is parameterized by

Λ = χnLn + ε±αQ
α
± + ωaT a . (19)

2Here [, } is shorthand notation for the graded commutator.
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Three components of Λ can be solved for as

χ0 = −∂ϕχ− , χ+ = −1

2
∂2χ− + Lχ− +

1

2
Ψ · ε− , (20)

ε+
α = −∂ϕε−α + χ−Ψα + Baε−αλa , (21)

where · means contraction by ηαβ. The variation of the functions Ba,Ψα and L are
given by:

δBa = ∂ϕω
a + fabcBbωc − d− 1

2Cρ
(Ψλaε−) , (22)

δΨα = −∂2
ϕε
−
α + L ε−α +

3

2
∂ϕχ

−Ψα + χ−∂ϕΨα +
(
∂ϕBaε−α + 2Ba∂ϕε−α − BaBbε−αλb

)
λa

+ ωaΨαλ
a − Baχ−Ψαλ

a . (23)

δL = χ−∂ϕL+ 2∂ϕχ
−L − 1

2
∂3
ϕχ
− +

1

2
∂ϕΨ · ε− +

3

2
Ψ · ∂ϕε− + Ba(Ψλaε−) . (24)

The transformation rule for Ψ contains a non-linear term ∼ BaΨ in the last line of
(23). This term can be removed by taking the R-symmetry gauge parameter ωa to be

ωa = Baχ− + Ωa . (25)

This changes ω into Ω and removes the last term in (23), while it also changes (22) to

δBa = ∂ϕ(Baχ−) + ∂ϕΩa + fabcBbΩc − d− 1

2Cρ
(Ψλaε−) , (26)

It also has an effect on the asymptotic charges where it implements a Sugawara shift
in the χ− charge. The charges are

Q[χ−] = − k

2π

∫
dϕ χ−

(
L+

Cρ
d− 1

BaBa
)
≡ − k

2π

∫
dϕ χ−L̂ , (27)

Q[ε−] =
k

2π

∫
dϕ ε− ·Ψ , (28)

Q[Ω] = − k

2π

2Cρ
d− 1

∫
dϕ ΩaBa . (29)

The algebra of Fourier modes of the charges, defined as Ln = Q[χ− = einϕ], Gα
n =

Q[ε−α = einϕ] and T an = Q[Ωa = einϕ], gives the generic N superconformal algebra

[Lm, Ln] = (m− n)Lm+n +
k

2
m3δm+n,0 , (30a)

[Lm, G
α
n] =

(m
2
− n

)
Gα
m+n , (30b)

[Lm, T
a
n ] = −nT am+n , (30c)

{Gα
m, G

β
n} = ηαβ(Lm+n + km2δm+n,0) + i

d− 1

2Cρ
(m− n)(λa)αβT am+n (30d)

− k

2

(
d− 1

2kCρ

)2(
{λa, λb}αβ +

2Cρ
d− 1

ηαβδab
)

(T aT b)m+n , (30e)

[Gα
m, T

a
n ] = i(λa)αβG

β
m+n , (30f)

[T am, T
b
n] = ifabcT cm+n +

2Cρk

d− 1
mδabδm+n,0 . (30g)
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where (T aT b)m+n are the Fourier modes of ( k
2π

2Cρ
d−1

)2Ba(ϕ)Bb(ϕ). This algebras agrees
with [11] and corresponds to the non-linear superconformal algebras found in [12–15].
The non-linear terms in the supercharge anti-commutators are only present for N > 2.
For N ≤ 2 the algebras are superconformal Lie algebras whose group is the centrally
extended group of diffeomorphisms of the supercircle.

2.2 W3 higher spin gravity

W3 gravity in three dimensions can be considered as a higher spin theory of gravity for a
spin-3 field and described by the Chern-Simons theory with the gauge group SL(3,R).
The Einstein Hilbert action is again written as the difference of two Chern-Simons
actions as in (1) and (2), where now k is the level of the Kac-Moody sl(3) algebra,
the gauge connections A, Ā are g = sl(3,R)-valued 1-form connections and the trace is
over the sl(3) Lie algebra. To define g we use the root space gradation g = ⊕g(i) with

g(0) = g0 = span{θa|a = 1, 2, ..., rank g},
g(j) = span{Eα|[θa, Eα] = αaEα, a = 1, 2, ..., rank g}, (31)

where g0 is the Cartan subalgebra of sl(3) spanned by two elements θa, a = 1, 2 and
Eα are associated to the root α of the root space of sl(3) Lie algebra. The Chevalley
basis of sl(3) are spanned by a set of 8 generators given by

{
Eα
±, θ

a
}

, where Eα
+, Eα

− are
respectively raising operators corresponding to positive roots and lowering operators
corresponding to negative roots, and θa span the Cartan subalgebra. We recall that the
eigenvalues of the Cartan subalgebra are weights ωa and the vector with components
ωa is a weight vector ~Ω, i.e. θa|ω〉 = ωa|ω〉 where |ω〉 are eigenvectors of θa.

Let’s consider the following matrix representation of sl(3)

E1
+ =

0 1 0
0 0 0
0 0 0

 , E2
+ =

0 0 0
0 0 1
0 0 0

 , E3
+ =

0 0 1
0 0 0
0 0 0

 ,

E1
− =

0 0 0
1 0 0
0 0 0

 , E2
− =

0 0 0
0 0 0
0 1 0

 , E3
− =

0 0 0
0 0 0
1 0 0

 ,

H1 =

1 0 0
0 −1 0
0 0 0

 , H2 =

0 0 0
0 1 0
0 0 −1

 , (32)

and

θ1 =
H1 +H2√

2
, θ2 =

H1 −H2√
6

. (33)

Using the matrix representation of sl(3), we find three weight vectors of sl(3)

~Ω1 =
1√
2

(
1,

1√
3

)
, ~Ω2 =

1√
2

(
0,− 2√

3

)
, ~Ω3 =

1√
2

(
−1,

1√
3

)
. (34)
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Roots are weights of the adjoint representation and root vectors ~αi can be defined as
vectors connecting the weight vectors in the root lattice, then we can easily write the
positive roots

~α1 = ~Ω1 − ~Ω2 =
1√
2

(
1,
√

3
)
,

~α2 = ~Ω2 − ~Ω3 =
1√
2

(
1,−
√

3
)
,

~α3 = ~Ω1 − ~Ω3 =
(√

2, 0
)
. (35)

It is obvious that ~α1 and ~α2 are the simple roots of sl(3), and ~α3 = ~α1 + ~α2. This
is simply understood from the commutator of the Cartan generators with raising and
lowering operators as

[~θ, Ei
±] = ±~αiEi

±, (36)

[Ei
±, E

i
∓] = ~αi.~θ (37)

[Ei
±, E

j
±] = ±Ei+j

± , (38)

where ~θ = (θ1, θ2). The rest of generators can be obtained by Serre relation or by
the use of Jacobi Identity. Note that here “.” refers to the inner product on the two
dimensional root vector space and moreover Ei

± = 0 for i > 3.

2.2.1 Gauge fixing

A general sl(3) connection can be written as

A = Ai±E
i
± + ΘiH i, (39)

and likewise for Ā. Once again, the gauge inequivalent bulk solutions are specified by
suitable boundary conditions. Following the discussion of section 2.1.1, we can solve
the Chern-Simons constraint in radial gauge for the connections

Ar = b(r)−1∂rb(r), Aϕ = b(r)−1aϕ(t, ϕ)b(r), (40)

where b(r) is a group element which only depends on r. Moreover, requiring that the
Chern-Simons constraint remains unchanged under the time evolution leads to

At = b(r)−1at(t, ϕ)b(r). (41)

This means that the boundary conditions are completely determined by aϕ(t, ϕ) and
at(t, ϕ), see [20,21,40] for more details.

The Brown-Henneaux boundary conditions for W3 gravity in 3 dimensions depends
on the way that the SL(2) subgroup is embedded in SL(3). We will explore this in
more detail later in section 4.2 where we discuss the Hamiltonian reduction of SL(3,R)
WZW action.
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3 Hamiltonian reduction of the super Chern-Simons

action

In this section we will discuss the reduction of three dimensional super-Chern-Simons
action to a two dimensional field theory. We first reduce three dimensional AdS su-
pergravity to a sum of two chiral super Wess-Zumino-Witten models and then impose
the boundary conditions as constraints on the WZW super-currents. Furthermore,
we will discuss the effect of different boundary conditions and boundary terms on the
two dimensional boundary action, paying special attention to non-trivial holonomies
in the bulk. The analysis is kept general for extended supergravity with any number
of supersymmetries. For N ≤ 2, we will show how the boundary action is related to
the geometric action on the coadjoint orbit of the super-Virasoro group. For larger
supersymmetries (N > 2), we compute the Schwarzian action through the reduction,
and suggest a form for the geometric action on the symplectic leaves of corresponding
super-Virasoro group manifold.

The first steps of the reduction follows along the lines of [11, 41] (see also [42] for
a recent review). What is new in our approach is that we will not try to combine the
two chiral sectors of the theory, but instead keep them disconnected. We also discuss
the zero modes of the fields and allow for non-trivial holonomies of the Chern-Simons
connection.

We start with the Hamiltonian decomposition of the action (1). Let us focus on one
chiral sector (Scs[A]) for now, as the barred sector follows similarly. The Hamiltonian
form of the action (2) is defined on a manifold M which we will take to be the disk
D times a time direction. The boundary S1 of the disk is at r → ∞ and we use an
orientation dt ∧ dϕ ∧ dr. The Hamiltonian action is

S[A] =
k

4π

∫
M
dtdϕdr Str

(
ArȦϕ −AϕȦr + 2AtFϕr

)
+ IΣ , (42)

with
Frϕ = ∂rAϕ − ∂ϕAr + [Ar,Aϕ] , (43)

and IΣ is a boundary term adapted to the boundary conditions under consideration.
This boundary term is added to the action to ensure a well-defined variational principle.
The variation of the bulk action gives

δS[A] = . . .− k

2π

∫
∂M

dtdϕ StrAtδAϕ = . . .− k

2π

∫
∂M

dtdϕ Str atδaϕ . (44)

Here the ellipses stand for terms proportional to the bulk equations of motion. The
boundary term IΣ should be such that its variation cancels the term in (44). We should
therefore impose boundary conditions such that this expression is integrable and finite.
We discuss the boundary conditions in details later in Section 3.2.

The action (42) consists out of two parts. There is a symplectic term and the
boundary term. The latter is responsible for the Hamiltonian of the boundary theory,
while the symplectic part reduces to the geometric action on the super-Virasoro coad-
joint orbit. In the non-supersymmetric theory, it will reduce to the geometric action
on the Virasoro coadjoint orbits of [24]. Let us discuss the reduction for both these
terms in succession.
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3.1 The symplectic term

Focusing first on the bulk part of one chiral sector of the action, we see that At is a
Lagrange multiplier for the constraint Fϕr = 0. In general, the spatial sections can have
a non-trivial topology, which implies a non-trivial holonomy along non-contractible
cycles in the manifold. One can take this into account in the following way:

One demands the group elementsG to be periodic; as a result of which the holonomy
appears explicitly in the local solution of the constraint Fϕr = 0,

Aϕ = G−1(∂ϕ +K(t))G , G(ϕ+ 2π) = G(ϕ). (45)

Here, K(t) is a Lie algebra valued function of time that parametrizes the holonomy3.
Note that for periodic group elements G, the integral of G−1∂ϕG over the loop vanishes.

The action with explicit holonomy can be obtained by substituting (45) into (42).
The result is (formula (A.7) of [11])

SSCS[G,K(t)] = +
k

4π

∫
M
d3x Str

(
∂r(G

−1∂ϕGG
−1∂tG)

)
+

k

12π

∫
M

Str(G−1dG)3

(46)

+
k

4π

∫
M
d3x Str

(
2∂r(G

−1K∂tG)− ∂t(G−1K∂rG)
)

+ IΣ ,

up to a total ϕ-derivative which is dropped due to the periodicity of G in ϕ. In
addition, we have also dropped boundary contributions at the time boundaries, and
we will continue to do so in the following, up to the point where we discuss them
systematically.

In Section 3.3, we continue by representing any group element with the use of
the Gauss decomposition of the group. It enables us to define Maurer-Cartan one-
forms, G−1dG, and to further implement constraints from the boundary conditions,
i.e. aϕ = G−1∂ϕG, in terms of the fields parameterizing the group. But first, we will
discuss the Hamiltonian coming from the boundary term in (42).

