
ar
X

iv
:2

30
8.

10
50

0v
3 

 [
qu

an
t-

ph
] 

 1
2 

A
pr

 2
02

4

Quantum statistical mechanics from a Bohmian

perspective

Hrvoje Nikolić
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Abstract

We develop a general formulation of quantum statistical mechanics in terms
of probability currents that satisfy continuity equations in the multi-particle po-
sition space, for closed and open systems with a fixed number of particles. The
continuity equation for any closed or open system suggests a natural Bohmian
interpretation in terms of microscopic particle trajectories, that make the same
measurable predictions as standard quantum theory. The microscopic trajec-
tories are not directly observable, but provide a general, simple and intuitive
microscopic interpretation of macroscopic phenomena in quantum statistical
mechanics. In particular, we discuss how various notions of entropy, proper
and improper mixtures, and thermodynamics are understood from the Bohmian
perspective.

Keywords: quantum statistical mechanics; Bohmian mechanics; probability cur-
rent; open system

1 Introduction

Bohmian mechanics [1, 2, 3, 4, 5] is an interpretation of quantum mechanics (QM) in
terms of variables that always have definite values, irrespective of whether they are
measured or not. In the simplest and best known form, these variables are positions of
pointlike particles, which change with time in a deterministic manner. According to
this interpretation, all quantum uncertainties and probabilistic laws emerge similarly
as in classical statistical physics, from a practical lack of knowledge of the actual initial
positions. Very general analysis [1, 2, 3, 4, 5] shows that Bohmian mechanics makes
the same measurable predictions as standard QM. Thus, in principle, all quantum
phenomena that can be described by standard QM, can also be explained by Bohmian
mechanics.

1

http://arxiv.org/abs/2308.10500v3


Since Bohmian interpretation offers an explanation of the origin of probabilities, it
seems natural to study, in more detail, how Bohmian mechanics explains the phenom-
ena that otherwise are described by standard quantum statistical mechanics [6, 7, 8].
Surprisingly, however, very little is done in that direction. Bohm and Hiley [2, 9]
studied quantum statistical mechanics in the “Bohmian” context by studying only
the statistics of wave functions, without saying much on the role of actual particle
positions in understanding statistical mechanics. Goldstein and his coworkers, who
are leading experts in both Bohmian mechanics and statistical mechanics, published
very little on the role of Bohmian mechanics in quantum statistical mechanics. In
1992 [10] they concluded that deriving quantum statistical mechanics from Bohmian
mechanics “has not yet reached its infancy”. In 2005 [11] they studied how Bohmian
trajectories can be defined for mixed density operators. In 2020 [12] they studied
thoroughly Gibbs and Boltzmann entropy in classical and quantum mechanics, by
saying very little on the role of Bohmian trajectories in that context. Bricmont, who
is also an expert in both quantum foundations [13, 14] and statistical mechanics [15],
and is a strong supporter of the Bohmian interpretation [16], in his fantastic mono-
graph on foundations of statistical mechanics [15] studied only classical statistical
mechanics.

It is not clear to us why, so far, foundations of quantum statistical mechanics
have not been studied more thoroughly from a Bohmian perspective. Be that as it
may, in this paper we try to fill the gap by presenting a systematic investigation of
foundations of quantum statistical mechanics from the Bohmian point of view. To
our knowledge, this is the first (hopefully not the last) work aimed specifically at
this topic. A large part of our work, however, contains novel results in foundations
of statistical mechanics that do not depend on the Bohmian interpretation, which
can also be of value in foundations of statistical mechanics from the point of view of
standard QM. Indeed, our view is not that the Bohmian interpretation is “the right”
interpretation that should replace standard QM. Instead, our view is that Bohmian
mechanics is an auxiliary practical thinking tool [17] that enriches standard QM.

We start with foundations of classical statistical mechanics in Sec. 2, in closed
and open systems, with emphasis on probability densities and probability currents
satisfying continuity equations in multi-particle phase spaces. In particular, we de-
velop a general systematic method of averaging over the environment that defines a
continuity equation for any open subsystem with a fixed number of particles.

In analogy with classical probability currents in phase space, in Sec. 3 we develop
in detail a similar theory of quantum probability densities and probability currents, for
closed and open systems, that satisfy continuity equations in multi-particle position
spaces. The averaging over the environment, as well as “hiding” the spin degrees of
freedom within the currents in position space, are treated on an equal footing through
an elegant formalism of partial tracing.

The Bohmian interpretation is introduced in Sec. 4, where, in analogy with classi-
cal particle velocities in multi-particle phase space, the quantum particle velocities are
defined by the quantum probability currents in multi-particle position space. Even
though the particle currents for closed system and open subsystem define different
particle trajectories, both theories make the same measurable predictions in the open
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subsystem. Hence, for all practical purposes, one can formulate a Bohmian interpreta-
tion of open subsystem that does not depend on particle positions in the environment.
In this interpretation, the formula for Bohmian velocities in the open subsystem is
equivalent to the formula in [11] for Bohmian velocities for the “fundamental density
matrix”, except that in our case the density matrix is not fundamental (because it
only describes a subsystem), and we use a different (hopefully more physicist friendly)
notation.

The results and insights above are applied in Sec. 5 to better understand the
general principles of quantum statistical mechanics from a Bohmian point of view.
We explain how thermodynamics is explained by Bohmian mechanics, discuss the
difference between proper and improper mixtures, and emphasize that quantities
such as energy and entropy in quantum statistical mechanics are at least partially
nomological (i.e., law like), rather than purely ontological. In particular, we study
in detail the conceptual differences between different kinds of entropy, namely von
Neumann entropy, quantum Boltzmann entropy, as well as their classical cousins
Gibbs entropy and classical Boltzmann entropy. In the analysis of entropies we are
particularly influenced by the work of Goldstein and his collaborators [18, 12] (for
other discussions of the relation between Gibbs and Boltzmann entropy see also [19,
20, 21]), but our conclusions are slightly different because we do not think that there is
such thing as “true” entropy. In the special case of thermal equilibrium, the statistical
entropy is required to correspond to thermodynamic entropy, but this requirement
alone is not sufficient to uniquely define entropy out of equilibrium, so there is a lot
of freedom to define statistical entropy in various ways which are not equivalent out
of equilibrium.

The conclusions are drawn in Sec. 6.

2 Classical statistical mechanics

2.1 Classical statistical mechanics of a closed system

In this subsection we present a review of general foundations of classical statistical
mechanics of closed systems (for more details see, e.g., [6, 7, 8]) that are needed for
a thorough understanding of the rest of the paper.

Consider a closed system of N classical particles with positions xa and mo-
menta pa, a = 1, . . . , N . It is convenient to introduce a compact notation x =
(x1, . . . ,xN), p = (p1, . . . ,pN), za = (xa,pa), z = (z1, . . . , zN), where za is a point
in the 6-dimensional phase space of the a’th particle, and z is a point in the full
6N -dimensional phase space of all the particles. The particles have trajectories xa(t),
pa(t) given by the Hamilton equations of motion

dxa

dt
=
∂H

∂pa
,

dpa

dt
= − ∂H

∂xa
, (1)

where H(x, p) = H(z) is the Hamiltonian of the closed system. This motivates us to
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define the velocity “field” va(z) in phase space

va ≡
(

∂H

∂pa
,− ∂H

∂xa

)

, (2)

so that the Hamilton equations of motion can be written more compactly as

dza
dt

= va. (3)

Now consider the probability density ρ(z, t) = ρ(x, p, t) in the full phase space.
Clearly we have

dρ

dt
=

∂ρ

∂t
+
∑

a

(

∂ρ

∂xa

dxa

dt
+

∂ρ

∂pa

dpa

dt

)

=
∂ρ

∂t
+
∑

a

(

∂ρ

∂xa

∂H

∂pa

− ∂ρ

∂pa

∂H

∂xa

)

=
∂ρ

∂t
+ {ρ,H}PB, (4)

where { , }PB denotes the Poisson bracket. Since the particles in a statistical en-
semble1 just follow their trajectories, the probability density satisfies the continuity
equation in the phase space

∂ρ

∂t
+
∑

a

∇aja = 0, (5)

where
ja = ρva (6)

is the probability current. Since
∑

a

∇aja =
∑

a

(∇aρ)va + ρ
∑

a

∇ava, (7)

and since

∑

a

∇ava =
∑

a

(

∂

∂xa

dxa

dt
+

∂

∂pa

dpa

dt

)

=
∑

a

(

∂

∂xa

∂H

∂pa
− ∂

∂pa

∂H

∂xa

)

= 0, (8)

it follows that

∑

a

∇aja =
∑

a

(∇aρ)va =
∑

a

(

∂ρ

∂xa

dxa

dt
+

∂ρ

∂pa

dpa

dt

)

. (9)

1The number of systems in the statistical ensemble (namely, the number of elements in the set
of system’s replicas identically prepared in a statistical sense) is usually taken to be infinite. This
number has nothing to do with the number of particles N in the system, which can be either large
or small.
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Inserting this into (5) and comparing with (4), we see that

dρ

dt
= 0. (10)

Thus (4) reduces to
∂ρ

∂t
= {H, ρ}PB, (11)

which is called the Liouville equation.
The results above are generally referred to as Liouville theorem. More specifically,

by Liouville theorem, people sometimes mean the result (8), sometimes the result
(10), and sometimes the result that the phase-space volume is conserved, which can
be derived either from (10), or from the “fluid incompressibility” (8). However, the
continuity equation (5) by itself does not imply the conservation of phase-space vol-
ume, so (5) should not be thought of as a version of “Liouville theorem”. Nevertheless,
the continuity equation (5) is sufficient for a consistent statistical interpretation; the
validity of the Liouville theorem is not necessary in order to have a consistent statisti-
cal interpretation of the probability density ρ(z, t). In general, in classical statistical
physics, the average value of the function O(z) is given by

Ō(t) =

∫

dz O(z)ρ(z, t), (12)

and consistency of it does not depend on validity of the Liouville theorem. The
Liouville theorem can be used for an additional justification for working in the phase
space (rather than, for instance, in the position space), but it seems that a fully
convincing and generally accepted version of that justification does not exist [15].

