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Abstract
The Mediterranean diet is known for its health benefits, mainly due to its diverse ingredients, such as fruits, vegetables, 
grains, nuts, legumes, and olive oil. This review examines the reformulation and characterization of these Mediterranean 
ingredients using several novel food processing and analytical technologies. Reformulation technologies discussed include 
microwave pasteurization, microwave vacuum drying (VMD), pulsed electric field (PEF), high-pressure homogenization 
(HPH), freeze drying, high hydrostatic pressure (HHP), and cold plasma technology (CP). Characterization technologies 
covered include Nuclear Magnetic Resonance (NMR), Electron Paramagnetic Resonance (EPR), and Near Infrared (NIR) 
spectroscopy. Nonthermal techniques such as PEF, HHP and CP are particularly noteworthy for their ability to preserve 
nutritional and sensory qualities without using high temperatures, that can degrade sensitive compounds. The main require-
ment for these processing methods is to ensure that the food retains its beneficial nutrients and natural flavors while extend-
ing its shelf life. Analytical techniques like NMR, EPR, and NIR spectroscopy provide detailed insights into the molecular 
composition and quality of food products. These techniques allow for precise optimization of processing methods, ensuring 
the best possible quality and nutritional value. The integration of these advanced processing and analytical techniques with 
traditional Mediterranean ingredients offers significant advancements in food science, improving food quality, nutritional 
value, and the sustainability of food production. This review aims to provide a comprehensive understanding of how these 
novel technologies can be applied to optimize the nutritional and sensory qualities of Mediterranean ingredients while 
enhancing their health-promoting capabilities.
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Introduction

The Mediterranean diet, often abbreviated as MedDiet, is 
based on the traditional eating habits of countries border-
ing the Mediterranean Sea, including Türkiye, Greece, Italy, 
Croatia, Spain, Lebanon, and others, and is widely accepted 
worldwide as a healthy lifestyle model [1]. The diet is based 
on the consumption of healthy oils such as olive oil, whole 
grains, fruits, vegetables, legumes, nuts, seeds and fish [2]. 
Among the basic elements of the Mediterranean diet, toma-
toes are an indispensable component of the diet. Tomatoes 
are a vegetable that forms the basis of Mediterranean diet 

and are extremely rich in powerful antioxidants such as lyco-
pene which is a carotenoid that protects cells from the dam-
age of free radicals and protects against chronic diseases [3]. 
When used with tomatoes, olive oil increases the bioavail-
ability of lycopene, making it more effective in the body [4]. 
In addition, fruits and vegetables provide essential vitamins, 
minerals, and fiber, while whole grains contribute to carbo-
hydrates and additional fiber [5]. Consuming plenty of fresh 
vegetables and fruits increases the antioxidant capacity of 
the diet, reduces oxidative stress caused by free radicals in 
the body and minimizes the risk of developing chronic dis-
eases [6]. Moreover, legumes and nuts offer plant-based pro-
tein and healthy fats. Olive oil, a staple in the Mediterranean 
lifestyle, is a significant source of monounsaturated fatty 
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acids with health-promoting properties. Fish, particularly 
oily varieties like salmon, sardines, and mackerel, are impor-
tant for their omega-3 fatty acids [2]. Fish and seafood, on 
the other hand, reduce inflammation and protect against car-
diovascular diseases as a source of omega-3 fatty acids. This 
view of diet and lifestyle is associated with numerous health 
benefits, including a lower risk of heart disease, stroke, type 
2 diabetes, and certain cancers, in addition to improved life 
quality [7, 8]. Numerous studies have searched for a link 
between MedDiet and diseases. Some recent studies have 
revealed that the Mediterranean diet offers long-term pro-
tection against cardiovascular diseases [9, 10]. Some other 
studies have shown that MedDiet helps with diabetes and 
obesity by improving insulin resistance and enabling better 
glycemic control [11–13].