3.2 The Hamiltonian

Imposing different boundary conditions can lead to different boundary Hamiltonians.
Following (44), the boundary term should be taken such that its variation is

δIΣ =
k

2π

∫
dtdϕ Str (AtδAϕ) . (47)

The precise form of boundary action depends on the topology of spatial surfaces. In
the following we focus on a case where the spatial hypersurface has annulus topology
S1 × [0, 1].

In that case, we impose the boundary condition A− = 0 of [41] at the outer bound-
ary. We also choose the Hamiltonians on the respective boundaries to have the same
(positive) sign for definiteness, which one could interpret as having time evolution on

3This choice is indeed a restriction we impose at this point, as it is only possible to eliminate the
ϕ-dependence in K(t) for simply connected groups.
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both sides of the black hole run in the same direction. This is achieved by taking
A+ = 0 at the inner boundary. These choices lead to the boundary terms (see section
2.3 of [7]):

IΣi,o = − k

4π

∫
Σi,o

dtdϕ StrA2
ϕ . (48)

The boundary term in the action is thus seen as the time integral of the Noether
charge of an asymptotic symmetry transformation and hence the resulting action will
remain invariant under the asymptotic symmetries.

IΣ = IΣi + IΣo = − k

4π

∫
dtHbdy = −

∫
dtQ[Λ = At], (49)

where Λ is a Lie algebra valued function of the gauge parameters. If we choose χ− = 1
and ε− = 0 = Ωa, then the asymptotic symmetry corresponds to time translations.
The Noether charge for this would make a suitable Hamiltonian and it’s given by

IΣ =
k

2π

∫
dtdϕ L̂ (50)

with L̂ defined in (27).
For the annulus topology, the action includes a contribution from each boundary,

coupled through the holonomy parameterized by K.

SCS[h, l,K(t)] = +
k

4π

∫
Σo

dtdϕ Str
(
h−1∂ϕhh

−1∂−h+ 2h−1K∂−h−K2
)

(51)

− k

4π

∫
Σi

dtdϕ Str
(
l−1∂ϕll

−1∂+l + 2l−1K∂+l +K2
)

+ IWZ [G] ,

where:
h = G(t, r = router, ϕ), l = G(t, r = rinner, ϕ) , (52)

and hereon we use the notation ∂∓ = ∂t ∓ ∂ϕ.
The Wess-Zumino term

IWZ [G] =
k

12π

∫
M

Str(G−1dG)3 , (53)

can be written as a total derivative and hence it also only depends on the boundary
values of the group element G.

The action (51) is invariant under the gauge symmetry G → ω(t)G and K →
ω(t)Kω−1(t), which implies in terms of the boundary fields,

h→ ω(t)h, l→ ω(t)l, K → ω(t)Kω−1(t) . (54)

This gauge invariance results from the redundancy of the parametrization of the group
element G [43] and can straightforwardly be verified in the above action.
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3.3 On the holonomy

In this section, we continue the discussion of Section 3.1 by explicitly computing the
reduction for a super-Chern-Simons action with N extended supersymmetry and the
gauge group OSp(N|2). However before doing so, we need to clarify few important
aspects of the presence of holonomy. As described in [7], the inequivalent physical con-
tribution of holonomy K is classified by its conjugacy classes, and moreover, conjugacy
classes are constant in time.

Due to the theorem 3.9 of [44] (see also [45]), the holonomy group of OSp(N|2)
can be always put in a block diagonalized form. This means that one can always make
the holonomy to be in the even subgroup of the supergroup. Another way to see this
is by looking at the classification of coadjoint orbits of super Virasoro group [46]. One
notices that the coadjoint orbits that one obtains by considering the holonomy in the
odd subspace of the superspace are not new ones and one could equivalently obtain
them by setting the holonomy to be in the even subgroups.

In the case of N = 1 the choice of holonomy is insensitive to the supersymmetry.
This is because for N = 1 there is no R-symmetry and as a result the holonomy is
classified by the conjugacy classes of SL(2), similar to the non-supersymmetric case.
However, for N ≥ 2 there is an SO(N ) R-symmetry and the holonomy must be
classified by the conjugacy classes of the even subgroup of OSp(N|2).

Another remark on the choice of holonomy conjugacy classes is that we only focus
on the hyperbolic holonomy class for the rest of this paper. This class of holonomies
includes BTZ solutions and therefore is important in the study of two-sided eternal
BTZ black holes which is the primary (but not the only) concern of this paper. For the
practical reasons and for the sake of simplicity we only focus on the hyperbolic class.
The analysis of the other classes is similar to the hyperbolic case. For such an analysis
in the bosonic case see [7].

3.4 N = 1 super Chern-Simons

We will now continue to discuss the reduction to the boundary action for N = 1 AdS3

supergravity, focusing on the case where the holonomy is in the hyperbolic conjugacy
class of SL(2).

3.4.1 Hyperbolic Holonomy

Using the Gauss decomposition, we can parameterize any element of OSp(1|2) as

h = G[r = ro, t, ϕ] = eY L−+ψ−Q−eΦL0eXL++ψ+Q+ ≡ E−E0E+ (55)

l = G[r = ri, t, ϕ] = eUL++χ+Q+eΦ̃L0eV L−+χ−Q− ≡ Ẽ+Ẽ0Ẽ− (56)

where Φ, X, Y, ψ± are fields at outer boundary and Φ̃, U, V, χ± are fields defined at
inner boundary and all are depending on spacetime coordinates (t, ϕ)4. They are the
pullback of the r-dependent G to the corresponding boundaries.

4We emphasize that the parametrization (56) is only at the inner boundary. One can see it as a
field redefinition of the fields which appear in a similar parametrization as (55).
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Inserting (55) and (56) inside the action (51), upon using the algebra osp(1|2,R)
given in (6) and

Str(L+L−) = 1, Str(L0L0) =
1

2
, Str(Q−Q+) = −Str(Q+Q−) = 2, (57)

the action now reads off as
S = So − Si + Shol, (58)

where5

So =
k

4π

∫
Σo

dtdϕ
[1

2
Φ′∂−Φ + 2eΦ(∂−X − ψ+∂−ψ

+)(Y ′ − ψ−ψ−′)− 4eΦ/2ψ−′∂−ψ
+
]
,

Si =
k

4π

∫
Σi

dtdϕ
[1

2
Φ̃′∂+Φ̃ + 2e−Φ̃(∂+V + χ−∂+χ

−)(U ′ + χ+χ+′)− 4e−Φ̃/2∂+χ
−χ+′

]
,

(59)

and

Shol =
k

4π

∫
dtdϕ

[
k0

(
∂−Φ− ∂+Φ̃ + 2eΦ/2ψ−∂−ψ

+ − 2e−Φ̃/2χ+∂+χ
−

− 2eΦY (∂−X − ψ+∂−ψ
+)− 2e−Φ̃U(∂+V + χ−∂+χ

−)

)
− k2

0

]
.

(60)

The Lagrangian is invariant (up to total derivatives) under the residual gauge sym-
metry,

Φ→ Φ̂ = Φ + λ0 Φ̃→ ˆ̃Φ = Φ̃ + λ0, (61a)

Y → Ŷ = Y e−λ
0

U → Û = Ueλ
0

, (61b)

X → X̂ = X V → V̂ = V, (61c)

ψ− → ψ̂− = ψ−e−λ
0/2 χ− → χ̂− = χ−, (61d)

ψ+ → ψ̂+ = ψ+ χ+ → χ̂+ = χ+e−λ
0/2, (61e)

k0 → k̂0 = k0 . (61f)

A convenient rewriting of the action is

SCS[k0, Y,Φ, X, ψ
±, V, Φ̃, U, χ±] = SΣo

bdy[k0, Y,Φ, X, ψ
±]− SΣi

bdy[k0, V, Φ̃, U, χ
±] , (62)

with

SΣo
bdy = k

4π

∫
dtdϕ

[
1
2
∂−Φ(Φ′ + 2k0) + 2eΦ(∂−X − ψ+∂−ψ

+)(Y ′ − ψ−ψ−′ − k0Y )

+4eΦ/2∂−ψ
+(ψ−

′ − k0
2
ψ−)− 1

2
k2

0

]
,

SΣi
bdy = k

4π

∫
dtdϕ

[
1
2
∂+Φ̃(Φ̃′ + 2k0) + 2e−Φ̃(∂+V + χ−∂+χ

−)(U ′ + χ+χ+′ + k0U)

−4e−Φ̃/2∂+χ
−(χ+′ + k0

2
χ+) + 1

2
k2

0

]
,

(63)
5Here and in the rest of the paper we use prime as a shorthand notation for ∂ϕ.
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3.4.2 Boundary conditions

We are now at the stage where we can impose the reduction conditions on the super
Chern-Simons connection that expresses the asymptotic behaviour of extended (super)
AdS3 [11]. We consider explicitly one asymptotic boundary only (the outer bound-
ary). Similar considerations apply to the inner boundary. The only difference in their
treatment is the choice of OSp(N |1,R) representation at each boundary. While the
boundary conditions on the fields at outer boundary are in accordance with highest-
weight representation, those on the fields at inner boundary are in accordance with the
lowest-weight representation. As shown in [41] and discussed in [7, 11] the boundary
conditions on the fields at r = r2 ≡ ro are

Ar = 0, Aϕ = L− + L(t, ϕ)L+ + Ψ+(t, ϕ)Q+. (64)

Similarly, the boundary conditions on the fields at r = r1 ≡ ri are

Ar = 0, Aϕ = L+ +M(t, ϕ)L− + Ψ−(t, ϕ)Q−. (65)

In terms of the field appearing in the Gauss decomposition, this gives the conditions

On Outer Boundary On Inner Boundary

eΦ(Y ′ − ψ−ψ−′ − k0Y ) = 1 e−Φ̃(U ′ + χ+χ+′ + k0U) = 1

Φ′ + k0 = 2X Φ̃′ + k0 = −2V

ψ+ + eΦ/2(ψ−
′ − k0

2
ψ−) = 0 χ− + e−Φ̃/2(χ+′ + k0

2
ψ+) = 0

(66)

Inserting these conditions in the action (63), we find

SΣo
bdy = k

4π

∫
dtdϕ

[
1
2
∂−Φ(Φ′ + 2k0) + 2ψ+∂−ψ

+ − 1
2
k2

0

]
,

SΣi
bdy = k

4π

∫
dtdϕ

[
1
2
∂+Φ̃(Φ̃′ + 2k0)− 2χ−∂+χ

− + 1
2
k2

0

]
. (67)

Putting these together, the final form of action is written

S =
k

4π

∫
dtdϕ

[1

2
∂−ΦΦ′ − 1

2
∂+Φ̃Φ̃′ + k0(∂−Φ− ∂+Φ̃) + 2(ψ+∂−ψ

+ + χ−∂+χ
−)− k2

0

]
.

(68)

This action describes the dynamic of two chiral bosons (one at each boundary) linked
through the holonomy and two free chiral fermions (one at each boundary). This action
is exactly the one described in [7] with the exception of the free chiral fermions present
at each boundary and similarly enjoys invariance under a redundant gauge symmetry

Φ→ Φ + ε(t), Φ̃→ Φ̃ + ε(t), k0 → k0 ,

ψ+ → ψ+, χ− → χ− . (69)
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It is of no surprise that fermions remained uncoupled as the holonomy belongs only
to the diagonal subgroup which only allows bosonic degrees of freedom to couple. In
the next section, we should see an extension of this to include R-symmetry.

Before proceeding any further lets make a comment on the other conjugacy classes
of SL(2); elliptic and parabolic conjugacy classes. As we just pointed out since for
N = 1, holonomy only couples to the bosonic fields, the treatment of elliptic and
parabolic cases are similar to [7] in each case. The only difference is the presence of
free chiral fermions in the action which will appear as in the action (68).

3.5 N = 2 super Chern-Simons

The case of N = 2 seems fairly easy to deal with. In fact, one can write down the
So and Si for a general N > 2. The difficulty lies in what is the contribution of Shol
which depends on the choice of holonomy. Our guideline motivated by the theorem on
supergroup diagonalization [44,45] is that the holonomy can be always put in the form
where it belongs to the even subgroup of the supergroup. For N = 2 this simplifies
drastically, since there is only one R-symmetry generator and the holonomy will be
given by a direct sum of the N = 1 holonomy (i.e. it belongs to one of SL(2,R)
conjugacy classes) and the so(2) Lie algebra of the N = 2 R-symmetry subgroup6.
This boils down to three distinct classes:

• Hyperbolic holonomy described by hyperbolic conjugacy class of sl(2)⊕ so(2).
Explicitly, the holonomy group element is H = expK with K(t) = k0(t)L0 +
kr(t)T . All elements conjugate to K belong to this class.