Finally, since the continuity equation will turn out to play a central role in this
paper, it is convenient the write the continuity equation (5) in a compact form

∂ρ

∂t
+∇j = 0. (13)

2.2 Classical statistical mechanics of a subsystem

Let us split the full phase space into two subspaces, called A and B. They contain
NA and NB particles, respectively, such that NA+NB = N . The numbers of particles
and the Hamiltonian (i.e., the interactions between the particles) can be arbitrary,
the analysis in this subsection will not depend on this. Due to interactions, any
subsystem A or B is an open system, so this subsection is really a theory of open
systems. Thus we write ρ(z, t) = ρ(zA, zB, t) and the continuity equation (13) can be
written as

∂ρ

∂t
+∇AjA +∇BjB = 0, (14)

with a self-explaining notation.
Now comes a crucial step, which contains the central idea of this subsection, and

indeed, of this whole paper. The idea is to integrate (14) over dzB
∫

dzB
∂ρ

∂t
+

∫

dzB∇AjA +

∫

dzB∇BjB = 0, (15)
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where of course

dzB = dxBdpB = d3x1 · · · d3xNB
d3p1 · · · d3pNB

. (16)

We assume that ρ(z, t) vanishes at infinity, so the last term in (15) is zero by the
Gauss theorem

∫

dzB∇BjB ≡
∫

ΓB

dzB∇BjB =

∫

∂ΓB

dSB jB = 0, (17)

where ∂ΓB is the boundary at infinity of the infinite phase space ΓB, while dSB is the
surface area element on ∂ΓB . Thus (15) can be written as a new continuity equation

∂ρA
∂t

+∇Aj
tr
A = 0, (18)

where

ρA(zA, t) =

∫

dzB ρ(zA, zB, t), (19)

jtrA (zA, t) =

∫

dzB jA(zA, zB, t). (20)

The quantity ρA(zA, t) defined by (19) has the clear statistical interpretation; it is
just the marginal probability density of zA, obtained by averaging over zB. But what
is jtrA (zA, t) defined by (20)? The interpretation of jtrA (zA, t) is a bit subtle, which we
now analyze.

First let us say that the label “tr” stands for truncated, reminding us that jtrA (zA, t)
is a truncated version of jA(zA, zB, t), in the sense that jtrA (zA, t) does not depend on
zB, i.e., the dependence on zB is truncated.2 The ρA(zA, t) is also truncated in that
sense, but we do not use the notation ρtrA because the notation ρA is already sufficient
to distinguish it from ρ.

Writing (6) as
jA = ρvA, jB = ρvB , (21)

and focusing on the A-part, we see that (20) can be written as

jtrA (zA, t) =

∫

dzB ρ(zA, zB, t)vA(zA, zB, t), (22)

so jtrA (zA, t) is an average of the current jA(zA, zB, t), where averaging is performed
over the whole B-subsystem. This motivates us to introduce the truncated velocity
vtrA defined as

vtrA(zA, t) =
jtrA (zA, t)

ρA(zA, t)
=

∫

dzB jA(zA, zB, t)
∫

dzB ρ(zA, zB, t)
, (23)

so that, in analogy with (21), we can write

jtrA = ρAv
tr
A , (24)

2We also anticipate that in the quantum case the label “tr” will acquire one additional meaning,
namely “traced”, and both meanings will describe well the concept of jtr

A
.
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where all the quantities depend only on zA, not on zB. Thus we see that the continuity
equation (18) is a natural continuity equation for the A-subsystem.

However, it is important to emphasize that the actual velocities of particles in the
A-subsystem are given by vA, not by vtrA . The actual velocity is not the truncated
velocity. In fact, a truncated velocity may be different from all possible actual ve-
locities. There is, of course, nothing strange with it3, when we keep in mind that
truncation is a kind of averaging.

Even though the average velocities vtrA are not actual velocities of individual parti-
cles, in statistical physics it is not entirely wrong to think of them as actual velocities.
The actual velocities of individual particles are usually not measured in statistical
physics, so no contradiction with experiments is produced by such thinking. More
importantly, such a way of thinking creates an intuitive picture associated with the
continuity equation (18) for the A-subsystem. Creating such a picture with real veloc-
ities vA of the subsystem is more complicated, because the real velocities, in general,
obey a continuity equation only when the full closed system is taken into account.
But ultimately, the velocities vtrA are just a mathematical tool in dealing with statis-
tics of the A-subsystem. The usual phase-space average value (to be distinguished
from truncation average value) of any observable O(zA) of the A-subsystem is given
by

Ō(t) =

∫

dzAO(zA)ρA(zA, t), (25)

where ρA(zA, t) is the marginal probability density (19) which obeys the continuity
equation (18). Ultimately, whether one interprets the velocities vtrA as real velocities
of individual particles, or just as truncation average velocities, does not influence
the validity of the phase-space average (25), which is what we actually measure in
statistical physics.

Finally we note that, in general, the velocities vtrA are not described by Hamilton
equations of motion. Thus, they cannot be treated by a formalism fully analogous
to that in Sec. 2.1. In particular, there is no Liouville theorem for the continuity
equation (18). Nevertheless, since the velocities vtrA obey the continuity equation
(18), they can be used as a basis for a consistent formulation of statistical mechanics.

2.3 The physical meaning of phase-space average values

In general, the phase-space average value such as (12) or (25) has nothing to do
with the actual value of the observable in the physical system. And yet, from an
experimental point of view, such an average value typically corresponds to a thermo-
dynamic value that is measured in the laboratory. This means that the average value
in statistical physics can be interpreted as some sort of “actual” value, at least in
some approximative practical sense. What is the theoretical justification for such an
interpretation? A short answer is that it is justified due to the law of large numbers,
because in practice we usually assume that the number of particles N or NA is large.

3It’s not much different from the fact that an average family in a country may have 2.4 children,
despite the obvious fact that no actual family has 2.4 children.
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Let us elaborate this a bit. When we consider an observable O(z) = O(z1, · · · , zN)
for large N , we usually consider an observable which considers all N particles on an
equal footing. This means that the function O(z1, · · · , zN ) is symmetric under all
permutations of za’s. Hence, if O(z) is an extensive quantity, such as the energy of
the full system, the average value usually scales with N , i.e., we usually have Ō ∝ N .
Even if we study an intensive quantity, such as the pressure defined as force per unit
area, or energy density defined as energy per unit volume, this is always applied to
a relatively large area or volume containing a large number N of particles, so even
for intensive quantities one deals with observables that usually scale with N . The
standard deviation

∆O(t) =

√

O2(t)− Ō2(t), (26)

on the other hand, usually scales with
√
N , i.e., ∆O(t) ∝

√
N . Hence the relative

standard deviation scales as

∆O(t)

Ō(t)
∝

√
N

N
=

1√
N
, (27)

which is negligible for large N . This is, in essence, why the average value in statistical
physics of a large system can usually, in practice, be treated as the actual value.

Essentially the same reasoning is valid also in quantum statistical physics.

3 Quantum statistical mechanics in terms of prob-

ability currents

3.1 Quantum continuity equation of a closed system

Similarly to Sec. 2.1, this subsection is a review of well known results in quantum
mechanics, which are needed for a thorough understanding of the rest of the paper.