While the Mediterranean diet is known as a healthy life-
style model, the changing living conditions and consump-
tion habits of modern society require the reformulation of 
traditional products belonging to this diet. Innovative food 
processing technologies ensure that the nutritional values 
of these traditional products are preserved, the bioavailabil-
ity of their bioactive components is increased and they are 
made more suitable for consumer demands. In particular, 
the processing of basic products such as tomatoes requires 
technological innovations to ensure higher bioavailability 
of lycopene. For example, technologies such as pulsed elec-
tric field, high-pressure homogenization and freeze-drying 
extend the shelf life of tomatoes and other foods, minimize 
nutrient loss and improve sensory properties such as flavor 
and texture [14]. The implementation of such technological 
innovations is of great importance for the sustainability of 
the Mediterranean diet and its accessibility to the masses in 
the modern age. Mediterranean diet products reformulated 
with new technologies both preserve the positive effects of 
traditional foods on health and meet consumer expectations. 
Therefore, the reformulation of Mediterranean diet products 
is a great scientific and industrial necessity in the field of 
health and nutrition. Reformulation and characterization of 
food ingredients could be performed by several novel food 
processing and analytical technologies. Reformulation tech-
niques include microwave pasteurization, which uses micro-
wave energy to ensure food safety and maintain nutritional 
and sensory qualities; microwave vacuum drying, which 
combines microwave energy with a vacuum to efficiently 
reduce moisture content while preserving nutrients and sen-
sory attributes; pulsed electric field (PEF), which uses short 
bursts of high voltage electricity to permeabilize cell mem-
branes, enhancing the extraction of bioactive compounds 
and extending shelf life without significant thermal damage; 
high-pressure homogenization (HPH), which applies high 
pressure to disrupt cellular structures, improving the extrac-
tion of valuable compounds and enhancing the stability and 
properties of food products; freeze drying, which removes 

water from frozen food through sublimation, resulting in 
high-quality dried products that retain their nutritional and 
sensory properties; high hydrostatic pressure (HHP), which 
subjects food to high pressure to inactivate microorganisms 
and enzymes, preserving nutritional and sensory qualities 
while extending shelf life; and cold plasma technology, 
a non-thermal method that uses ionized gas to inactivate 
microorganisms and enzymes on food surfaces, maintain-
ing nutritional and sensory properties without the need for 
high temperatures. Characterization technologies would 
include Nuclear Magnetic Resonance (NMR), which pro-
vides detailed insights into the molecular composition and 
structure of ingredients; Electron Paramagnetic Resonance 
(EPR), which is used to detect and quantify free radicals 
and other paramagnetic species and provide information 
on the oxidative stability and quality of food products; and 
Near Infrared (NIR) spectroscopy, which offers a rapid and 
non-destructive analyses of the composition and quality of 
ingredients, including moisture, protein, fat, and carbohy-
drate content.

The FunTomP project, funded under the PRIMA program 
in 2021, brought together 16 partners from 9 different coun-
tries to collaboratively develop innovative solutions for the 
valorization of tomato processing by-products. The project 
focused on extracting and utilizing functional ingredients 
such as fibers, proteins, and bioactive compounds, aiming to 
reduce waste and enhance sustainability in the agro-indus-
trial sector.

In this review, we also highlight the processing tech-
niques and characterization methods employed during the 
project, showcasing the technological advancements and 
interdisciplinary approaches that contributed to achieving 
its objectives.

Today, the MedDiet is valued for its nutritional value and 
its role in promoting health and preventing disease, mak-
ing it a valuable model for healthy eating worldwide. This 
review therefore aims to provide an insight into how new 
technologies are being used to reformulate and characterize 
Mediterranean ingredients. Moreover, this review challenges 
how innovative food processing technologies and analytical 
tools can optimize the nutritional and sensory qualities of 
Mediterranean ingredients especially tomato and olive while 
enchancing their health-promoting capabilities.

Reformulation of Mediterranean Ingredients 
by Novel Technologies

Microwave Pasteurization

Microwave pasteurization represents a thermal food pro-
cessing technique that employs microwaves to ensure food 
safety, maintain nutritional and sensory qualities, and extend 
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the shelf life of food. This method involves interacting food 
components with microwave energy to facilitate pasteuriza-
tion. There are two main mechanisms through which micro-
wave heating occurs. Firstly, microwaves induce a dipolar 
rotation of the water molecules at the frequency of the waves 
in the presence of an alternating electric field. This molec-
ular motion generates frictional heat [15]. Secondly, the 
microwaves cause polarization of the ions, whose movement 
also contributes to heat generation [15]. For microwave pas-
teurization the heat is not transferred via a hot medium but 
is generated inside the product. The inactivation of micro-
organisms and enzymes primarily results from this thermal 
effect [16]. Despite the predominance of thermal mecha-
nisms, some scientists suggest that non-thermal effects, such 
as the destabilization of proteins and cell membranes by 
the electromagnetic field, may also play a role in microbial 
inactivation. However, this remains a subject of ongoing 
debate [17].

Due to its unique advantages and challenges, micro-
wave pasteurization has attracted significant attention from 
researchers and the food industry. Unlike conventional 
methods that rely on conduction or convection and use hot 
water or steam, microwave pasteurization employs a volu-
metric heating approach, where heat is generated throughout 
the material simultaneously. This method is known for its 
shorter process times and reduced energy consumption, with 
an estimated energy efficiency of around 30%, compared to 
13–29% for conventional methods [18]. The rapid heating 
and reduced processing time contribute to minimal impact 
on food quality and preserve its sensory and nutritional prop-
erties [19].