• Elliptic holonomy described by the elliptic conjugacy class of sl(2), or explicitly:
all elements conjugate to K(t) = 1

2
ke(t)(L− − L+).

• Parabolic holonomy, which is described by the parabolic conjugacy class of sl(2),
or explicitly: all elements conjugate to K(t) = kp(t)L+.

Before discussing the details for N = 2, let us first write down the outer and inner
contributions to the action So and Si, for general N .

Once again we are only discussing the hyperbolic holonomy conjugacy classes which
contains BTZ back holes. The Gauss decomposition is a natural parametrization for
the hyperbolic holonomy. It occurs that the R-symmetry generator for N = 2 is also
diagonal, which makes the choice of Gauss decomposition much more suitable for this
case.

Using the Gauss decomposition, we can parameterize any element of OSp(N|2) as

h = G[r = ro, t, ϕ] = eY L−+ψ−αQα−eΦL0+iCaTaeXL++ψ+
αQ

α
+ ≡ E−E0E+ (70)

l = G[r = ri, t, ϕ] = eUL++χ+
αQ

α
+eΦ̃L0+i C̃aTaeV L−+χ−αQα− ≡ Ẽ+Ẽ0Ẽ− (71)

where Φ, X, Y, Ca, ψ±α are fields at outer boundary and Φ̃, U, V, C̃a, χ±α are fields defined
at inner boundary and all are depending on spacetime coordinates (t, ϕ). They are the
pullback of the r-dependent G to the corresponding boundaries.

6This choice of holonomy can be also shown to be the case for a constant orbit representative,
when one considers the effect of the holonomy implicitly through non-periodicity of the fields.

17



Inserting (70) and (71) inside the action (51) and using the osp(N |2,R) algebra
given in (6) and

Str(L+L−) = 1, Str(L0L0) =
1

2
,

Str(T aT b) =
2Cρ
d− 1

δab, Str(Qα
−Q

β
+) = −Str(Qα

+Q
β
−) = ηαβ, (72)

the action now reads:
S = So − Si + Shol, (73)

where

So =
k

4π

∫
Σo

dtdϕ
[1

2
Φ′∂−Φ + 2eΦ(∂−X − ψ+

α

ηαβ

2
∂−ψ

+
β )(Y ′ − ψ−α

ηαβ

2
ψ−β
′)

− 2eΦ/2ψ−β
′mβα∂−ψ

+
α

]
+ So[u],

Si =
k

4π

∫
Σi

dtdϕ
[1

2
Φ̃′∂+Φ̃ + 2e−Φ̃(∂+V + χ−α

ηαβ

2
∂+χ

−
β )(U ′ + χ+

α

ηαβ

2
χ+
β
′)

+ 2e−Φ̃/2χ+
β
′m̃βα∂+χ

−
α

]
+ Si[w]. (74)

Here mα
β = eiCa(λa)αβ , m̃α

β = ei C̃a(λa)αβ , mαβ = mα
γη

γβ, and m̃αβ = m̃α
γη

γβ, with λa

the basis of the so(N ) algebra under which fermions transform, and

So[u] =
k

4π

∫
Σo

dtdϕ Str
(
u−1∂ϕuu

−1∂−u
)

+ IWZ [U ]|Σo (75)

Si[u] =
k

4π

∫
Σi

dtdϕ Str
(
w−1∂ϕww

−1∂+w
)

+ IWZ [W ]|Σi .

Here, once again, u(t, ϕ) = eiCa(t,ϕ)Ta , and w(t, ϕ) = ei C̃a(t,ϕ)Ta are the r-independent

pullback of U(t, ϕ, r) = eiCa(t,ϕ,r)Ta and W (t, ϕ, r) = ei C̃a(t,ϕ,r)Ta , respectively.

3.5.1 Hyperbolic holonomy

As explained in the previous section, we consider that K(t) = k0L0 + krT . For such a
holonomy, the contribution of holonomy in the action is given by

Shol = Sk0hol + Skrhol (76)

with

Sk0hol =
k

4π

∫
dtdϕ

[
k0

(
∂−Φ− ∂+Φ̃ + eΦ/2(ψ− ·m · ∂−ψ+)− e−Φ̃/2(χ+ · m̃ · ∂+χ

−)

− 2eΦY (∂−X −
1

2
ψ+ · ∂−ψ+)− 2e−Φ̃U(∂+V +

1

2
χ− · ∂+χ

−)

)
− k2

0

]
,

(77)
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and

Skrhol =
k

4π

∫
dtdϕ

[
kr

(
−i
(
∂−C − ∂+C̃

)
− eΦ(ψ− · λ · ψ−)(∂−X −

1

2
ψ+ · ∂−ψ+)

+ e−Φ̃(χ+ · λ · χ+)(∂+V +
1

2
χ− · ∂+χ

−) + 2eφ/2(ψ− · λ ·m · ∂−ψ+)

− 2e−φ̃/2(χ+ · λ · m̃ · ∂+χ
−)
)

+ k2
r

]
. (78)

Here we have used a shorthand notation “·” to avoid writing all spinorial indices
explicitly. As an example, it reads as ψ+ · ∂−ψ+ = ψ+ · η · ∂−ψ+ = ψ+

α η
αβ∂−ψ

+
β and

ψ− ·m · ∂−ψ+ = ψ−αm
αβ∂−ψ

+
β . Notice that here λ (and consequently m) is given by the

osp(N |2) representation of appendix A and we have set 2Cρ
d−1

= −1
2

accordingly.
The full N = 2 super Chern-Simons action can then be written as

SCS[k0, Kr, Y,Φ, X, ψ
±
α , V, Φ̃, U, χ

±
α ] = SΣo

bdy[k0, kr, Y,Φ, X, ψ
±
α ]−SΣi

bdy[k0, kr, V, Φ̃, U, χ
±
α ] ,

(79)
with

SΣo
bdy =

k

4π

∫
dtdϕ

[1

2
∂−Φ(Φ′ + 2k0) +

1

2
∂−C(C ′ − 2ikr)

+ 2eΦ(∂−X −
1

2
ψ+ · ∂−ψ+)(Y ′ − 1

2
ψ− · ψ−′ − k0Y −

1

2
kr(ψ

− · λ · ψ−))

− 2eΦ/2(ψ−
′ − k0

2
ψ− − krψ− · λ) ·m · ∂−ψ+ − 1

2
(k2

0 − k2
r)
]

(80)

and

SΣi
bdy =

k

4π

∫
dtdϕ

[1

2
∂+Φ̃(Φ̃′ + 2k0) +

1

2
∂+C̃(C̃ ′ − 2ikr)

+ 2e−Φ̃(∂+V +
1

2
χ− · ∂+χ

−)(U ′ +
1

2
χ+ · χ+′ + k0U −

1

2
kr(χ

+ · λ · χ+))

+ 2e−Φ̃/2(χ+′ +
k0

2
χ+ + krχ

+ · λ) · m̃ · ∂+χ
− +

1

2
(k2

0 − k2
r)
]
. (81)

3.5.2 Boundary condition

Next, we impose the boundary conditions on the N = 2 super Chern-Simons connec-
tion, corresponding to asymptotically AdS3 spacetimes [11]. The boundary conditions
on the fields at outer boundary are in accordance with highest-weight representation,
those on the fields at inner boundary are in accordance with the lowest-weight repre-
sentation. As shown in [41] and discussed in [7, 11], the boundary conditions on the
fields at r = r2 ≡ ro are

Ar = 0, Aϕ = L− + L(t, ϕ)L+ + Ψ+
α (t, ϕ)Qα

+ + B(t, ϕ)T. (82)

Similarly, the boundary conditions on the fields at r = r1 ≡ ri are

Ar = 0, Aϕ = L+ +M(t, ϕ)L− + Ψ−α (t, ϕ)Qα
− +R(t, ϕ)T. (83)
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In terms of the field appearing in the Gauss decomposition, this gives the conditions

On Outer Boundary On Inner Boundary

eΦ[Y ′ − 1
2ψ
− · ψ−′ − k0Y − 1

2kr(ψ
− · λ · ψ−)] = 1 e−Φ̃[U ′ + 1

2χ
+ · χ+′ + k0U − 1

2kr(χ
+ · λ · χ+)] = 1

Φ′ + k0 = 2X Φ̃′ + k0 = −2V

ψ+
α + eΦ/2[ψ−

′ − k0
2 ψ
− − kr(ψ− · λ)]βm

β
α = 0 χ−α + e−Φ̃/2[χ+′ + k0

2 ψ
+ + kr(χ

+ · λ)]βm̃
β
α = 0

(84)

Inserting these conditions in the action (79), we find

SΣo
bdy =

k

4π

∫
dtdϕ

[1

2
∂−Φ(Φ′ + 2k0) +

1

2
∂−C(C ′ − 2ikr) + 2ψ+ · (m− 1

2
η) · ∂−ψ+

− 1

2
(k2

0 − k2
r)
]
,

SΣi
bdy =

k

4π

∫
dtdϕ

[1

2
∂+Φ̃(Φ̃′ + 2k0) +

1

2
∂+C̃(C̃ ′ − 2ikr)− 2χ− · (m̃− 1

2
η) · ∂+χ

−

+
1

2
(k2

0 − k2
r)
]
. (85)

Putting these together, the final form of action is written with pairs (Φ, Φ̃) and (C, C̃)
of chiral bosons linked through the holonomy and two pairs of chiral fermions with a
dilaton coupling to the C field

S =
k

4π

∫
dtdϕ

[1

2
∂−ΦΦ′ − 1

2
∂+Φ̃Φ̃′ + k0(∂−Φ− ∂+Φ̃)

+
1

2
∂−CC

′ − 1

2
∂+C̃C̃

′ − ikr(∂−C − ∂+C̃)

+ 2ψ+ · (m− 1

2
η) · ∂−ψ+ + 2χ− · (m̃− 1

2
η) · ∂+χ

−

− (k2
0 − k2

r)
]
. (86)

For N = 2, see appendix (A), we have

m− 1

2
η =

(
0 2e−

iC
2 − 1

2e
iC
2 − 1 0

)
. (87)

This action enjoys invariance under a redundant gauge symmetry

Φ→ Φ + ε1(t), Φ̃→ Φ̃ + ε1(t) ,

C → C + ε2(t), C̃ → C̃ + ε2(t) ,

k0 → k0, kr → kr ,

ψ+
α → ψ+

α , χ−α → χ−α . (88)

The action (86) is one of the main result of this paper. Even though this action is
written forN = 2 supergravity yet it contains general feature that holds for anyN . The
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holonomy independent part of the action always will be written in this form considering
a generalization of R-symmetry term. For larger N the holonomy dependent part is
very much related to the chosen conjugacy class of holonomy.

Another observation regarding the action (86) is that it is equivalent to the sum
of two chiral actions of [11] when the holonomies are set to zero. In another words,
this is a generalization of [11] by including the zero modes and holonomies. In [11]
it was shown that for the bosonic part and ignoring zero modes and holonomies, this
is equivalent to the Liouville action. A detail analysis of such a relation in the case
of super Liouville action and in the presence of zero modes and holonomies will be
discussed elsewhere [47].

Last comment regarding the action (86) is that this is indeed the action on the
super Virasoro coadjoint orbit. We will come back to this point in Section 5.4 where
we explicitly show that the action (86) is equivalent to the geometric action on the
coadjoint orbit of the group of reparameterizations of N = 2 supercircle.

3.6 Comments on General N
ForN > 2, theR-symmetry group is larger, and there are many more conjugacy classes.
The number of spinors will also be much more, leading to higher than quadratic orders
of interactions. Although the basic idea of holonomy is the same, the detailed analysis
will be much more complicated.

However, for the case when the holonomy is given by K(t) = k0L0 + krT , where T
is one of the Cartan elements of the R-symmetry algebra, the action (85) is indeed the
reduced Hamiltonian action.

Moreover, for a constant orbit representative, we are able to write down the com-
plete action for any N , by considering the holonomy as non-periodicity in the fields.
However, this comes at a price. The drawback of treating the holonomies as non-
periodicity in the fields is that the holonomy is no longer a dynamical field. In the
quantized theory of gravity one expects to have all the possible solutions such that the
dynamics of the theory allows changing between the solutions. In the geometric picture
all these solutions are determined by different orbits and therefore a sensible classical
action requires to have the orbit representatives (holonomies) as dynamical fields, such
that in the partition function one can sum over all the possible solutions of them.

All this makes us believe that writing the action in the presence of a dynamical
holonomy requires a case-by-case study that we do not intend to pursue here.