Quantum mechanics is usually formulated in the Hilbert space, rather than the
phase space. Thus, if we consider a closed system of N particles without spin, a conve-
nient basis for the Hilbert space is the basis of position eigenstates |x〉 = |x1, . . . ,xN〉,
so an arbitrary time-dependent pure state |ψ(t)〉 is represented by the wave function

ψ(x, t) = 〈x|ψ(t)〉. (28)

Assuming that it satisfies a Schrödinger equation of the form

Ĥψ(x, t) = i~∂tψ(x, t) (29)

with

Ĥ =
∑

a

−~
2
∇

2
a

2ma
+ V (x), (30)

the Schrödinger equation implies the continuity equation

∂ρ

∂t
+
∑

a

∇aja = 0, (31)
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where
ρ(x, t) = ψ∗(x, t)ψ(x, t), (32)

ja(x, t) =
−i~
2ma

[ψ∗(x, t)∇aψ(x, t)− (∇aψ
∗(x, t))ψ(x, t)]

≡ −i~
2ma

ψ∗(x, t)
↔

∇aψ(x, t), (33)

are the probability density and the probability current, respectively. Similar expres-
sions for the probability density and probability current exist also for more com-
plicated Hamiltonians that may involve spin of the particle and/or electromagnetic
vector potential A(xa, t), some of which we shall explicitly discuss later, but the im-
portant point is that there is always a continuity equation of the form (31). Since
the continuity equation is the central equation in our approach, we write it more
compactly as

∂ρ

∂t
+∇j = 0, (34)

which is fully analogous to the classical continuity equation (13), except that here in
quantum mechanics it is the equation in the N -particle position space, rather than
the N -particle phase space. In this sense, the quantum continuity equation is even a
bit simpler than the classical one.

Finally, we note that the continuity equation can also be written as

∂ρ

∂t
+∇(ρv) = 0, (35)

where

v ≡ j

ρ
. (36)

3.2 Quantum continuity equation of a subsystem

Now we proceed completely analogously as in Sec. 2.2, except that the phase-space
points z are replaced with position points x. We divide the full closed system into
two subsystems A and B, and write (34) as

∂ρ

∂t
+∇AjA +∇BjB = 0. (37)

Then we integrate it over dxB, which leads to the continuity equation of the A-
subsystem

∂ρA
∂t

+∇Aj
tr
A = 0, (38)

where

ρA(xA, t) =

∫

dxB ρ(xA, xB, t), (39)

jtrA (xA, t) =

∫

dxB jA(xA, xB, t), (40)
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in full analogy with (18), (19) and (20).
Note also that (37) can be written in terms of velocities as

∂ρ

∂t
+∇A(ρvA) +∇B(ρvB) = 0, (41)

where

vA ≡ jA
ρ
, vB ≡ jB

ρ
. (42)

Likewise, (38) can be written as

∂ρA
∂t

+∇A(ρAv
tr
A) = 0, (43)

where

vtrA ≡ jtrA
ρA
. (44)

3.3 Density operator and partial traces

Many on the equations above can be written even more elegantly in terms of the
density operator and partial traces.

The state |ψ(t)〉 of the full closed system is represented by the density operator

ρ̂(t) = |ψ(t)〉〈ψ(t)|. (45)

From the Schrödinger equation

Ĥ|ψ(t)〉 = i~∂t|ψ(t)〉 (46)

one derives the von Neumann equation

∂ρ̂(t)

∂t
= − i

~
[Ĥ, ρ̂(t)], (47)

where [ , ] denotes the commutator, which is analogous to the classical Liouville
equation (11).

The matrix elements of the density operator in the |x〉 basis are

〈x|ρ̂(t)|x′〉 = 〈x|ψ(t)〉〈ψ(t)|x′〉 = ψ(x, t)ψ∗(x′, t), (48)

so from (32) and (48) we see that

ρ(x, t) = 〈x|ρ̂(t)|x〉. (49)

But note that |x〉 is not an eigenstate of Ĥ , so one cannot solve the von Neumann
equation (47) only for the diagonal elements (49), without considering the whole
density matrix 〈x|ρ̂(t)|x′〉. Hence, from the dynamical point of view, in principle, the
whole density matrix is needed to compute the diagonal elements (49).
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A useful quantity is the partial traced density operator

ρ̂A(t) = TrB ρ̂(t) =

∫

dxB〈xB|ρ̂(t)|xB〉, (50)

because its diagonal matrix elements

〈xA|ρ̂A(t)|xA〉 =

∫

dxB〈xA, xB|ρ̂(t)|xA, xB〉

=

∫

dxB ρ(xA, xB, t) = ρA(xA, t) (51)

are nothing but (39). Thus (39) can be written in a rather elegant form

ρA(xA, t) = 〈xA|TrB ρ̂(t)|xA〉. (52)

The currents can also be written in this language. First we introduce the velocity
operator of the a’th particle

v̂a =
p̂a

ma

=
−i~∇a

ma

, (53)

so that (33) can be written in several elegant forms as

ja(x, t) = ℜψ∗(x, t)v̂aψ(x, t)

= ℜ 〈ψ(t)|x〉〈x|v̂a|ψ(t)〉 = ℜ 〈x|v̂a|ψ(t)〉〈ψ(t)|x〉
= ℜ 〈x|v̂aρ̂(t)|x〉
= 〈x|̂ja(t)|x〉, (54)

where ℜ denotes the real part and

ĵa(t) ≡
v̂aρ̂(t) + ρ̂(t)v̂a

2
=

{v̂a, ρ̂(t)}
2

(55)

is the probability current operator of the a’th particle, while { , } denotes the anti-
commutator. Then using the compact notation ĵ = (̂j1, . . . , ĵN ), we can write (54)
as

j(x, t) = 〈x|ĵ(t)|x〉, (56)

which has the same form as (49). Thus, in analogy with (50)-(52), we readily get

jtrA (xA, t) = 〈xA|ĵtrA (t)|xA〉, (57)

where
ĵtrA (t) = TrB ĵA(t). (58)

From (57) we see that the label “tr” can be interpreted as “truncated” in the same
sense as in the classical case, but from (58) we see that it can also be interpreted
as “traced”. In the quantum case, both interpretations describe well the meaning of
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“tr”. In any case, it should be kept in mind that ĵtrA (t) is different from ĵA(t) in the
decomposition

ĵ(t) =
(

ĵA(t), ĵB(t)
)

. (59)

They, in fact, live in different Hilbert spaces. The current operator ĵA(t) is an operator
in the full Hilbert space of the closed system, while ĵtrA (t) is an operator in the Hilbert
space of the A-subsystem.

The truncated current operator (58) of the A-subsystem can also be written in
a form similar to (55). With the notation v̂ = (v̂1, . . . , v̂N) = (v̂A, v̂B), (55) can be
written as

ĵA(t) =
{v̂A, ρ̂(t)}

2
, ĵB(t) =

{v̂B, ρ̂(t)}
2

. (60)

Focusing on the A-part, (58) is

ĵtrA (t) =
TrB{v̂A, ρ̂(t)}

2
=

TrB[v̂Aρ̂(t)] + TrB[ρ̂(t)v̂A]

2
. (61)

But the operator v̂A acts non-trivially only in the Hilbert space of the A-subsystem.
More precisely, if we write the full Hilbert space as H = HA⊗HB , with a little abuse
of notation we can write v̂A = v̂A ⊗ 1. Hence

TrB[v̂Aρ̂(t)] = v̂ATrBρ̂(t) = v̂Aρ̂A(t). (62)

(Recall that the velocity operators (53) are abstract operators defined by their ac-
tion on the set of all differentiable functions, so they do not depend on a particular
position-dependent wave function, implying that the operators do not depend on the
particle positions. The velocity operators should be distinguished from Bohmian ve-
locities to be discussed later, which depend on the particular wave function and hence
on the positions.) Similarly TrB[ρ̂(t)v̂A] = ρ̂A(t)v̂A, so (61) simplifies to

ĵtrA (t) =
v̂Aρ̂A(t) + ρ̂A(t)v̂A

2
=

{v̂A, ρ̂A(t)}
2

, (63)

which has the form similar to the first equation in (60). Thus, if we know the reduced
(i.e. truncated) density operator ρ̂A(t), then the truncated current operator ĵtrA (t) is
expressed in terms of ρ̂A(t) by (63).

The fact that the truncated density operator truly describes a subsystem is jus-
tified by the facts that it fulfills all requirements of a density operator, and that the
ensemble average of an observable of a subsystem is computed by the truncated den-
sity operator. The truncated probability current is justified as a valid description
of a subsystem because it obeys a continuity equation associated with the truncated
density, thus providing that the sum of all probabilities of positions in a subsystem
is equal to one at all times.

3.4 Spin

So far we were considering particles without spin. Now we shall describe how the
formalism developed above can be generalized to include the spin.

12



Consider first a single particle with spin-1
2
. In non-relativistic quantum mechanics

it can be described by a 2-component wave function

ψ(x, t) =

(

ψ1(x, t)
ψ2(x, t)

)

. (64)

The corresponding probability density of particle positions is then

ρ(x, t) = ψ†(x, t)ψ(x, t) =
∑

s=1,2

ψ∗
s (x, t)ψs(x, t), (65)

where s is the spin index. It is illuminating to introduce the notation

ψs(x, t) ≡ ψ(s,x, t) = 〈s,x|ψ(t)〉, (66)

so that we can write

ρ(x, t) =
∑

s

ψ∗(s,x, t)ψ(s,x, t)

=
∑

s

〈ψ(t)|s,x〉〈s,x|ψ(t)〉 =
∑

s

〈s,x|ψ(t)〉〈ψ(t)|s,x〉

=
∑

s

〈s,x|ρ̂(t)|s,x〉 = 〈x|TrS ρ̂(t)|x〉, (67)

where
TrS ρ̂ =

∑

s

〈s|ρ̂|s〉 (68)

denotes the partial trace in the spin part of the Hilbert space.
Next let us generalize it to N particles with spin. The wave function has N spinor

indices
ψs1...sN (x1, . . . ,xN , t) = ψs(x, t), (69)

where s = (s1, . . . , sN) is a compact notation denoting a collective spin index. Thus
the formula above for the probability density in the position space readily generalizes
to

ρ(x, t) =
∑

s

ψ∗
s (x, t)ψs(x, t) = 〈x|TrS ρ̂(t)|x〉. (70)

The probability current for the particles with spin can be written down analo-
gously. It is simply

j(x, t) = ℜ
∑

s

ψ∗
s(x, t)v̂ψs(x, t)

= 〈x|TrS ĵ(t)|x〉. (71)

Finally, the probability density and the current for the A-subsystem are the gen-
eralizations of (52) and (57)

ρA(xA, t) = 〈xA|TrSA
TrB ρ̂(t)|xA〉

= 〈xA|TrSA
ρ̂A(t)|xA〉, (72)
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jtrA (xA, t) = 〈xA|TrSA
TrB ĵA(t)|xA〉

= 〈xA|TrSA
ĵtrA (t)|xA〉. (73)

Here TrSA
is the trace over the spin space of the A-subsystem, TrB = TrSB

TrXB
is

the trace over all space of the B-subsystem, and TrXB
is the trace over the position

space of the B-subsystem.
When the particles are identical, the wave function of the whole system is ei-

ther symmetric (for integer spins) or antisymmetric (for half-integer spins) under the
exchange of all particles, so the probability density and the current are symmetric.
This provides that the truncated probability density and current of the subsystem
are symmetric too.

3.5 Summary

Now let us summarize the main results of this rather lengthy and formal section, and
introduce one additional notation for partial traces that further illuminates the whole
idea.

A closed system of N particles is described by the pure state |ψ(t)〉, corresponding
to the density operator

ρ̂(t) = |ψ(t)〉〈ψ(t)|. (74)

Introducing the N -particle probability current operator

ĵ(t) =
v̂ρ̂(t) + ρ̂(t)v̂

2
, (75)

where v̂ is the N -particle velocity operator, one defines the probability density and
the N -particle probability current as

ρ(x, t) = 〈x|Tr(no X)ρ̂(t)|x〉, (76)

j(x, t) = 〈x|Tr(no X)ĵ(t)|x〉, (77)

where Tr(no X) denotes the partial trace over everything which is not the X-space (the
Hilbert space spanned by the position basis vectors |x〉).

Then we split the closed system into two subsystems A and B, having NA and
NB particles, respectively, so that NA + NB = N . The full current operator can be
decomposed as

ĵ(t) =
(

ĵA(t), ĵB(t)
)

. (78)

Focusing on the A-part, the probability density and the NA-particle probability cur-
rent for the A-subsystem are

ρA(xA, t) = 〈xA|Tr(no XA)ρ̂(t)|xA〉
= 〈xA|TrSA

ρ̂A(t)|xA〉, (79)

jtrA (xA, t) = 〈xA|Tr(no XA)ĵA(t)|xA〉
= 〈xA|TrSA

ĵtrA (t)|xA〉, (80)
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where
ρ̂A(t) = TrB ρ̂(t), (81)

ĵtrA (t) = TrB ĵA(t)

=
v̂Aρ̂A(t) + ρ̂A(t)v̂A

2
. (82)

The density (76) and current (77) satisfy the continuity equation

∂ρ

∂t
+∇j = 0. (83)

Likewise, the density (79) and current (80) satisfy the continuity equation

∂ρA
∂t

+∇Aj
tr
A = 0. (84)

4 Bohmian interpretation

4.1 Bohmian interpretation of the closed system

Similarly to Sec. 2.1 and Sec. 3.1, this subsection is a review of the results already
known in the literature [1, 2, 3, 4, 5].

The Bohmian interpretation offers an intuitive interpretation of the quantum con-
tinuity equation (83). Writing it as

∂ρ

∂t
+∇(ρv) = 0, (85)

where

v =
j

ρ
, (86)

the Bohmian interpretation postulates that each particle in the full closed system has
an actual trajectory xa(t), a = 1, . . . , N , satisfying the equation of motion dxa/dt =
va. This is similar to the classical equation of motion (3), but in the Bohmian
interpretation we are working in the position space, not the phase space. In our
compact notation, the Bohmian equation of motion for particle trajectories x(t) is
just

dx

dt
= v. (87)

According to the Bohmian interpretation, the world is made of pointlike particles
having trajectories guided by the law (87). The quantum velocity function v(x, t)
is analogous to the classical velocity function v(z) = (v1(z), . . . ,vn(z)) defined by
(2). In particular, just as classical v(z) is computed from the Hamiltonian H(z), the
Bohmian v(x, t) is computed from the wave function ψs(x, t), or equivalently, from the
state in the Hilbert space |ψ(t)〉, i.e., from the density operator ρ̂(t) = |ψ(t)〉〈ψ(t)|. In
this sense, the density operator ρ̂(t) in Bohmian mechanics plays a role similar to the
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Hamiltonian H(z) in classical mechanics. According to the Bohmian interpretation,
the N -particle trajectory x(t) represents the ontology of the world, namely the things
the world is made of, while ρ̂(t) represents the nomology [22] of the world, namely
the object that concisely encodes the law governing the trajectory x(t).

Even though the Bohmian law of motion (87) is deterministic, it is compatible
with the usual probabilistic nature of quantum mechanics (QM). Namely, the proba-
bilities arise in the same was as in classical statistical mechanics, through the lack of
knowledge of actual initial conditions. Assuming that the initial probability density
of initial particle positions in a statistical ensemble is given by ρ(x, t0), the continuity
equation (85) and particle velocities (87) provide that the probability density of par-
ticle positions is equal to ρ(x, t) at any time t. This is how Bohmian mechanics makes
the same probabilistic predictions in the x-space as standard QM in the x-space.

But what about other spaces? QM also makes probabilistic predictions in the
momentum space, energy space, spin space, etc. How can Bohmian mechanics make
any predictions in these other spaces? And how can these Bohmian predictions be
compatible with the predictions of standard QM?

To answer this question, the key word is measurement. For any quantum observ-
able (position, momentum, energy, spin, ...), Bohmian mechanics predicts the same
probabilities as standard QM when this observable is measured. But how? Essen-
tially, by reducing measurement of any observable to an observation of a position

of something, and using the fact that position probabilities in Bohmian mechanics
are the same as position probabilities in standard QM. But how can measurement of
any observable be reduced to an observation of position? In general, measurement is
a physical process which establishes a correlation between the measured object and
some macroscopic pointer of the measuring apparatus. But in practice, the pointer of
the measuring apparatus can always be described in terms of a macroscopic position,
so in practice any measurement is really an observation of a macroscopic position.
And of course, the macroscopic position of the pointer is just an aggregate of all
the microscopic Bohmian positions xP of the pointer P . In a nutshell, this is how
Bohmian mechanics explains the results of all quantum measurements as observations
of positions. For more details see e.g. [1, 2, 3, 4, 5, 17].

Since the world, according to the Bohmian interpretation, is made of pointlike
particles obeying the equation of motion (87), it follows that we only need the conti-
nuity equation (85) in the x-space. There is no need for a continuity equation in other
spaces, such as momentum space or spin space. Nevertheless, it is worth mentioning
that Bohmian mechanics can be extended to the momentum space as well [23], and
that Bohmian trajectories can be interpreted within standard quantum mechanics as
borders of regions of constant probability [24].

4.2 Bohmian interpretation of a subsystem

In principle, the Bohmian interpretation of the A-subsystem is straightforward. From
(87) it follows that particles of the A-subsystem obey the equation of motion

dxA
dt

= vA. (88)
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However, the right-hand side vA(x, t) = vA(xA, xB, t) depends not only on the posi-
tions xA in the A-subsystem, but also on the positions xB in the B-subsystem. Thus,
strictly speaking, we cannot study a subsystem without considering the whole system.
In principle, any subsystem is more or less entangled with the rest of the Universe.
In Bohmian mechanics, it reflects in the fact that particle velocities in any subsystem
depend on particle positions in the whole closed system.