4 Hamiltonian reduction of W3 higher Chern-Simons

action

As we have repeatedly mentioned, the goal of this paper is to provide a boundary action
through Hamiltonian reduction of various extension of Chern-Simons theory where the
algebra of asymptotic charges is non-linear while emphasizing the role of zero modes
and holonomies. Until now, we discussed the supersymmetric extension of Chern-
Simons theory of gravity where the non-linear terms will appear in N > 2 supergravity
models. Another place where a non-linear algebra of charges will appear is in higher
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spin extension of Chern-Simons gravity [20, 21]. For a spin-N field the asymptotic
charges form a WN algebra. This algebra is non-linear for N > 2, however we have
much less fields compared to supergravity and a simpler classification of holonomy
conjugacy classes. In this section, we will focus on a Chern-Simons theory for a spin-3
fields with W3 asymptotic symmetry algebra and we write down the boundary action
via Hamiltonian reduction. We will show this for different representations of SL(3)
and we claim that the boundary action in each case is the geometric action on the
symplectic leaves of W3 manifold.

4.1 Chern-Simons action in the presence of zero modes

In this section, we follow closely the discussion of section 3, however now the gauge
fields are sl(3,R) valued. As explained, the Chern-Simons action (2) can be written as

S[A] =
k

4π

∫
M
dtdϕdr tr

(
AϕȦr −ArȦϕ + 2AtFrϕ

)
+ IΣi + IΣo , (89)

with
Frϕ = ∂rAϕ − ∂ϕAr + [Ar,Aϕ] . (90)

and IΣi,o are boundary terms adapted to the boundary conditions under consideration.
Imposing the boundary condition A− = 0 at outer boundary and A+ = 0 at inner

boundary, we have for the boundary Hamiltonian actions IΣi,o

IΣi,o = − k

4π

∫
Σi,o

dtdϕ trA2
ϕ . (91)

The field At is a Lagrange multiplier for the constraint Frϕ = 0 which can be solved
for if

Aϕ = G−1 (∂ϕ +K(t))G, Ar = G−1∂rG. (92)

Here G is an SL(3,R) element and K(t) is the Lie-algebra valued holonomy. For our
purpose of dealing with hyperbolic holonomy, it is suitable to choose a representative
in the Gauss decomposition of SL(3,R), i.e.

G = eE
α
−eθ

a

eE
α
+ , (93)

where {Eα
±, θ

a}, α = 1, 2, 3, a = 1, 2 are generators of sl(3,R), which form the Chevalley
basis of sl(3,R). A matrix representation in terms of this basis is given by (32) and
(33).

As we have discussed in the sl(2) case, the zero modes are related to the non-trivial
holonomies in the bulk, which are characterized by both the conjugacy classes of sl(3),
and the classification of symplectic leaves [48, 49]. In the case of SL(3), there are
seven different conjugacy classes; two hyperbolic, one elliptic, three parabolic and the
exceptional conjugacy classes. A complete list of conjugacy classes of the SL(3) group
based on its possible isotropy subgroups can be found in [49].

Once again we focus in our discussion only on holonomies in the non-degenerate
hyperbolic conjugacy class since BTZ black holes have hyperbolic holonomies. This
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holonomy class can be represented by diagonalizable matrices with three distinct real
eigenvalues which are determined with two parameters7. These two parameters can
be completely fixed by asymptotic symmetry transformations which set them to the
asymptotic charges L andW . This is similar to the Chern-Simons theory with Virasoro
symmetry of charges. In that case the holonomies are determined by isotropy groups
of SL(2) group, which leads to three conjugacy classes. These classes are determined
only with one parameter which upon fixing by an appropriate Virasoro transformation
is set to the Virasoro charge L. Indeed for the hyperbolic holonomy with a fixed orbit
representative b0, the zero modes of L is determined by b0 which is related to the only
parameter in the holonomy matrix k0. For the details see section 5.2. In the case
of SL(3) group, zero modes of L and W are determined by the intersections of two
symplectic leaves with the representatives b0 and b1. These representatives are related
to two holonomy parameters k0 and k1.

4.1.1 Hyperbolic holonomy

When dealing with hyperbolic holonomies, a suitable parametrization of group elements
G is given by the Gauss decomposition, where we have:

G = eγ3E
3
−eγ2E

2
−+γ1E1

−e
1√
2
φ1θ1+
√

3
2
φ2θ2eξ1E

1
++ξ2E2

+eξ3E
3
+ . (94)

Here
{
Eα
±, θ

a
}

are Chevalley basis of sl(3) and are defined in (32) and (33).
In terms of these group elements, the action can be written as

SCS[G,K(t)] = +
k

4π

∫
M
d3x tr

(
∂r(G

−1∂ϕGG
−1∂tG)

)
+

k

12π

∫
M

tr(G−1dG)3 (95)

+
k

4π

∫
M
d3x tr

(
2∂r(G

−1K∂tG)− ∂t(G−1K∂rG)
)

+ IΣi + IΣo .

Let’s consider an annulus geometry with two boundaries ro = router and ri = rinner

such that
h = G(t, r = router, ϕ), l = G(t, r = rinner, ϕ) . (96)

Similarly to our previous discussions, we would like to impose lowest weight gauge
condition on the inner boundary and it is more practical to use a field redefinition on
the inner boundary in order to parametrize the group elements l as

l = eξ̃3E
3
+eξ̃2E

2
++ξ̃1E1

+e
1√
2
φ̃1θ1+
√

3
2
φ̃2θ2eγ̃1E

1
−+γ̃2E2

−eγ̃3E
3
− . (97)

Then, the action on the r-boundaries reduces to

SCS[h, l,K(t)] = +
k

4π

∫
Σo

dtdϕ tr
(
h−1∂ϕhh

−1∂−h+ 2h−1K∂−h−K2
)

(98)

− k

4π

∫
Σi

dtdϕ tr
(
l−1∂ϕll

−1∂+l + 2l−1K∂+l +K2
)

+ IWZ [G] ,

7The dimension of isotropy subgroups of SL(3) is 2, 4 or 8 which means the holonomies can be
parametrized with these number of parameters [49].
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As usual, the Wess-Zumino term

IWZ [G] =
k

12π

∫
M

tr(G−1dG)3 , (99)

can be written as a total derivative and hence it also only depends on the boundary
values of the group element G.

For the non-degenerate hyperbolic holonomy, we have

K(t) = k0(t)(H1 +H2) + k1(t)H2. (100)

This is the hyperbolic class with three distinct real eigenvalues parameterized by two
arbitrary functions of t.

Now, given the reparametrization (94), the action (95) takes the form

So =
k

4π

∫
Σo

dt dϕ

(
2e

φ1+3φ2
2 [γ′1 − (k0 − k1)γ1] ∂−ξ1

+ 2e
φ1−3φ2

2 [γ′2 − (k0 + 2k1)γ2] ∂−ξ2

+
1

2
eφ1F (γ1, γ2, γ3; k0, k1) (ξ2∂−ξ1 − ξ1∂−ξ2 − 2∂−ξ3)

+
1

2
[(φ′1 + 4k0 + 2k1) ∂−φ1 + 3 (φ′2 − 2k1) ∂−φ2]

− 2
(
k2

0 + k0k1 + k2
1

))
, (101)

where

F (γ1, γ2, γ3; k0, k1) = γ2γ
′
1 − γ1γ

′
2 − 2γ′3 + k1(2γ3 + 3γ1γ2) + 4k0γ3. (102)

The action on the inner boundary Si is a completely similar expression to the action
on the outer boundary except written in terms of the fields on inner boundary γ̃, φ̃, ξ̃
instead of γ, φ, ξ respectively.

4.2 Different SL(3) representations and highest weight gauge
condition

The finite dimensional representations of SL(3) can be obtained from those of SL(2) by
considering different non-isomorphic SL(2) subgroups embedded in SL(3). This can be
understood for example from the decomposition of finite dimensional representation of
SL(3) group into the eigenspaces of the vector space formed from the Cartan elements
of sl(3) algebra [50]. These representations come with a unique highest weight. For
SL(3) there are two distinct representations: principal and diagonal SL(2) embeddings.
In each case, the root space decomposition differ which in turn leads to a different
(but unique in each representation) highest weight. In the following we discuss each
representation and the corresponding boundary actions. The boundary actions will be
different given that the highest weight gauge condition for the reduction is different in
each representation.
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4.2.1 Boundary Condition and Hamiltonian Reduction

In this section we follow closely the reduction procedure discussed in sections 3.4 and
3.5. Therefore, we impose an appropriate boundary condition at each boundary. As
before, we consider that the angular component of sl(3) Chern-Simons connection to be
fixed by the highest weight or the lowest weight representations on the outer or inner
boundaries respectively. This is consistent with the asymptotic behaviour of AdS3.

4.2.2 Principal Embedding

With the principal embedding, one can choose the basis such that the sl(3) algebra is
written as

[Lm, Ln] = (m− n)Lm+n, (103)

[Lm,Wi] = (2m− i)Wm+i, (104)

[Wi,Wj] = −1

3
(i− j)(2i2 + 2j2 − ij − 8)Li+j, (105)

where Lm’s with m = ±1, 0 are the sl(2) generators and Wi’s with i = ±2,±1, 0 are the
rest of sl(3) generators. One can obtain these generators directly from the Chevalley
basis [51] as

L0 ≡
1

2

2∑
i=1

(ciH
i), (106)

L±1 ≡ ±
2∑
i=1

2∓
1
2
√
ciE

i
∓, (107)

Wi ≡ (−1)2−i (2 + i)!

12

(
adjL−1

)2−i
(L+1)2 , (108)

with ci = 2
∑

j(C
−1)ij where C is the Cartan matrix of sl(3) algebra

C =

(
2 −1
−1 2

)
. (109)

An explicit basis for this algebra is then given by [21]

L−1 =

0 −2 0
0 0 −2
0 0 0

 , L0 =

1 0 0
0 0 0
0 0 −1

 , L+1 =

0 0 0
1 0 0
0 1 0

 ,

W−1 =

0 −2 0
0 0 2
0 0 0

 , W0 =
2

3

1 0 0
0 −2 0
0 0 1

 , W+1 =

0 0 0
1 0 0
0 −1 0

 ,

W−2 =

0 0 8
0 0 0
0 0 0

 , W+2 =

0 0 0
0 0 0
2 0 0

 .
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The highest and lowest weight gauge conditions in terms of the sl(2)-principal
embedding basis takes the following form [20,21]

Ar = 0, Aϕ = L+1 + L(t, ϕ)L−1 +W(t, ϕ)W−2 at outer boundary (110)

Ar = 0, Aϕ = L−1 + L(t, ϕ)L+1 +W(t, ϕ)W+2 at inner boundary. (111)

At the outer boundary, this results in the following conditions

e
φ1+3φ2

2 [γ′1 − (k0 − k1)γ1] = 1, (112)

e
φ1−3φ2

2 [γ′2 − (k0 + 2k1)γ2] = 1, (113)

F (γ1, γ2, γ3; k0, k1) = 0, (114)

ξ2 − (k0 + k1)− 1

2
(φ′1 − φ′2) = 0, (115)

ξ1 − k0 −
1

2
(φ′1 + φ′2) = 0, (116)

together with the expressions for L and W

L = −1

4

(
ξ2

1 + 3ξ2
2 − 2ξ1ξ2 + 2ξ3 + ξ′1 + ξ′2

)
, (117)

W =
1

8

(
ξ′3 +

1

2
(ξ2ξ

′
1 − ξ′2ξ1) + ξ2(ξ2

1 − 2ξ1ξ2 + 2ξ3)

)
. (118)

Inserting these condition in the action, we obtain the reduced boundary action on
the outer boundary

SΣo
bdy[k0, k1, φ1, φ2] =

k

4π

∫
dtdϕ

(
1

2
∂−φ1(φ′1 + 4k0 + 2k1) +

3

2
∂−φ2(φ′2 − 2k1)

− 2(k2
0 + k0k1 + k2

1)

)
. (119)

Following the same steps at the inner boundary, the complete boundary action can be
written as

Sbdy[k0, k1, φ1, φ2, φ̃1, φ̃2] =
k

4π

∫
dtdϕ

(
1

2
∂−φ1 φ

′
1 −

1

2
∂+φ̃1 φ̃

′
1 +

3

2
∂−φ2 φ

′
2 −

3

2
∂+φ̃2 φ̃

′
2

+ (2k0 + k1)(∂−φ1 − ∂+φ̃1)− 3k1(∂−φ2 − ∂+φ̃2)

− 4(k2
0 + k0k1 + k2

1)

)
, (120)

where ψ1 and ψ2 are the fields on the inner boundary.
This action has a redundant gauge symmetry