Nevertheless, there is a way to apply Bohmian mechanics to a subsystem without

considering the rest of the system. The idea is to use the continuity equation (84)
written as

∂ρA
∂t

+∇A(ρAv
tr
A) = 0, (89)

where

vtrA =
jtrA
ρA
. (90)

Thus, if one assumes that particles of the A-system have trajectories xtrA(t) obeying

dxtrA
dt

= vtrA , (91)

then one can explain all the probabilistic predictions of standard QM in the A-
subsystem, in a way completely analogous to that Sec 4.1, provided that the A-
subsystem is macroscopically large. Namely, if the A-subsystem is macroscopically
large, then the aggregates of its particles can form macroscopic objects, such as tables,
chairs, gases, and, of course, macroscopic measuring apparatuses. Since vtrA(x

tr
A, t) on

the right hand-side of (91) does not depend on xB, it follows that truncated trajecto-
ries obeying (91) do not depend on particle positions of the B-subsystem. This makes
the explanation based on (91) simpler than the explanation based on (88), at least if
simplicity is counted by the number of particles that one must take into account.

Of course, since we assumed that the correct equation of motion is (88), it follows
that (91) is strictly speaking “wrong”. Nevertheless, in practice, we never observe
the microscopic Bohmian trajectories, we only observe their macroscopic aggregates.
This means that, for all practical purposes, the trajectories (88) make the same
measurable predictions as the trajectories (91). As long as one is only interested
in the A-subsystem, for all practical purposes the trajectories (91) defined by the
truncated velocities vtrA are not any less right than the trajectories (88) defined by the
velocities vA.

4.3 Deeper meaning of the Bohmian interpretation

Many adherents of the Bohmian interpretation like to think that the purpose of
Bohmian mechanics is to tell us what is the right ontology of the world. While we
fully sympathize with such a point of view, in our opinion this is not the best way,
and certainly not the only way, to understand the Bohmian interpretation [17]. All
theories in physics are just provisional theories that one day may be replaced by better
theories. Or to use the language common in quantum field theory [25], all theories that
we have are just effective theories, applicable in some regime, but not in all regimes.
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For example, in this paper we study systems with a fixed number N of particles
in the closed system, so this theory is not applicable in the regime where particles
are created and destroyed. The creation and destruction of particles is described by
relativistic quantum field theory (QFT), which we do not discuss in this paper (see
e.g. [26] for a light discussion of Bohmian formulation(s) of relativistic QFT). Even
relativistic QFT, as we currently understand it, is probably not applicable at short
distances comparable to the Planck distance, where effects of quantum gravity are
expected to become important. Hence, instead of saying that Bohmian mechanics
tells us the right ontology of the world, it is much more sober to say that Bohmian
mechanics tells us a right ontology of the world. Namely, this ontology is “right”
only in an effective sense, because it provides a useful theoretical tool that helps in
intuitive thinking about a large class of quantum phenomena. But it is not “right”
in an absolute sense, because a better more fundamental theory may be much more
easily understood in terms of an entirely different ontology. Ontology, just like any
other concept in theoretical physics, is nothing but a useful4 thinking tool. A useful
fiction, if you like. This is the basis of the instrumental interpretation of Bohmian
mechanics, advocated also in [17].

From this point of view, neither the trajectories (87) nor the trajectories (91) are
“right” in an absolute sense. Both are just effective theories, describing ontologies
suitable for simple intuitive descriptions of the systems they study. The trajectories
(87) represent a simple ontology suitable for a closed system of a fixed number N of
non-relativistic particles. The truncated trajectories (91) represent a simple ontology
suitable for an open subsystem of a fixed number NA of non-relativistic particles.
The trajectories (87) are more powerful than the truncated trajectories (91), because
(87) can describe both the full closed system and the open A-subsystem satisfying
(88). Nevertheless, the description of the A-subsystem in terms of (91) is simpler.
Thus the truncated theory (91) can be thought of as effective theory for the more
fundamental theory (87). But ultimately both are just effective theories for some
even more fundamental theory.

Such an effective view of the Bohmian interpretation allows a lot of ontological
flexibility. Depending on the context, one can change which entities will be considered
ontological, and which entities will not be considered so. The formalism developed in
Sec. 3 provides an elegant, systematic and powerful way to translate this choice into a
mathematical language. In essence, all things which are not considered ontological are
traced out in the density operator ρ̂(t). In the Bohmian interpretation spin is usually
not considered ontological, which is encoded in the partial trace TrS over the spin
part of the Hilbert space. Likewise, if one does not want to treat the B-subsystem as
ontological, one performs the partial trace TrB. In principle, one can trace over every-
thing except the things one is really interested about in a given context. For example,

4The notion of “useful” is of course subjective. What is useful for one person may not be useful
for another. In particular, there are many interpretations of QM, and most physicists don’t see the
Bohmian interpretation as particularly useful. Those who don’t find it useful, should not use it.
Those who do find it useful, should use it. The Bohmian interpretation, or any other interpretation
for that matter, is just a thinking tool. The tools are not right or wrong. The tools are useful or
useless. And this is subjective.
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if one only wants to know how the macroscopic pointer of the measuring apparatus
behaves, and does not care about how the microscopic measured system behaves, one
can trace over everything except the pointer degrees of freedom. This may seem like
an extreme application of partial tracing, but such an extremely truncated version
of Bohmian interpretation also leads to the same measurable predictions as standard
QM [27]. An even more extreme version is tracing over everything except the relevant
parts of the brain of the conscious observer, which again makes the same observable
predictions as standard QM [27]. Such ad hoc truncations of ontology may look crazy
from a philosophical point of view, but from our practical effective ontology point of
view there is nothing wrong with them, as long as one finds them useful as thinking
tools.

In addition to giving the ontology, it has been argued that Bohmian mechanics
also makes a prediction for the arrival probability density in terms of the probability
current [28]. But the same prediction for the arrival probability density can also be
obtained from standard quantum mechanics [29, 30], without reference to Bohmian
mechanics, so the prediction does not really depend on whether the Bohmian trajec-
tories are ontological. The continuity equation is one of the crucial ingredients in the
methods developed in [29, 30], so these methods can straightforwardly be extended to
open subsystems to associate arrival probability density with the truncated current.

5 Explanation of standard statistical mechanics

5.1 Motivation

The main purpose of statistical mechanics is to give a simplified description of large
systems, typically containing 1023 or more particles. Obviously, in practice, one can-
not give a detailed description of each and every particle in such a large system, so
one needs a practical approximation that describes the collective behavior of the large
system without a detailed description of every particle. Statistical mechanics can also
be applied to small systems, but that is not its main purpose. Unless explicitly stated
otherwise, in this section we shall always tacitly assume that the system of interest
is large.

In quantum statistical mechanics, the system of interest is usually described by a
mixed density operator ρ̂. In particular, for a system with a fixed number of particles
in thermal equilibrium, the density operator is

ρ̂ =
e−βĤ

Tr e−βĤ
, (92)

where β = 1/(kT ), k is the Boltzmann constant, T is the temperature, and Ĥ is the
Hamiltonian of the system. With the aid of ρ̂ one can compute the average value of
any observable Ô one is interested about, by the formula

Ō = Tr(Ôρ̂). (93)
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For practical purposes, this is often more-or-less all that one needs to know. In this
paper, however, we do not deal with practical problems as such. Instead, our goal is
to better understand quantum statistical mechanics from a foundational conceptual
point of view.

One conceptual question is the meaning of the mixed state ρ̂. For instance, (92)
can be written as

ρ̂ ∝
∑

n

e−βEn|n〉〈n|, (94)

where |n〉 are eigenstates of Ĥ, Ĥ|n〉 = En|n〉, and, for simplicity, we have ignored

the normalization constant (Tr e−βĤ)−1. Does it mean that the system is actually
in only one of the energy eigenstates |n〉, but we just don’t know which one? Or
does it mean that the system actually is in the mixed state (94), irrespective of our
knowledge? Or is this question just meaningless, because the average value (93) does
not depend on it?

Standard practical textbooks usually do not discuss such conceptual questions,
to address such questions one needs to go deeper into the field of foundations of
quantum statistical mechanics. In this section we shall study how such foundational
questions can be answered with the aid of Bohmian interpretation. Of course, such
questions can also be studied without the Bohmian interpretation, and indeed, a large
part of this section will not depend on the Bohmian interpretation. However, among
all interpretations of QM, the Bohmian interpretation is the most “classical”, in the
sense that it entails the same ontology as classical mechanics. Hence, since quantum
statistical mechanics usually deals with macroscopic systems, i.e., systems which show
both classical and quantum features, we find the Bohmian interpretation particularly
convenient.

5.2 Ontology vs nomology

In Sec. 4.1 we made a distinction between ontology and nomology. Here we want to
elaborate this distinction in more detail.