φ1 → φ1 + ε1(t), φ̃1 → φ̃1 + ε1(t) ,

φ2 → φ2 + ε2(t), φ̃2 → φ̃2 + ε2(t) ,

k0 → k0, k1 → k1 . (121)
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In order to write the action (119), we have eliminated γ1 and γ2 while keeping φ1

and φ2. One can instead keep γ1, γ2 in which case one can write the action as the sl(3)
generalization of the Schwarzian action upon the following field redefinitions:

γ1 = e−(k0−k1)(f(t,ϕ)−ϕ), (122)

γ2 = e−(k0+2k1)(g(t,ϕ)−ϕ). (123)

At the outer boundary, the action is now

S =
k

4π

∫
dtdϕ

[
−4

3

([
∂−f

′′

f ′
−
(

3

2

f ′′

f ′
+

1

4

g′′

g′

)
∂−f

′

f ′

]
+

[
∂−g

′′

g′
−
(

3

2

g′′

g′
+

1

4

f ′′

f ′

)
∂−g

′

g′

])]
+

k

4π

∫
dtdϕ

[
2

3

(
(k0 − k1)2f ′∂−f + (k0 + 2k1)2g′∂−g

+
(k0 − k1)(k0 + 2k1)

2
[f ′∂−g + g′∂−f ]

)]
+

k

4π

∫
dtdϕ

[
−2

3

[
(k0 − k1)f ′

∂−g
′

g′
+ (k0 + 2k1)g′

∂−f
′

f ′

]]
. (124)

This is the action on the outer boundary of an annulus (trumpet) geometry in the
presence of dynamical holonomies (zero modes). We claim that this action is the action
on the symplectic leaves of the W3 Poisson manifold for the constant representatives
k0 and k1. It generalizes the result of [52] in the presence of non-trivial holonomies.
Indeed when there is no non-trivial holonomy, i.e. k0 = k1 = 0, the Hamiltonian
reduces to the two-dimensional generalization of the W3 Schwarzian action [52].

At this point lets point out a few interesting observations about these boundary
actions. The first remark is regarding the field redefinitions (122) and (123). Since γ1

and γ2 are periodic, one can immediately notice that f(t, ϕ) and g(t, ϕ) get a 2π shift
when going around a circle, i.e.

f(t, ϕ+ 2π) = f(t, ϕ) + 2π,

g(t, ϕ+ 2π) = g(t, ϕ) + 2π. (125)

This is indeed very similar to SL(2) Chern-Simons theory where such a field appears in
the Schwarzian action. In that case f(t, ϕ) was an element of reparametrization of the
circle or equivalently an element of Diff(S1). However, for SL(3) theory the set (f, g)
is an element of diffeomorphisms of RP2 real projective plane [53]. In fact, for SL(n)
theory the Schwarzian action is written in terms of fields parametrizing symplectic
leaves of Diff(RPn−1). Notice that RP1 ∼= S1.

Another remark is regarding the invariance of the SL(3) Schwarzian action. In
the case of SL(2), there was a U(1) gauge redundancy which is the isotropy group
of SL(2) for the hyperbolic conjugacy class. This resulted in the invariance of the
SL(2) Schwarzian action under Diff(S1)/S1. For more details, see [7] and section 5
for the same discussion from the perspective of the geometric action. The isotropy
group of SL(3) for the non-degenerate hyperbolic holonomy is R∗×R∗ where R∗ is the
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projectively extended real line (one point compactification of R). It is topologically
isomorphic to S1. Another way to realize this isotropy group is the gauge redundancy
(121) which is U(1)× U(1). Therefore, the Schwarzian action (124) is invariant under
Diff(RP2)/R∗ × R∗ ∼= Diff(RP2)/S1 × S1 .

4.2.3 Diagonal Embedding

We can also choose a basis for the sl(3) representation known as the diagonal embed-
ding, in which the sl(3) generators satisfy the algebra [54]

[Um, Un] = (m− n)Um+n, (126)

[Um, J0] = 0, (127)

[Um, G
±
n ] = (

m

2
− n)G±m+n, (128)

[J0, G
±
m] = ±G±m, (129)

[G+
m, G

−
n ] = Um+n −

3

2
(m− n)J0. (130)

A matrix representation for these generators is

U−1 =

0 0 −1
0 0 0
0 0 0

 , U0 =
1

2

1 0 0
0 0 0
0 0 −1

 , U+1 =

0 0 0
0 0 0
1 0 0

 ,

J0 =

1
3

0 0
0 −2

3
0

0 0 1
3

 , G+
+1/2 =

0 0 0
0 0 0
0 1 0

 , G−+1/2 =

0 0 0
1 0 0
0 0 0

 ,

G+
−1/2 =

0 1 0
0 0 0
0 0 0

 , G−−1/2 =

0 0 0
0 0 −1
0 0 0

 .

The highest and lowest weight gauge conditions in terms of the sl(2)-diagonal em-
bedding basis take the following form

Ar = 0, Aϕ = U+1 −
8π

k

[(
L(t, ϕ)− 6π

k
U(t, ϕ)

)
U−1 +

3

2
U(t, ϕ)J0 + Ψ±G

±
−1/2

]
on Σo

Ar = 0, Aϕ = U−1 −
8π

k

[(
L(t, ϕ)− 6π

k
U(t, ϕ)

)
U+1 +

3

2
U(t, ϕ)J0 + Ψ±G

±
+1/2

]
on Σi.

At the outer boundary, this results in the following conditions

−1

2
eφ1F (γ1, γ2, γ3; k0, k1) = 1, (131)

e
φ1+3φ2

2 [γ′1 − (k0 − k1)γ1]− ξ2 = 0, (132)

e
φ1−3φ2

2 [γ′2 − (k0 + 2k1)γ2] + ξ1 = 0. (133)
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Inserting these conditions into the action (101), we obtain the reduced action on
the outer boundary

SΣo
bdy[k0, k1, φ1, φ2] =

k

4π

∫
dtdϕ

(
1

2
∂−φ1(φ′1 + 4k0 + 2k1) +

3

2
∂−φ2(φ′2 − 2k1)

+ (ξ2∂−ξ1 − ξ1∂−ξ2)− 2(k2
0 + k0k1 + k2

1)

)
. (134)

Following the same steps at the inner boundary, the complete boundary action can be
written as

Sbdy =
k

4π

∫
dtdϕ

(
1

2
∂−φ1 φ

′
1 −

1

2
∂+φ̃1 φ̃

′
1 +

3

2
∂−φ2 φ

′
2 −

3

2
∂+φ̃2 φ̃

′
2

+ (ξ2∂−ξ1 − ξ1∂−ξ2)−
(
ξ̃2∂+ξ̃1 − ξ̃1∂+ξ̃2

)
+ (2k0 + k1)(∂−φ1 − ∂+φ̃1)− 3k1(∂−φ2 − ∂+φ̃2)

− 4(k2
0 + k0k1 + k2

1)

)
, (135)

where φ̃1, φ̃2, ξ̃1, ξ̃2 are the fields on the inner boundary.
It is interesting to notice that the second line is the free field theory of spinors with

bosonic statistics. It can be understood by comparing this action to the one of N = 2
supergravity (86) and setting the R-symmetry to zero. The sign difference between
these two descriptions is because the fields ξ1, ξ2, ξ̃1, ξ̃2 are not Grassmann variables,
unlike the corresponding fields in supergravity.

The action (135) has a gauge redundancy given by

φ1 → φ1 + ε1(t), φ̃1 → φ̃1 + ε1(t) ,

φ2 → φ2 + ε2(t), φ̃2 → φ̃2 + ε2(t) ,

ξ1,2 → ξ1,2, ξ̃1,2 → ξ̃1,2 ,

k0 → k0, k1 → k1 . (136)

This is once again related to the fact that the isotropy group of SL(3) group for the
non-degenerate holonomy conjugacy class is given by R∗×R∗ ∼= U(1)×U(1). Therefore
the action (135) is invariant under Diff(RP2)/S1×S1. The Schwarzian can be obtained
by an appropriate change of variables. However, we will not present it here and we
end this discussion by pointing out that given the similarities between the action (135)
and the action for N = 2 Neveu-Schwarz supergarvity (86) one can find the change of
variables by following the discussion of N = 2 supergravity in section 5.4.

It is important to make a comment about the boundary action (135). This action
which is obtained through the Drinfeld reduction should be thought as the candidate for
the action on the symplectic leaves of W3 manifold. Even though it is straightforward
to write it down from the Hamiltonian reduction, it is not obvious how to obtain
it in the geometric approach. And moreover we consider the presence of non-trivial
holonomies which not only allows for solutions like BTZ but also provides a geometric
sense. This is because the holonomies are related to the representatives of symplectic
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leaves and the invariant charges of the theory, L(t, ϕ),U(t, ϕ),Ψ±(t, ϕ), are determined
by the intersections of the symplectic leaves.

In the next section, we show explicitly the construction of Schwarzian boundary
actions for N = 1, 2 supergravity with the Kirillov-Kostant construction of geometric
actions. Given that for these theories the symplectic leaves are the coadjoint orbits, the
procedure is tedious but straightforward. We will show that these geometric actions
match the ones obtained through Hamiltonian reduction where non-trivial holonomies
appear as the orbit representatives.

5 Diffeomorphisms of the supercircle

In this section we study explicitly the case of N = 0, 1 and 2 from the general results of
sections 3.4 and 3.5 and we will show that the actions (68) and (86) can be understood
as the geometric action on the coadjoint orbit of the group of reparameterizations of
the supercircle. The bosonic case proceeds similarly to the case discussed in [55, 56],
although here we clarify the role of the bulk holonomy as the orbit representative. The
N = 1 supersymmetric case was also discussed in [56]. Here we generalize the results
to arbitrary bulk holonomy and extend it to N = 2 supersymmetry.

The case of N > 2 is interesting because the asymptotic symmetry algebra (30)
becomes non-linear. Due to this non-linearity there is no clear interpretation in terms
of coadjoint orbit of some supergroup. Instead, one can think about these cases by
suitably generalizing the concept of symplectic leaves of a Poisson manifold, which
in the case of linear algebras corresponds to the coadjoint orbits. We will briefly
comment on this in Appendix B. In this section, we start by reviewing the Kirillov-
Kostant construction of geometric actions on the coadjoint orbits in the case of the
centrally extended groups of reparameterizations of the supercircle.

5.1 Reparameterizations of the (super)circle

The coadjoint action on a generic element of the dual space b0 ∈ g∗ of any Lie algebra
defines a particular coadjoint orbit. The coadjoint orbits are symplectic manifolds
isomorphic to the coset G/Hb0 , where G is the Lie group in question and Hb0 the
stabilizer subgroup of the orbit, defined by all elements h ∈ G which leave the orbit
representative b0 invariant under the coadjoint action Ad∗h. The symplectic form on
the orbit is the Kirillov-Kostant symplectic form Ω. As it is closed, locally it is also
exact Ω = dα. Then α can be used to define an action on the orbit S[g; b0] =

∫
γ
α,

whose symplectic structure by definition coincides with the Kirillov-Kostant symplectic
structure. This action is known as the geometric action on the coadjoint orbit. The
addition of invariant Hamiltonians was discussed in [55] and the general construction
is reviewed in appendix C.1. From there we see that the Kirillov-Kostant symplectic
form for centrally extended groups consists of two terms; one proportional to the orbit
representative b0 and one proportional to the central charge c

Ω = dα = d〈Ad∗g−1 b0, Y 〉 −
c

2
〈dS(g), Y 〉 (137)

= d〈Ad∗g−1(b0, c), (Y, nY )〉.
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Here Ad∗g−1 b0 is the coadjoint action of g ∈ G on the orbit representative b0, 〈, 〉 is the
pairing between the Lie algebra and its dual space and hence defines a map g∗×g→ R.
S(g) is the Souriau cocycle defining the central extension of G to Ĝ = G× R.

In the above equation, nY solves equation (221) and Y can be obtained from the
following equality

db = − ad∗Y b. (138)

For b = Ad∗g−1 b0 this gives

d(Ad∗g−1 b0) = − ad∗Y (Ad∗g−1 b0). (139)

From (138) it follows that Y solves the Maurer-Cartan equation dY = −1
2

adY Y , whose
solution is locally Y = g−1dg. So to find the geometric action, one needs to compute
the Maurer-Cartan form Y and write the Kirillov-Kostant symplectic form (137) as a
total exterior derivative, or find nY as a solution to (221). In practice it will also be
useful to do the former and to obtain Y from (139).