There is no precise definition of the notions of ontology and nomology, yet their
distinction is useful.5 The easiest way to absorb their meaning is through examples.

Consider first classical mechanics of pointlike particles. The world, according to
this theory, is made of particles with trajectories x(t). We say that the trajectories
x(t) are ontological. Anything directly derivable from x(t), like velocities dx(t)/dt,
is also ontological. The nomology, on the other hand, is the set of physical laws
that govern the behavior of the ontological stuff. Hence the mathematical objects
in the theory that encode the physical laws are called nomological. For instance,
the Hamiltonian and the Lagrangian are nomological. What about energy? The
energy depends on both the ontological stuff x(t) and dx(t)/dt, and the nomological
Hamiltonian, so energy is partially ontological and partially nomological. The masses

5There are many concepts in physics that are not precisely defined. Some examples are micro-
scopic, macroscopic, fundamental and emergent. Even though they lack a precise definition, they
are a part of normal physics vocabulary, because they are useful in conceptual thinking.
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ma of the particles, which are parameters in the Hamiltonian, are nomological. The
particle momenta p(t) = (p1(t), . . . ,pN (t)), pa(t) = madxa(t)/dt, are hence partially
ontological and partially nomological.

Now consider Bohmian mechanics. It has classical ontology defined by trajectories
x(t), but the laws that govern x(t) are very different from the classical laws. Classical
and Bohmian mechanics have the same ontology but different nomology. As we
already explained in Sec. 4.1, the nomology of Bohmian mechanics can be concisely
encoded in the density operator ρ̂(t). The density operator itself is governed by the
Hamilton operator Ĥ , so Ĥ is also nomological. But the Bohmian law of particle
motion does not have a form of Hamilton equations of motion, so energy of particles
in Bohmian mechanics is not a well defined quantity. In this sense, the energy is not
even partially ontological in Bohmian mechanics.

Nevertheless, in quantum statistical mechanics, one can define energy as the av-
erage energy

E(t) ≡ Ē(t) = Tr Ĥρ̂(t). (95)

Here ρ̂(t) can be either a pure state of a closed system or a mixed state of an open
system, which is why, in general, E(t) can depend on time t. Clearly, this energy
is purely nomological. The “average” in (95) is a formal abstract quantum average,
which does not involve any averaging over ontological particle positions.

5.3 Different kinds of entropy

The simplest definition of entropy in quantum statistical mechanics is von Neumann
entropy

SvN(t) = −kTr ρ̂(t) ln ρ̂(t). (96)

Similarly to the energy (95), this entropy is purely nomological. For a closed system
it does not depend on time, due to the von Neumann equation (47). For an open
system this is really the entanglement entropy, because ρ̂(t) is a mixed state due to
entanglement with the rest of the Universe. Hence, in open systems, this entropy
tends to increase with time, because, if initially the open system is not maximally
entangled with the rest of the Universe, the interaction with the rest of the Universe
usually creates more entanglement, which increases the entanglement entropy.

Another useful definition of entropy is quantum Boltzmann entropy

SqB(H) = k ln dimH, (97)

where dimH is the dimension of a Hilbert space H. To be meaningful, the H must be
a finite-dimensional Hilbert space. Thus H is not the whole Hilbert space, which in
quantum mechanics is usually infinite dimensional, but a finite dimensional subspace.
For example, the Hilbert space of wave functions for a single free particle in the infinite
3-dimensional space is infinite dimensional, but a finite dimensional Hilbert subspace
is obtained if we only consider wave functions confined inside a finite volume V , and
discard all wave functions corresponding to the momentum larger than some arbitrary
cutoff momentum pcutoff . In practice, H is usually chosen such that all different states

21



in H cannot be distinguished at the macroscopic level. This, of course, depends on
how “distinguished at the macroscopic level” is defined. In practice, this us usually
defined intuitively. More fundamentally, the ability to macroscopically distinguish
things depends on the Hamiltonian ĤO that describes the observer. In any case, the
quantum Boltzmann entropy (97) is nomological.

Quantum Boltzmann entropy becomes particularly interesting if one decomposes
the full Hilbert space H into a direct sum of finite dimensional Hilbert spaces

H =
⊕

M

HM , (98)

where each HM corresponds to one macroscopic state that can be distinguished from
other macroscopic states. Then, for any pure state |ψ〉 living in only one subspace
HM , i.e., for any |ψ〉 obeying |ψ〉 ∈ HM , one can define quantum Boltzmann entropy
as

SqB(|ψ〉) = k ln dimHM(|ψ〉). (99)

This defines a non-zero entropy for a pure state. Moreover, if there is a mechanism
by which |ψ(t)〉 at any time t lives in only one subspace HM(t), then the entropy
(99) changes with time. If it starts in a low entropy state, such a time-dependent
quantum Boltzmann entropy naturally tends to increase with time, because the prior
probability that such a state is an element of HM is proportional to dimHM , so
growth of entropy is just a natural transition to a more probable macroscopic state.
Clearly, the quantum Boltzmann entropy (99) is also nomological.

The quantum Boltzmann entropy can also be viewed as a function of the onto-
logical Bohmian position x(t). In practice, macroscopically distinguishable states are
distinguishable in the x-space, which means that wave functions from different HM ’s
have a negligible overlap in the x-space. Hence, at almost any time t, x(t) can be
considered to be in only one HM , so we can write

SqB(x(t)) = k ln dimHM(t), (100)

where HM(t) is the Hilbert space of the macroscopic state occupied by x(t) at the
time t. This entropy also naturally grows with time if it is low initially, essentially
for the same reason as entropy (99). The entropy (100) is partially ontological and
partially nomological.

It is also instructive to compare the quantum entropies above with their classical
cousins.

The von Neumann entropy (96) is a quantum version of Gibbs entropy

SG(t) = −k
∫

dz ρ(z, t) ln[ρ(z, t)δz], (101)

where ρ(z, t) is the probability density in the classical phase space. Note that prob-
ability density is not a dimensionless quantity, so δz is the volume of a very small
“elementary” cell in phase space, which ensures that ρ(z, t)δz is dimensionless and
smaller than 1. Even though the entropy is classical, the value of δz is sometimes
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fixed to be equal to h3N , where h is the Planck constant. But the actual value of
δz is not really important because different choices affect the entropy by an additive
constant, which does not affect the entropy change in physical processes, while only
the change of entropy is of direct physical relevance. In classical physics, ρ(z, t) can
be interpreted as a Bayesian probability, which is a tool to make probabilistic pre-
dictions about the behavior of particles with trajectory z(t). Hence ρ(z, t) encodes a
probabilistic law, so Gibbs entropy defined by ρ(z, t) is nomological. In open systems
it tends to increase with time, similarly to its quantum cousin, because, if initially
the open system is not much correlated with the rest of the Universe, the interaction
with the rest of the Universe usually creates more correlation, which increases the
Gibbs entropy. In closed systems it doesn’t change with time. Nevertheless, even in
closed systems Gibbs entropy can be used to describe the increase of entropy with
time, by replacing the fine grained entropy (101) with its coarse grained version. In
the coarse grained version, one replaces the continuous integral

∫

dz with a discrete
sum

∑

z over a discrete set of finite cells, where each cell is labeled by its average z.
It has been objected [12] that Gibbs entropy is subjective, because the probability

ρ(z, t) is subjective. This objection may be correct in the Bayesian interpretation of
probability, but not in the frequentist interpretation of probability. More interestingly,
even if we keep the Bayesian interpretation of probability and accept that Gibbs
entropy is subjective, its quantum cousin von Neumann entropy is not subjective. This
is because the quantum density operator ρ̂(t) is obtained through a mathematically
well defined (and hence objective) partial trace of the objective pure state of the
closed system. In Bohmian mechanics, von Neumann entropy in this sense is not any
less objective than the state |ψ(t)〉. But it is an objective nomological entity, not an
objective ontological entity.

Classical Boltzmann entropy, or simply Boltzmann entropy, is defined as

SB(Γ) = k lnW (Γ), (102)

where

W (Γ) =
1

δz

∫

Γ

dz (103)

is the dimensionless phase volume of a region Γ in phase space. The small phase
volume δz of the “elementary” cell has a role similar to that in (101). Similarly to
the quantum Boltzmann entropy, it is particularly interesting when the full phase
space is partitioned into phase-space cells analogously to (98)

Γ =
⋃

M

ΓM , (104)

where each cell ΓM corresponds to one macroscopic state that can be distinguished
from other macroscopic states. Then one can define Boltzmann entropy as a function
of the actual particle positions z(t) in the phase space

SB(z(t)) = k lnW (ΓM(t)), (105)

where ΓM(t) is the cell occupied by z(t) at the time t. If the Boltzmann entropy is
low initially, it naturally grows with time [31, 18, 12], because the prior probability
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that the particle is in the cell ΓM is proportional to W (ΓM), so growth of entropy is
just a natural transition to a more probable macroscopic state.