The Kirillov-Kostant symplectic form will give the symplectic part of the action.
The geometric action can be extended by adding the Noether charge for a global
symmetry as Hamiltonian [55]. The resulting action is by construction invariant under
the same symmetries as the symplectic term. The Noether charge associated to a
symmetry generated by a vector field (X,n) in the centrally extended Lie algebra
ĝ = g⊕ R is given by

Q(X,n) = −〈(b, c), (X,n)〉 . (140)

Hence as Hamiltonian we may simply add

H(X,n) = −
∫
γ

Q(X,n), (141)

for γ a path along the orbit. The total geometric action as a function of group elements
g and for a given (b0, c) is then [57]

SĜ[g; b0, c] =

∫
γ

α−Q(X,n) =

∫
γ

〈Ad∗g−1(b0, c), (Y, nY )− (X,n)〉 . (142)

We will now work out the different ingredients in this expression for the centrally
extended group of diffeomorphisms of the supercircle.

5.1.1 Geometric action for superconformal groups

When the Lie group is taken to be the centrally extended group of diffeomorphisms of
the supercircle D̂iff(S1|N ), the geometric action constructed from (137) corresponds to
the kinetic term of the reduced AdS3 supergravity action (86) up to the N = 2 case,
as we will now demonstrate. Let us denote the general N -extended superspace by
superspace coordinate z = {ϕ, θi} where 0 < ϕ ≤ 2π is a bosonic coordinate (the angle
on the circle) and θi is a collection of N Grassmann coordinates. The supercovariant
derivative is

Di = ∂θi + θi∂ϕ , (143)
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such that
{Di, Dj} = 2δij∂ϕ . (144)

Reparameterizations of the supercircle consists of coordinates transformations

ϕ→ ϕ̃(ϕ, θi) , θj → θ̃j(ϕ, θi) , (145)

subject to the constraint that the supercovariant derivative transforms covariantly, or

Di = (Diθ̃j)D̃j . (146)

This condition implies the following useful identities

Diϕ̃ = θ̃Diθ̃, (147)

(Diθ̃j)(Dkθ̃j) = δik(∂ϕϕ̃+ θ̃j∂ϕθ̃
j), (148)

det
(
Dθ̃
)

= ±(∂ϕϕ̃+ θ̃j∂ϕθ̃
j)N/2. (149)

Elements of the super-Virasoro algebra consists of the pair (X(z), n) and this is paired
with elements of the dual space (B(z), c) (we will denote the superspace dual elements
by capital B, keeping b and b0 reserved for the bosonic orbit representative) as

〈(B, c), (X,n)〉 = 〈b,X〉+ cn =

∫
dz B(z)X(z) + cn , (150)

where dz = dϕdθ1 . . . dθN . The adjoint and coadjoint action of the centrally extended
superconformal group are

Adz̃(X(z), n) =

(
det(Dθ̃)−

2
NX(z̃), n−

∫
dz S(N )(z; z̃−1)X(z)

)
, (151)

Ad∗z̃(B(z), c) =
(

det(Dθ̃)
4−N
N B(z̃)− cS(N )(z; z̃), c

)
. (152)

Here S(N )(z; z̃) are the super Schwarzian derivatives for N extended supersymmetry.
They satisfy the cocycle condition

S(N )(z, ˜̃z) = (det(Dθ̃))
4−N
N S(N )(z̃, ˜̃z) + S(N )(z, z̃) (153)

and S(N )(z; z) = 0 so that S(N )(z; z̃) = −Ad∗z̃ S
(N )(z; z̃−1). The condition (153) can

be solved only for N ≤ 4 [58] and the limiting N = 4 case is special as there are two
independent non-trivial (and non-local) solutions. The upper bound N = 4 is natural
as the stress tensor sits in a supermultiplet of conformal dimension (2 − N

2
), which

becomes negative for N > 4. In our case, however, the asymptotic symmetry algebras
(30) correspond to the superconformal Lie algebras of D̂iff(S1|N ) only for N = 0, 1, 2.
For N > 2 there is a non-linear term in the superconformal algebras (30), which makes
the interpretation in terms of coadjoint orbits difficult. Hence here we will discuss the
case up to N = 2.
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The result for the (super)-Schwarzians is

N = 0 S(0)(ϕ; ϕ̃) =
1

24π

(
ϕ̃′′′

ϕ̃′
−
(
ϕ̃′′

ϕ̃′

)2
)
, (154)

N = 1 S(1)(z; z̃) =
1

12π

(
∂2
ϕθ̃

Dθ̃
− 2

D∂ϕθ̃∂ϕθ̃

(Dθ̃)2

)
, (155)

N = 2 S(2)(z; z̃) =
1

24π
εij

2(Di∂ϕθ̃
k)(Dj θ̃k)− 2(DiDj θ̃k)(∂ϕθ̃

k)

(Dpθ̃q)(Dpθ̃q)
. (156)

To proceed we need to find the Maurer-Cartan form. We can do so by solving for
the ∂ϕ̃B0 part of (139). For the centrally extended group of diffeomorphisms of the
supercircle, the relevant part of (139) becomes

d
(

det(Dθ̃)
4−N
N B0(z̃)− cS(N )(z; z̃)

)
= − ad∗Y

(
det(Dθ̃)

4−N
N B0(z̃)− cS(N )(z; z̃)

)
.

(157)
The B0, ∂ϕ̃B0, D̃

iB0 and c dependent parts of this equation should vanish individually.
Expanding this equation using the following useful formulas

adY X = Y ∂ϕX −X∂ϕY +
1

2
DiY DiX, (158)

dB0(ϕ̃, θ̃i) = ∂ϕ̃B0(ϕ̃, θ̃i)(dϕ̃+ θ̃jdθ̃j) + dθ̃jD̃jB0(ϕ̃, θ̃i), (159)

and
∂ϕ = ∂ϕθ̃

kD̃k + (detDθ̃)2/N∂ϕ̃, (160)

we find an over-constrained set of equations for Y which is solved by

Y = − dϕ̃+ θ̃idθ̃i

(detDθ̃)2/N
. (161)

We now have all the ingredients to write down the geometric actions on the coad-
joint orbit for the N -extended superconformal group. The c-independent part of the
symplectic term can be written down for generic N . It is (writing d = dt ∂t):

−
∫

dt dz det(Dθ̃)
2−N
N B0(ϕ̃, θ̃i)( ˙̃ϕ+ θ̃j ˙̃θj) (162)

The c-dependent part should be obtained by writing the second term in (137) as a total
exterior derivative for the relevant Schwarzian listed in (154)-(156). We will study this
on a case by case basis in the next sections.

Before doing so we comment on the Hamiltonian. In the case of interest the action
is invariant under a shift symmetry generated by vector fields −∂ϕ. So we may add to
the symplectic part a Hamiltonian (141) with (X,n) = (−1, 0).8 This, together with
(152) gives the Hamiltonians

H(N )(z̃;B0, c) = −
∫

dt dz
(

det(Dθ̃)
4−N
N B0(z̃)− cS(N )(z; z̃)

)
. (163)

8The symmetry generator (X,n) = (0, n) generate constant shifts of n which are trivial as the
vectors belong to the extended little algebra [55].
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Due to the cyclic property of the Schwarzian derivative (153), the orbit representative
term of the Hamiltonian (163) can be absorbed into the super-Schwarzian by a second
reparameterization of the supercircle ˜̃z such that

cS(N )(z̃; ˜̃z) = −B0(z̃) . (164)

The Hamiltonian then becomes H(N )(˜̃z; 0, c) =
∫

dt dz
(
cS(N )(z; ˜̃z)

)
and the orbit rep-

resentative terms will translate into periodicity conditions of the new variable ˜̃z. The
same transformation will remove the orbit representative term (162) from the symplec-
tic term [55].

Next we will discuss explicitly theN = 0, 1, 2 cases to show that the actions (68) and
(86) are indeed the geometric actions on the coadjoint orbit of the centrally extended
group of diffeomorphisms of the supercircle. The orbit representative terms are given
by the holonomy of the Chern-Simons connection by comparing the periodicities of the
fields to those of ˜̃z satisfying (164).

5.2 Bosonic case

The geometric action on the coadjoint orbit of the Virasoro group of diffeomorphisms
of the circle D̂iff(S1) was worked out by Alekseev and Shatashvili [24] and reported
to be relevant to three dimensional AdS3 gravity in [55] and later expanded upon
in [56]. In [7] it was shown that for the bosonic theory, the action obtained from the
Hamiltonian reduction coincides with Alekseev-Shatashvili action where the holonomy
plays the role of orbit representative. In order to set the ground for the supersymmetric
case, we briefly review the discussion here.

From the last two subsections, we reproduce the Alekseev-Shatashvili action from
(142) in the bosonic case. This is

SD̂iff(S1)[f(ϕ); b0, c] =

∫
dtdϕ

[
c

24π

(
3

2

f ′′∂−f
′

f ′2
− ∂−f

′′

f ′

)
+ b0(f)f ′∂−f

]
, (165)

where we have taken ϕ̃ = f(ϕ) subject to the periodicity condition f(ϕ + 2π) =
f(ϕ)+2π. From (85) we see that in the bosonic case (i.e., no fermions, no R-symmetry
and kr = 0) the reduction from Chern-Simons theory on the outer boundary gives

S =
k

8π

∫
dt dϕ

[(
∂− log(Y ′ − k0Y )

)(
∂ϕ log(Y ′ − k0Y )

)
− k2

0

]
, (166)

up to total derivative terms. Moreover, in order to make a link with the classifica-
tion of (super-)Virasoro coadjoint orbits, in this section we focus on the case where
the holonomy is constant and time-independent, which is the case for constant orbit
representatives. However, the field Y (ϕ) here is periodic, i.e. Y (ϕ+ 2π) = Y (ϕ) which

is not the usual Y (ϕ+ 2π) = Y (ϕ) + 2π as it is for elements of D̂iff(S1). Therefore, in
order to relate these two actions we consider a field transformation

˜̃ϕ ≡ Y (f(ϕ)) = e−k0(f(t,ϕ)−ϕ). (167)
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such that f(ϕ + 2π) = f(ϕ) + 2π while Y (ϕ) is periodic. In the new variable f(ϕ)
the action takes the form of (165) with the central charge and the orbit representative
given as

c = 6k, b0 =
k

8π
k2

0. (168)

In the case in hand, the holonomy is in the hyperbolic conjugacy class and therefore
we have k2

0 = 4L0. One then finds that the orbit representative b0 is related to the zero
mode of the bulk Chern-Simons solution as

b0 =
c

12π
L0 =

k

2π
L0 . (169)

We have thus illustrated that the zero mode of the bulk solutions correspond directly
to the constant representatives of the Virasoro coadjoint orbits. In the case of the BTZ
solutions, where L0 is positive, these correspond to the generic Virasoro orbit with a
U(1) little group generated by the action of L0. The Noether charge for this L0 action
is exactly the Hamiltonian (163) that was added to the geometric action.

The exceptional orbits of Virasoro have constant representative terms b0 = − cn2

48π
for

integer n. At these points, the little group on the orbit is enlarged to SL(n)(2,R). From
the bulk perspective these orbits correspond to (the left-moving sector of) Bañados
geometries with L0 = −1

4
n2 for integer n. For n = 1 this is the global AdS3 ground

state, while for larger n the geometries have an angular access of a multiple of 2π.
For those solutions the Hamiltonian of (165) becomes unbounded from below [59] and
hence this is a good reason to discard them.

The bulk solutions with conical defects correspond to orbits with negative b0 6=
− cn2

48π
. At this point k0 =

√
4L0 becomes imaginary and hence the holonomy h =

exp(4π
√
L0L0) becomes complex and is not an element of SL(2,R) anymore. This is

the Chern-Simons perspective for discarding solutions with conical singularities. For
the exceptional orbits where b0 = − cn2

48π
the holonomy is still an element of SL(2,R)

since exactly at those values we have h = exp(2πniL0). The complete discussion of
the geometric action with holonomies in different conjugacy classes of SL(2,R) can be
found in [7].