It has been argued [12, 18] that Boltzmann entropy makes much more sense than
Gibbs entropy. First, because Boltzmann entropy depends on the objective trajectory
z(t), rather than on the subjective (Bayesian) probability density ρ(z, t). Second,
because Boltzmann entropy naturally grows with time. However, we have already
explained that ρ(z, t) can be interpreted objectively as frequentist probability, and
that Gibbs entropy can naturally grow, either by coarse graining or by considering an
open subsystem. Moreover, Boltzmann entropy also involves a kind of subjectivity
encoded in the choice of the partition (104). More fundamentally, similarly to the
quantum Boltzmann entropy, the classical Boltzmann entropy can be made objective
by introducing the Hamiltonian HO of the observer. However, when the Boltzmann
entropy depends on HO, then it is not purely ontological, but partially nomological.

Note also that by “Boltzmann entropy” people sometimes mean [19]

S ′
B = −kN

∫

dz1 ρ1(z1, t) ln[ρ1(z1, t)δz1], (106)

where

ρ(z1, t) =

∫

dz2 · · ·
∫

dzN ρ(z1, z2, . . . , zN , t) (107)

is the 1-particle probability density. The entropy (106) is really Gibbs-like, but can be
derived from Boltzmann entropy (102) as an approximation [21], up to an unimportant
additive constant depending on δz1.

Last but not least, we point out that the advantage of Boltzmann entropy over
Gibbs entropy is to a large extent lost when they are replaced with their quantum
cousins. This is because, as we explained above, von Neumann entropy is “more
objective” than Gibbs entropy, because ρ̂(t) is objective in a sense in which classical
ρ(z, t) isn’t.

Finally, let us note that there is a notion of Gibbs-like entropy that deals directly
with statistics of Bohmian particle positions, which has been applied to explain why
the Bohmian particle positions have the probability density equal to ρ(x, t) [32]. Un-
like other entropies discussed above, this type of entropy does not play any direct role
in standard quantum statistical mechanics. In particular, this type of entropy does
not give rise to thermal entropy. Ultimately, this is because thermal entropy is re-
lated to the Hamiltonian of the system, while Bohmian mechanics is not Hamiltonian
mechanics. In this paper, this type of entropy will not be used.

To conclude, there are many kinds of entropy and each has its advantages and
disadvantages. There is no such thing as the “right” definition of entropy. Their roles
are complementary, different kinds of entropy are relevant in different contexts. We
shall also further discuss it in Sec. 5.5.

5.4 Explanation of thermodynamics

In this subsection, most of the technical results are already known from existing
literature and do not depend on Bohmian interpretation. Hence we shall not present
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detailed derivations, but only sketch the main ideas, with emphasis on conceptual
ideas which are essential from the Bohmian point of view.

In realistic systems described by statistical mechanics, the mixed state usually
originates from partial tracing of the state of a larger system. Thus the thermal
mixed state (92) is really an example of the state ρ̂A obtained by partial tracing over
the rest of the larger system with the state ρ̂. In other words, (92) can be written
more correctly as

ρ̂A(t) = TrB ρ̂(t) ≃
e−βĤA

Tr e−βĤA

, (108)

where ĤA is the Hamiltonian of the A-subsystem. (Alternatively, (108) can also be
obtained by maximizing the von Neumann entropy under the constraints that the
density matrix is normalized and that the ensemble average of Hamiltonian has a
certain prescribed value [33], but we shall not pursue this approach.)

A more detailed explanation of the approximate equality in (108) is as follows.
One starts from a big system, called thermal bath, in a microcanonical ensemble,
meaning that its energy is uniformly distributed within a narrow range [Ē, Ē +∆E],
where ∆E is small. Thus the bath can be modeled by a pure state

|ψ(t)〉 ∝
∑

microcan m

e−iEmt/~|m〉, (109)

where “microcan m” denotes that the sum is taken only over states the energy of
which satisfies Em ∈ [Ē, Ē + ∆E]. The big system has N ≫ 1 particles and its
density operator is ρ̂(t) = |ψ(t)〉〈ψ(t)|. Now consider an arbitrary subsystem of NA

particles, such that
N ≫ NA ≫ 1. (110)

We assume that the A-subsystem weakly interacts with the rest of the bath (the B-
subsystem), such that the full Hamiltonian has the form Ĥ = ĤA + ĤB + ĤAB and
the A-subsystem is entangled with the B-subsystem, but in a computation of the full
energy of the system one can use the approximation Ĥ ≃ ĤA + ĤB. It turns out
[34, 35] that almost any A-subsystem that satisfies the assumptions above has the
mixed density matrix that can be approximated by (108). The β in (108) is given by
the formula [34]

β =
1

k

dSqB(Ē)

dĒ
, (111)

where SqB(Ē) is the quantum Boltzmann entropy of the full system in the micro-
canonical ensemble

SqB(Ē) = k ln dimHmicrocan(Ē), (112)

and dimHmicrocan(Ē) is the dimension of the microcanonical Hilbert space, spanned
by all states the energy of which is in the interval [Ē, Ē +∆E]. For more details we
refer the reader to [34].

The derivation of (108) from (109) explains how canonical ensemble of a subsystem
arises from the microcanonical ensemble of the full closed system. After that, one can
proceed as in standard statistical mechanics textbooks, which we now briefly sketch.
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It will be understood that everything is considered in the A-subsystem, so the label
A will be suppressed. One starts from introducing the partition function

Z(V, T ) = Tr e−βĤ =
∑

n

e−βEn , (113)

where β = 1/(kT ) as usual. The dependence on the spatial 3-dimensional volume V
arises because Ĥ = Ĥ(V ) describes a system confined within V , so that wave functions
which are eigenstates of Ĥ(V ) all vanish outside of V . The density operator (108) is
diagonal in the n-basis, and its eigenvalues

pn =
e−βEn

Z
(114)

satisfy
∑

n pn = 1. Thus the average energy (95) can be written as

E =
∑

n

Enpn =

∑

nEne
−βEn

Z
= −∂ lnZ

∂β
= kT 2∂ lnZ

∂T
. (115)

Similarly, the entropy (96) can be written as

S ≡ SvN = −k
∑

n

pn ln pn =
∂(kT lnZ)

∂T
. (116)

Defining also the pressure as

P =
∂(kT lnZ)

∂V
, (117)

by standard thermodynamic methods [6, 7] one finds6 that these quantities obey

dE = TdS − PdV, (118)

which is nothing but the 1st law of thermodynamics.
So far, in this subsection we said nothing new and used only standard quantum

statistical mechanics. Now we interpret (118) from the Bohmian point of view. For
that purpose, we stress that all quantities in (118) are purely nomological, they say
nothing about Bohmian ontology. The crucial Bohmian insight arises from the general
result that Bohmian particle positions in space are distributed in the same way as
in standard QM. Hence, the volume V inside which the eigenfunctions of Ĥ do not
vanish is the same as the volume VBohm filled with actual Bohmian particles. In other
words, Bohmian mechanics predicts that

VBohm = V, (119)

6A quick reminder for those whose knowledge of thermodynamics is rusty. From (116) and (115)
one finds S = E/T +k lnZ = (E−F )/T , where F (V, T ) ≡ −kT lnZ(V, T ) is Helmholtz free energy.
Hence E = F + TS, so dE = (∂F/∂V )dV + (∂F/∂T )dT + TdS + SdT . Using (117) and (115), this
can be written as dE = −PdV + (F −E)dT/T + TdS + SdT = TdS − PdV + (F −E + TS)dT/T .
The last bracket is zero, which proves (118).

26



so (118) implies
dE = TdS − PdVBohm, (120)

which is the Bohmian version of the 1st law of thermodynamics. An even more
illuminating way to write this is

dVBohm

dt
=

1

P

(

T
dS

dt
− dE

dt

)

, (121)

which has the form of an equation of motion for the ontological thing on the left-hand
side, guided by the nomological thing (the law) on the right-hand side. This is, in
essence, how Bohmian mechanics explains thermodynamics.

We note that (121) describes a change of volume of a macroscopic object (typi-
cally a gas), so it is not necessary to introduce an additional macroscopic measuring
apparatus to relate (121) with directly observable things. The macroscopic volume
VBohm is itself directly observable, it is a perceptible in the language of [17]. It should
be distinguished from the microscopic Bohmian law of motion (87) or (91), which is
not observable directly.

From the Bohmian point of view, the most important and perhaps unexpected
conceptual message is that most thermodynamic quantities are not ontological. Even
though Bohmian particles have actual positions, actual velocities, and hence actual
kinetic energies, the energy E appearing in the 1st law of thermodynamic does not
depend on those actual positions and velocities, so this energy is not ontological.
Likewise, the temperature T also does not depend on those actual positions and
velocities, so temperature is also not ontological. Similarly, the entropy S also does
not depend on those actual positions and velocities, so it is also not ontological.
Instead, all these quantities are nomological, they are entities that describe the law
of motion for the ontological particles. The only ontological thermodynamic quantity
is the volume VBohm (numerically equal to the nomological volume V ), corresponding
to the space filled with ontological particles. We find this message very deep and
important, because otherwise someone with a Bohmian way of thinking can easily fall
into a trap of conceptual confusion by trying to think of energy, temperature, entropy
and pressure as ontological quantities somehow to be defined by the actual Bohmian
positions and velocities. The thermodynamic quantities E, T , S, P , and even V , are
the quantities specified by the mixed quantum state ρ̂, so they are nomological, in
the same sense in which the wave function is nomological, and not ontological.

5.5 Proper mixture vs improper mixture, and the meaning

of entropy

In quantum foundations one often distinguishes a proper mixture from an improper
mixture [36]. In a proper mixture, the subsystem of interest is actually in a pure
state, but one does not know what this pure state is, so one describes the subsystem
statistically in terms of a mixed density operator. In an improper mixture, the mixed
density operator of the subsystem originates from partial tracing over the rest of the
Universe, so there is no single pure state that could be associated with the subsystem.

27



However, in practical applications of standard quantum statistical mechanics, one
rarely cares about the difference, because the average values such as (95) do not
depend on it. What can Bohmian mechanics say about the difference between proper
and improper mixtures?

In our formulation, the density operator ρ̂A(t) is always obtained through partial
tracing over the rest of the closed system, so ρ̂A(t) is an improper mixture. However,
the second line of (82) tells us that the current operator of the A-subsystem can be
expressed in terms of ρ̂A(t), in a way which does not see a difference between proper
and improper mixtures. The consequence is that the effective Bohmian trajectories
(91) do not depend on whether the mixture is proper or improper. On the other hand,
the more fundamental trajectories (87) take the whole closed system into account, so
the mixed density operator of the A-subsystem, proper or improper, does not take any
role in a computation of Bohmian trajectories. In any case, the measurable predictions
of Bohmian mechanics do not depend on whether one uses (91) or (87). Hence, for all
practical purposes, the difference between proper and improper mixtures in statistical
physics of large systems is irrelevant.

Let us illustrate it on an example. Consider a cat that can be in two macroscop-
ically different states, cold cat and warm cat. Clearly, the thermal entropy Swarm of
the warm cat is larger than the thermal entropy Scold of the cold cat. But what if the
cat is in the mixture of cold and warm? And what does it even mean that the cat “is
in the mixture”?

For the sake of argument, let us first assume that the cat can be sufficiently isolated
from the environment, so that the cold cat can be modeled by a closed system in the
pure state |cold cat〉, and similarly for the warm cat in the pure state |warm cat〉.
This, of course, cannot be realized in practice, but it should be possible in principle.
So in principle, it should also be possible to have a coherent superposition

1√
2
[|cold cat〉+ |warm cat〉]. (122)

The two wave functions 〈x|cold cat〉 and 〈x|warm cat〉 have a negligible overlap in
the x-space, so they correspond to two separated channels, which implies that the
Bohmian positions x(t) will be either in the cold channel or the warm channel. In
other words, the cat is either cold or warm, and the thermal entropy of the cat is
either Scold or Swarm.

But since the cat is isolated from the environment, an external observer does not
know whether the cat is cold or warm. Hence the observer can describe his knowledge
by the proper mixture, represented by the mixed density operator

1

2
[|cold cat〉〈cold cat|+ |warm cat〉〈warm cat|]. (123)

What is the entropy of this state? The answer depends on what one means by
“entropy”. The thermal entropy is still either Scold or Swarm. The von Neumann
entropy is k ln 2.

Now suppose that a measuring apparatus measures the cat, so that the state of
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the cat gets entangled with the state of the measuring apparatus

1√
2
[|cold cat〉|Bcold〉+ |warm cat〉|Bwarm〉], (124)

where |Bcold〉 and |Bwarm〉 are the possible states of the measuring apparatus. But
suppose that the observer does not know the result of measurement. This means that
the observer will describe the cat by the improper mixture, represented by the same

density operator (123). The observer will associate a proper mixture with the full
cat+apparatus system, but the cat alone is described by an improper mixture. The
thermal entropy is still either Scold or Swarm, and the von Neumann entropy is still
k ln 2.

Now consider a more realistic situation, in which the cat has never been isolated
from the environment. Instead, the cat is an A-subsystem of a big thermal bath. The
bath has a temperature, the value of which is either Tcold or Twarm. Hence the state of
the cat is either ρ̂cold or ρ̂warm, each of which is an improper mixture represented by
a density operator of the form (108), with β = βcold or β = βwarm. But if an observer
does not know the temperature, he will describe his knowledge about the cat with a
mixture

1

2
[ρ̂cold + ρ̂warm]. (125)

Is this mixture proper or improper? The question is tricky. It is “proper”, in the
sense that the cat is either in the state ρ̂cold or ρ̂warm. But it is also “improper”, in
the sense that ρ̂cold and ρ̂warm themselves are improper mixtures. And what about
entropy? The thermal entropy is either Scold or Swarm. The von Neumann entropy,
on the other hand, is approximately the average of Scold and Swarm [12].

It has been argued in [12] that the “true” entropy is simply Scold or Swarm, from
which the authors concluded that von Neumann entropy, and its classical cousin
Gibbs entropy, are “wrong”. They used it as one of the arguments for the general
idea that only Boltzmann entropy (classical or quantum) is “right”. However, this
argument assumes that there is such thing as “the right entropy”. In our opinion,
there is no such thing. After all, at the ontological level, the Bohmian particles only
have trajectories x(t). They don’t have entropy at all at the ontological level. As
we discussed in Sec. 5.3, all kinds of entropy are at least partially nomological. In
particular, Boltzmann entropy is nomological because it depends on the Hamiltonian
of the observer HO, which determines a “natural” partition of the phase (or Hilbert)
space into macroscopically distinguishable subspaces. More importantly, different
kinds of entropy are just different thinking tools that, in one way or another, help
us to effectively describe complex phenomena in simple terms. It makes no sense to
ask what is “the right entropy” before specifying what one wants to do with it. The
world out there does not have entropy; it is us, the scientists, who ascribe an entropy
(not the entropy) to it, depending on the level of description that we use in a given
context.
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6 Conclusion

To a large extent, quantum statistical mechanics reduces to a study of certain mixed
density operators ρ̂, which usually arise through a partial trace over the environment.
Thus, to a large extent, quantum statistical mechanics can be thought of as a study
of certain open subsystems. On the other hand, Bohmian mechanics in its usual
formulation insists that, in principle, the whole closed system must always be taken
into account, thereby somewhat contradicting the general spirit of quantum statistical
mechanics.

In this paper we have developed a new approach to Bohmian mechanics, which can
treat an arbitrary subsystem (with a fixed number of particles) without any reference
to the rest of the system, thus making it more convenient for applications in quantum
statistical mechanics. The truncated Bohmian particle trajectories in the subsystem
obtained in this way differ from Bohmian trajectories in the subsystem obtained by
considering the full system. Nevertheless, the trajectories are not directly measurable
and the probabilistic predictions obtained by the two approaches are the same, and
equivalent to probabilistic predictions obtained by standard quantum theory. The
purpose of Bohmian trajectories in our approach is not to postulate the absolute
“true reality”, but to construct an intuitive picture useful for conceptual thinking
about quantum phenomena. According to this picture, the world is made of particles
which always have definite positions, irrespective of whether they are measured or
not, in a way which is compatible with all probabilistic predictions of non-relativistic
quantum mechanics. Moreover, the particle trajectories are deterministic, while all
probabilities emerge from a lack of knowledge of actual initial conditions, very much
like in classical statistical mechanics. In this way, with the Bohmian interpretation,
quantum statistical mechanics is conceptually very similar to classical statistical me-
chanics. The differences between classical and quantum statistical mechanics can
be reduced to the fact that, for closed systems, classical particle trajectories are de-
termined from the classical Hamiltonian H , while Bohmian particle trajectories are
determined from the density operator ρ̂.

The novel results in this paper are both technical and conceptual. On the techni-
cal side, we have developed the formalism of probability currents in the multi-particle
space of open systems, for both classical and quantum mechanics. The currents,
obeying continuity equations, define natural velocities of particles, compatible with
probabilities in the considered open system. On the conceptual side, we have devel-
oped a version of Bohmian interpretation in which particle trajectories are interpreted
merely as an intuitive thinking tool, without any pretensions to claims about real-
ity of these trajectories. We have also discussed how Bohmian trajectories help in
conceptual thinking about various notions of entropy, about proper and improper
mixtures, and about thermodynamics.

To our knowledge, this work is the first systematic study of quantum statistical
mechanics from a Bohmian point of view. We certainly did not answer all possible
questions about the role of Bohmian interpretation in statistical mechanics, so we
hope that this work will stimulate further research.
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