5.3 N = 1 supersymmetry

Let us now consider the centrally extended group of diffeomorphisms of the N = 1
supercircle D̂iff(S1|1). Writing the geometric action (142) using the N = 1 super-
Schwarzian (155) we find the superspace action worked out in [57], up to total derivative
terms

SD̂iff(S1|1)(z̃;B0, c) =

∫
dt dz

[
c

12π

(
∂ϕDθ̃ ∂−θ̃

(Dθ̃)2

)
+B0(z̃)Dθ̃(∂−ϕ̃+ θ̃∂−θ̃)

]
(170)

In order to compare this to the action obtained from the Chern-Simons reduction (85),
we need a suitable parameterization of θ̃ to perform the superspace integral and write
the N = 1 superspace action in components.
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The N = 1 constraint Dϕ̃ = θ̃Dθ̃ is solved by parameterizing the diffeomorphism
of the supercircle as

ϕ̃ = f(ϕ+ θη(ϕ)) (171)

θ̃ =
√
f ′(ϕ)

(
η(ϕ) + θ

(
1 +

1

2
ηη′
))

(172)

Here f(ϕ+2π) = f(ϕ)+2π. Taking the orbit representative term to be purely bosonic,
i.e. B0(z̃) = b0(f)θ̃ and using the above parameterization, the action (170) becomes
(up to total derivatives)

SD̂iff(S1|1)(f, η; b0, c) =

∫
dtdϕ

[
− c

24π

(
∂−f

′′

f ′
− 3

2

∂−f
′f ′′

f ′2
− S(0)(ϕ, f) η∂−η + 2η′∂−η

′

− 1

2
ηη′η′′∂−η

)
+ b0(f)(f ′∂−f − f ′2η∂−η)

]
. (173)

In order to compare the N = 1 Chern-Simons action (85) with the above action, we
can write (85), up to total derivatives, as

SN=1 =
k

8π

∫
dt dϕ

[(
∂− log(Y ′ − k0Y − ψ−ψ−′)

)(
∂ϕ log(Y ′ − k0Y − ψ−ψ−′)

)
− k2

0

+ 4

(
ψ−′ − k0

2
ψ−
)(
∂−(ψ−′ − k0

2
ψ−)− ∂− log(Y ′ − k0Y − ψ−ψ−′)

1
2

)
Y ′ − k0Y − ψ−ψ−′

]
,

(174)

where we have considered a single pair of fermionic generators and no R-symmetry.
We have also set ηαβ = −2,m = 1 and since there is no R-symmetry we have λa = 0.

Like in the bosonic case, both fields Y (ϕ) and ψ−(ϕ) are periodic. In order to relate
these fields to those parameterizing the super circle, i.e. fields with the periodicity
condition of elements of the D̂iff(S1|1), we consider the following field transformations

Y (f(ϕ)) = e−k0(f(t,ϕ)−ϕ), (175)

ψ−(f(ϕ), η(ϕ)) =
√
Y ′ − k0Y η(ϕ) =

√
−k0f ′e

− k0
2

(f(t,ϕ)−ϕ)η(ϕ), (176)

which can be obtained from

˜̃ϕ = e−k0(ϕ̃−ϕ), ˜̃θ =
√
−k0e−k0(ϕ̃−ϕ)θ̃, (177)

with ˜̃ϕ = Y (ϕ+ θχ).
For the new fields f(ϕ) and η(ϕ) we have

f(ϕ+ 2π) = f(ϕ) + 2π, η(ϕ+ 2π) = η(ϕ), (178)

while Y (ϕ) and ψ−(ϕ) are periodic.
In the new variables, the action takes the form (173) with the central charge and

the orbit representative given as

c = 6k, b0 =
k

8π
k2

0. (179)
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And so we find the bulk holonomy is still related to the orbit representative b0 as in
(169).

This proves our earlier claim that N = 1 boundary action on the outer boundary
(67) obtained from the Hamiltonian reduction in the presence of non-trivial holon-
omy parametrized with k0 is the geometric action on the coadjoint orbit of group of
reparametrization of S1|1 where the orbit representative b0 is identified with the holon-
omy as in (179).

5.4 N = 2 supersymmetry

Here we will discuss the case of N = 2 supersymmetry. The N = 2 supercircle can be
studied in a complex basis where

θ =
1√
2

(θ1 + iθ2) , θ̄ =
1√
2

(θ1 − iθ2) , (180)

Defining the supercovariant derivatives as

D = ∂θ + θ̄∂ϕ , D̄ = ∂θ̄ + θ∂ϕ , (181)

we have D2 = 0 = D̄2 and {D, D̄} = 2∂ϕ. Equation (146) now implies that

D = Dθ̃D̃ , D̄ = D̄ ˜̄θ ˜̄D , and D ˜̄θ = 0 = D̄θ̃ (182)

and detDθ̃ = Dθ̃D̄ ˜̄θ.
The N = 2 Schwarzian derivative in this notation becomes

S(2)(z; z̃) =
1

24π

(
∂ϕD̄

˜̄θ

D̄ ˜̄θ
− ∂ϕDθ̃

Dθ̃
− 2

∂ϕθ̃∂ϕ
˜̄θ

Dθ̃D̄ ˜̄θ

)
(183)

and the Maurer-Cartan form is Y = −dϕ̃+θ̃d˜̄θ+˜̄θdθ̃

Dθ̃D̄ ˜̄θ
≡ − δl̃

Dθ̃D̄ ˜̄θ
. Useful relations to write

(137) as a total exterior derivative are d(δl̃) = 2dθ̃d˜̄θ, D(δl̃) = 2Dθ̃d˜̄θ and D̄(δl̃) =

2D̄ ˜̄θdθ̃. The answer for the geometric action of the N = 2 theory is

SD̂iff(S1|2)(z̃;B0, c) =

∫
dtdz

(
c

24π

(
∂ϕθ̃∂−

˜̄θ − ∂ϕ ˜̄θ∂−θ̃

Dθ̃D̄ ˜̄θ

)

+B0(z̃)(∂−ϕ̃+ θ̃∂−
˜̄θ + ˜̄θ∂−θ̃)

)
. (184)

In order to relate this to the component action coming from the reduction of the Chern-

Simons theory we need a suitable parameterization of ϕ̃, θ̃ and ˜̄θ. We can obtain this
by writing the most general diffeomorphism of the N = 2 super-circle compatible with
the constraints (146), which in the complex basis read:

D ˜̄θ = 0 , Dϕ̃ = ˜̄θDθ̃ , (185)

D̄θ̃ = 0 , D̄ϕ̃ = θ̃D̄ ˜̄θ . (186)
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A general super-reparameterization satisfying these constraints can be written in terms
of two bosonic fields: f(t, ϕ), which parameterizes the D̂iff(S1) element and satisfies
f(ϕ + 2π) = f(ϕ) + 2π and σ(t, ϕ) which is a U(1) R-symmetry field. There are also
two Grassmann valued fields ψα(t, ϕ) with α = 1, 2,

ϕ̃ = f(t, ϕ)− θψ1(t, ϕ)ḡ(t, ϕ) + θ̄ψ2(t, ϕ)g(t, ϕ) + h(t, ϕ)θθ̄ , (187a)

θ̃ = ψ2(t, ϕ) + θ
(
ḡ(t, ϕ) + θ̄ψ′2(t, ϕ)

)
, (187b)

˜̄θ = −ψ1(t, ϕ) + θ̄ (g(t, ϕ)− θψ′1(t, ϕ)) , (187c)

where

g(t, ϕ) =
√
f ′(t, ϕ)eiσ(t,ϕ)/2

(
1− 1

4

ψ · ψ′

f ′
− 1

32

(
ψ · ψ′

f ′

)2
)

(188)

ḡ(t, ϕ) =
√
f ′(t, ϕ)e−iσ(t,ϕ)/2

(
1− 1

4

ψ · ψ′

f ′
− 1

32

(
ψ · ψ′

f ′

)2
)

(189)

h(t, ϕ) = −1

2
(ψλψ)′ (190)

where we remind the reader that · is contraction with ηαβ and ψλψ = ψαλ
αβψβ. Our

conventions for ηαβ and λαβ are listed in the appendix A.
In order to show that the action obtained from the Hamiltonian reduction is indeed

the geometric action, we proceed with a bit different approach.
When the geometric action for N = 2 (184) is expanded using the above parameter-

ization, the c-dependent term becomes equal to the action obtained from Chern-Simons
theory (85) for N = 2 on the outer boundary, when the holonomy contributions set to
zero with Ỹ (t, ϕ), ψ̃−α (t, ϕ) and C̃a(t, ϕ) replaced by f(t, ϕ), ψα and σ(t, ϕ) respectively.
That confirms the equivalence of the theories. However, the fields Ỹ (t, ϕ), ψ̃−α (t, ϕ)
and C̃a(t, ϕ) are no longer periodic. The amount of non-periodicity is encoded in the
phase that these fields pick up under the action of the holonomy on the group elements.
All there is to do now is to find the transformation which reinstates the B0(z̃) term
and read of the relation between the zero modes and the orbit representative B0. To
this end we should solve (164) for N = 2. The orbit representative has only non-zero
bosonic values, which we will take to be constant.

B0(z̃) = bσ + θ̃ ˜̄θb0 . (191)

A super-reparameterization which solves (164) is

˜̃ϕ = e−µϕ̃ , ˜̃θ = e
12πbσ
c

ϕ̃θ̃
√
−µe−µϕ̃ , ˜̄̃

θ = e−
12πbσ
c

ϕ̃ ˜̄θ
√
−µe−µϕ̃ , (192)

where now

µ =

√
48π

(
b0

c
+ 12π

b2
σ

c2

)
(193)

This transformation relates the different components of ˜̃z to the components of z̃ as
given in (187). If one parameterizes ˜̃z in the same way, but with fields Ỹ (t, ϕ), C̃(t, ϕ)
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and ψ̃−(t, ϕ) instead of f(t, ϕ), σ(t, ϕ) and ψα, then the field redefinitions which rein-
state the orbit representative term, as deduced from (192) are

Ỹ (t, ϕ) = e−µf(t,ϕ) , (194a)

C̃(t, ϕ) = σ(t, ϕ) +
24πibσ
c

f(t, ϕ) + µψ1(t, ϕ)ψ2(t, ϕ) , (194b)

ψ̃−1 (t, ϕ) = e−
12πbσ
c

f(t,ϕ)
√
−µe−µf(t,ϕ)ψ1(t, ϕ) (194c)

ψ̃−2 (t, ϕ) = e
12πbσ
c

f(t,ϕ)
√
−µe−µf(t,ϕ)ψ2(t, ϕ) (194d)

The periodicities of the fields Ỹ (t, ϕ), C̃(t, ϕ) and ψ̃−(t, ϕ) as dictated by the holonomy
of the Chern-Simons connection are for N = 2

Ỹ (ϕ+ 2π) = e−2π
√

4L0Ỹ (ϕ) , (195a)

C̃(ϕ+ 2π) = C̃(ϕ)− 2πiB0 (195b)

ψ̃−α (ϕ+ 2π) = e−π
√

4L0ψ̃−β (ϕ)e−2πB0λβα , (195c)

This is compatible with (194) whenever

L̂0 = L0 −
1

4
B2

0 =
12π

c
b0 , B0 = −24π

c
bσ (196)

So we see that the orbit representative b0 corresponds to the zero-mode of the Sugawara-
shifted stress tensor L̂ (27).

One can now go back to the original periodic fields Y (t, ϕ), C(t, ϕ) and ψ−(t, ϕ)
with the following field redefinitions

Y (ϕ) = eµϕỸ (t, ϕ) , (197a)

C(ϕ) = C̃(t, ϕ) + iB0ϕ, (197b)

ψ−α (ϕ) = ψ̃−β (t, ϕ)e
µ
2
ϕeB0λ

β
αϕ. (197c)

Here one sets

µ =
√
k2

0 + k2
r , (198)

where

b0 =
k

8π
k2

0, b2
σ =

k2

16π2
k2
r . (199)

We have now shown explicitly that the Hamiltonian reduction of Chern-Simons theory
for the Osp(2|2) group under the highest-weight boundary conditions (18) gives a two
dimensional field theory equivalent to the geometric action of the centrally extended
group of diffeomorphisms of the N = 2 supercircle on its coadjoint orbit. The orbit
representatives are related to the zero modes of the Chern-Simons charges by (196).

6 Conclusions

The main result of this paper is to address in a precise and detailed way the boundary
actions for extended supergravity and higher spin W3 gravity in three dimensions in
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the presence of non-trivial bulk holonomies. We provide the complete analysis where
the topology of the manifold is R× S1 × [0, 1]. The spatial surfaces with the annulus
topology S1 × [0, 1] are then describing an AdS3 space with two boundaries. Even
though we discuss the details for this case, the extension to the topologies with more
boundaries is straightforward.

Similar to three dimensional Chern-Simons pure gravity, the boundary actions both
for extended supergravity and higher spin W3 gravity are written in terms of two
free chiral theories living on each boundary, coupled through the zero modes of bulk
holonomy which constitutes global degrees of freedom. These so-called Wilson lines are
stretched between the boundaries and can be considered as the wormholes in the bulk.
This is indeed the reason that the Hilbert space of the quantized boundary field theory
is not just a cross product of the states on two boundaries, the so called factorization
problem in gravity.

The novelty of this work is that we are able to write down the boundary action,
including the boundary Hamiltonian, as a generalization of the Schwarzian action in
the cases where the asymptotic symmetry algebra is non-linear. In this situation, the
prescription of writing the geometric action based on the coadjoint representation is
no more accessible. The action on the boundary must be seen as the action on the
symplectic leaves of a Poisson manifold of the corresponding Poisson algebra of the
phase space variables. The Hamiltonian reduction in each case will result in the action
on the symplectic leaves. In the case that the asymptotic symmetry algebra is linear,
the symplectic leaves are coadjoint orbits and the result coincides with the geometric
action on the coadjoint orbits. Moreover, we discussed the invariance of the boundary
actions in each case. The action is invariant under Diff(S1|1)/S1 and Diff(S2|2)/S1× S1

for N = 1 and N = 2 AdS3 supergravity respectively. The boundary actions of the
W3 gravity were also shown to be invariant under Diff(RP2)/S1 × S1.

The boundary action of W3 theory in the diagonal sl(2) embedding has striking
similarities with N = 2 supergravity Schwarzian action. The difference, that can also
be inferred from the difference between sl(3) algebra in this representation and N = 2
Neveu-Schwarz supergravity algebra, is that in the case of sl(3) we have two fermionic
fields with bosonic statistics, while in the supergravity the fermions anticommute. This
resemblance gets more interesting when one realizes the isomorphism RP2|2 ∼= S2|2 with
S2|2 being the double covering space. Finding an appropriate way to go from RP2|2 to
RP2 to make a link between these two theories is an interesting question given that
one is able to construct the geometric action via the Kirilov-Kostant construction for
N = 2 supergravity.

Recent studies pointed to the crucial role of the Schwarzian action in the compu-
tation of the partition functions of 2D and 3D gravity, see [31] and references therein.
It would be interesting to compute partition functions for the Schwarzian actions ob-
tained in this work. The advantage here is that not only these actions control the
solution space via the (constant) holonomies, but also they contain information on
global degrees of freedoms related to the bulk holonomy. These holonomies must be
then considered as dynamical degrees of freedom that have to be varied in the action.
They also appear in the measure of the partition function and must be integrated over.
This matches with the expectation that in obtaining the partition function of a quan-
tum theory of gravity by performing a path integral on a classical theory one expects
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to sum over all the solutions in the solution space of the theory. This line of thought
will be pursued elsewhere.
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A Conventions

In this appendix we list some conventions used throughout the text

A.1 Matrix Representation for Osp(2|2)

For the sake of simplicity and in order to be able to have an explicit calculation we
restrict ourselves to N = 2 supersymmetry. In that case, the even subalgebra g0 =
sl(2,R)⊕ so(2). The superalgebra osp(2|2,R) is generated with 8 generators of which
4 are generators of g0. We can write explicitly9

9A generic form of matrix representation of osp(2`+ 1|2,R) generators can be written as
a b u
c −aT v
−vT −uT 0

x x1

y y1

z z1

yT1 xT1 zT1
−yT −xT −zT SL(2)

 , (200)

where a is any ` × ` matrix, b, c are antisymmetric ` × ` matrices, u, v are ` × 1 column matrices,
x, x1, y, y1 are `×1 column matrices and z, z1 are real numbers. A generic form of matrix representation
of osp(2`|2,R) generators can be obtained by eliminating the middle row and column of the osp(2`+
1|2,R) matrix forms, i.e. 

a b
c −aT

x x1

y y1

yT1 xT1
−yT −xT SL(2)

 . (201)
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L0 =
1

2

0 0

0 1 0
0 −1

 , L+ =

0 0

0 0 1
0 0

 , L− =

0 0

0 0 0
1 0

 ,

Q1
+ =

 0 0 −1
0 0

0 −1
0 0

0

 , Q1
− =

 0 1 0
0 0

0 0
0 −1

0

 ,

Q2
+ =

 0 0 0
0 −1

−1 0
0 0

0

 , Q2
− =

 0 0 0
1 0

0 0
−1 0

0

 ,

T =
1

2

1 0
0 −1

0

0 0

 . (202)

These generators satisfy the algebra (3)-(6) with α = 1, 2, d = 2, Cρ = −1/4. Also we
have

ηαβ =

(
0 2
2 0

)
, ηαβ =

(
0 1

2
1
2

0

)
, (203)

λαβ =

(
0 −1
1 0

)
, λαβ =

(
−1

2
0

0 1
2

)
. (204)

B Action on the symplectic leaves

The Poisson algebra of charges of W3 gravity, which was discussed in section 4, upon re-
duction forms a finite dimensional algebra known as finite W -algebra. In the case of the
principal embedding, we will end up with an Abelian algebra. In the case of the diagonal
embedding, it forms a 4-dimensional algebra known as w

(2)
3 , however, it has a trivial one

dimensional unitary representation. The symplectic leaves in this case are determined
by the intersection of coadjoint orbits of sl(3,R) and Glw = {x ∈ sl(3) | [U+1, x] = 0}.
It was shown in [60] that it is topologically equivalent to a two dimensional surface in
C3 given by the equation

z2z3 = c2 − 2c1z1 + z3
1 , (205)

where c1, c2 are two arbitrary constants.
The symplectic form on the symplectic leaves is not obtained trivially in the case of

non-linear algebras. This has to do with the fact that the Cartan formula which is used
to define the Schwarzian in the linear algebras is no longer providing an expression for
the Schwarzian [61]. This is the case for superalgebras with N > 2 and WN algebras
with N > 2.

There exists a tower of Poisson algebras (Gel’fand-Dikii brackets) on linear differ-
ential operators of an arbitrary order with periodic coefficients on the circle. The first
algebra in this hierarchy is the Virasoro algebra. It is known that in that case the ques-
tion of classification of symplectic leaves of a Poisson manifold with the Gel’fand-Dikii
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algebra, is equivalent to the classification i) of orbits of the coadjoint representation of
the Virasoro group, ii) of normal forms of Hill equations, and iii) of types of projective
structures on the circle [62–65].

Similarly and along the same line, the classification of contact-projective structures
on a supermanifold RP2|N and its double covering S2|N was discussed in [66]. ForN < 3
it is equivalent to the classification of the orbits of the coadjoint representation of a
Lie superalgebra of NS-R type and the supersymmetric analogue of the Hill equation.

What all these cases have in common is that the classification of symplectic leaves
is connected with the computation of homotopy classes of nondegenerate curves on S1,
RP2|N or S2|N . The monodromy operator is the only local invariant of a symplectic
leaf of the Gel’fand-Dikii bracket associated with one of the classical groups and it
determines the conjugacy class in the corresponding matrix Lie group.

In the case of N > 2, the differential equation will turn to a pseudo-differential
equation. For N = 3, a solution to such an equation was found [67] and therefore one
could write the Schwarzian, however it is not possible in any general case to find a
solution.

All these make it difficult (if not impossible) to write down the action in the case
of a non-linear algebras. We claim that the boundary actions derived in Sections 3
and 4, obtained through Hamiltonian reduction, should be considered as the actions
on the symplectic leaves which otherwise are difficult to obtain. We provide a practical
approach to find these actions while the geometric approach seems to be much more
involved.

C Geometric quantization for (super)conformal groups

In this section, we provide a short review of geometric quantization for (super)conformal
group based on [24,25,55,57,68].

C.1 Geometric actions on the coadjoint orbit

For any Lie group G with Lie algebra g, the adjoint action of G on g is

AdgX = gXg−1 . (206)

The coadjoint action of G on the dual space g∗ is defined as

〈Ad∗g−1 b,X〉 = 〈b,AdgX〉 , (207)

where b ∈ g∗ and 〈 , 〉 is the pairing between g and g∗.
For a fixed element b0 of g the coadjoint action of G spans the orbit Ob0 , defined as

the set of elements b ∈ g∗ such that

b = Ad∗g−1 b0 . (208)

Coadjoint orbits are symplectic manifolds isomorphic to G/Hb0 where Hb0 is the sta-
bilizer subgroup of the orbit, i.e. all elements h ∈ G such that Ad∗h b0 = b0. The

43



symplectic form on the coadjoint orbit is the Kirillov-Kostant symplectic form and it
is defined by

Ω =
1

2
〈b, adY Y 〉 . (209)

here adY is the adjoint action of g on itself and Y is obtained as the solution to

db = − ad∗Y b (210)

For b = Ad∗g−1 b0 this gives

d(Ad∗g−1 b0) = − ad∗Y (Ad∗g−1 b0) (211)

From (210) it follows that Y solves the Maurer-Cartan equation dY = −1
2

adY Y , whose
solution is locally Y = g−1dg. In practice it will also be useful to obtain Y from (211).

An action whose phase space coincides with the coadjoint orbit can be obtained by
writing the Kirillov-Kostant symplectic form (209) as a total exterior derivative

Ω = dα . (212)

The geometric action on the coadjoint orbit is then obtained by integrating the presym-
plectic potential α over the orbit

I[g; b0] =

∫
γ

α =

∫
γ

〈Ad∗g−1 b0, Y 〉 (213)

where γ parameterizes a curve on the orbit Ob0 .
We are interested in the geometric action for centrally extended Lie groups, such as

the superconformal groups. A centrally extended group Ĝ = G×R with Lie algebra ĝ
has elements (X,n) ∈ ĝ and (b, c) ∈ ĝ∗ such that the bilinear form reads

〈(b, c), (X,n)〉 = 〈b,X〉+ cn (214)

The adjoint and coadjoint action of Ĝ now reads:

Adg(X,n) = (AdgX,n− 〈S(g), X〉) , (215)

Ad∗g(b, c) = (Ad∗g b− cS(g−1), c) . (216)

Here S(g) is the Souriau cocycle, satisfying the condition

S(g1g2) = Ad∗
g−1
2
S(g1) + S(g2) , (217)

together with S(I) = 0, such that S(g) = −Ad∗g−1 S(g−1). The adjoint action of g on
itself is

ad(X1,n1)(X2, n2) = [(X1, n1), (X2, n2)] = ([X1, X2],−〈s(X1), X2〉) (218)

where s(X) is the infinitesimal limit of S(g).
The coadjoint action on g is defined correspondingly as 〈ad∗(X1,n1)(b, c), (X2, n2)〉 =

−〈(b, c), ad(X1,n1)(X2, n2)〉 and reads

ad∗(X,n)(b, c) = (ad∗X b+ c s(X), 0) . (219)

44



The Kirillov-Kostant symplectic form now becomes

Ω =
1

2
〈(b, c), [(Y, nY ), (Y, nY )]〉 = d〈Ad∗g−1(b0, c), (Y, nY )〉 (220)

where nY solves

dnY =
1

2
〈s(Y ), Y 〉 . (221)

This makes the geometric action on the coadjoint orbit of a centrally extended group

I[g; b0, c] =

∫
γ

α = −
∫
γ

〈Ad∗g−1(b0, c), (Y, nY )〉 . (222)

An alternative way to obtain the geometric action on the coadjoint orbit is to use the
identity

dS(g) = − ad∗Y S(g) + s(Y ) (223)

and write the Kirillov-Kostant symplectic form (220) as:

Ω = dα = d〈Ad∗g−1 b0, Y 〉 −
c

2
〈dS(g), Y 〉 . (224)

So to find the geometric action we can either find (Y, nY ) by solving (211) and (221),
or alternatively, we may solve (211) for Y and write the last term in (224) as a total
exterior derivative.

C.2 Hamiltonians

The geometric action on the coadjoint orbit only gives the symplectic part of the
action. The evolution on the orbit is determined by adding a suitable Hamiltonian.
In [55] it was shown how to add Hamiltonians in such a way as to preserve the gauge
symmetries (generated by the stabilizer subgroup) on the orbit. One can do so by
adding the Noether charge associated to a global symmetry as the Hamiltonian.

Suppose the geometric action has a global symmetry generated by a left invariant
vector field V(X,n) = (gX, n), satisfying LV(X,n)α = 0, where LV(X,n) is the Lie derivative.
Then

iV(X,n)Ω = dQ(X,n) , with: Q(X,n) = −〈(b, c), (X,n)〉 . (225)

Here Q(X,n) is the Noether charge associated to the global symmetry generated by
V(X,n). The Noether charge can be added to the geometric action a Hamiltonian without
changing the gauge symmetries generated by the little group on the orbit Hb0 .

I[g; b0, c,H(X,n)] = I[g; b0, c]−
∫
γ

Q(X,n)dt =

∫
γ

〈Ad∗g−1(b0, c), (Y, nY )+(X,n)dt〉 . (226)
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