However, microwave pasteurization also presents cer-
tain downsides. The nature of the electromagnetic field can 
lead to an uneven energy distribution, resulting in hot and 
cold spots within the product. Cold spots may lead to inad-
equate pasteurization, while hot spots may cause burning or 
overprocessing of the product. Therefore, researchers have 
focused on design improvements to overcome these prob-
lems and produce reliable equipment at pilot and industrial 
scale [20].

Numerous studies have investigated microwave pas-
teurization as a promising method to replace conventional 
methods. The appropriateness of pasteurization, process 
efficiency, and the sensory and nutritional properties of the 
products are compared with conventional methods. This 
review focuses on Mediterranean ingredients like tomato 
products, olives, and legumes. It highlights the potential 
benefits and limitations of preserving the integrity and 
quality of these foods. Arjmandi et al. [21] utilized a semi-
industrial continuous microwave system under high power/
short time and low power/long time conditions and com-
pared it to a conventional method (96 °C, 35 s holding time) 
for pasteurizing tomato puree [21]. It was found that the total 

antioxidant capacity (by ferric reducing antioxidant capac-
ity) and vitamin C content were higher in the microwave-
treated sample than in the conventionally processed sam-
ples. Particularly, the process with high power/short time 
(1900–3150 W, 150–180 s) resulted in enhanced viscosity, 
increased lycopene content, and a lower residual enzyme 
activity.

Pérez-Tejeda et al. [22] compared microwave (2.67 min at 
full power operation with 3 min holding time) and conven-
tional pasteurization (heat treatment at 93.3 °C for 26.5 min 
proposed by FAO) on physical properties of tomato puree 
and microbial inactivation kinetics by calculating lethality 
(F93.3

8.9) and intentional inoculation with Escherichia coli 
[22]. It was found that flavor, color, and overall acceptabil-
ity scores did not differ significantly between microwave 
and conventional pasteurization. A 5-log reduction in the 
E. coli population was observed after microwave pasteuri-
zation. They showed deviation in come-up time (2.67 min, 
26.5 min) and total process time (5.67 min, 53 min), while 
similar maximum temperature (88.2 °C, 87.5 °C) and lethal-
ity values (1.11 min, 1.10 min) were obtained for micro-
wave and conventional treatments, respectively. Stratakos 
et al. [23] studied the pasteurization of tomato juice in an 
industrial-scale microwave pasteurizer and examined its 
physical, chemical, and microbial properties during storage 
[23]. The work concluded that microwave-pasteurized juice 
was like the conventional one regarding physicochemical 
and microbiological characteristics, achieving the desired 
microbial reduction. The microwave-pasteurized juice had 
higher initial antioxidant activity (measured by the ABTS 
method) and showed a better cytoprotective effect. Besides 
using microwaves for microbial inactivation, microwave 
processing can improve product quality and stability and 
increase functionality. Farag et al. [24] found that microwave 
treatment of olive fruits (3 to 12 min) significantly reduced 
lipase activity and thus increased the stability of olive oil 
during storage [24]. There were no significant differences 
in the chemical composition of olives after microwave treat-
ment. Mahalaxmi et al. [25] showed that proteins in lentil 
flour can be modified by microwave treatment to obtain bet-
ter water and oil absorption capacity and emulsifying prop-
erties [25]. The lentils were subjected to different combina-
tions of power (540 to 900 W) and time (2 to 6 min). The 
enhancement of techno-functional properties was mainly 
attributed to the denaturation of the proteins, i.e., changes 
in the secondary structure.

Microwave Vacuum Drying (VMD)

Drying has been one of the major mass transfer processes 
in food technology [26–28]. Different drying systems and 
operation types, such as convection, conduction, radia-
tion, and combinations, have been developed for the food 
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industry. Drying is not only used to preserve food but also 
to cook it. However, the conventional drying process, which 
is time-consuming and energy-inefficient, does not preserve 
product quality adequately as nutrients, such as color, flavor, 
and texture, are lost. This negatively affects the sensorial 
properties of the food.

Microwave Vacuum Drying (VMD) technology is already 
superior to conventional techniques regarding moisture 
reduction in food due to its fast and efficient drying. This 
technique is based on the microwaves' absorption by the 
water molecules in the food matrix, which causes vibrations 
and movement of the water molecules, generating heat. This 
reaction is promoted by the polar ions in the food matrices. 
There are some parameters affecting the efficiency of the 
drying process, such as vacuum pressure (kPa), frequency 
(Hz), microwave power (kW), temperature (°C), composi-
tion, and dielectric properties of the food [29]. Vacuum-
ing helps to lower the water's boiling point by reducing the 
pressure in the microwave chamber, which enables efficient 
drying. This preserves bioactive nutrients and maintains the 
sensory attributes of the food. Moreover, this microwave 
vacuum drying system helps to significantly reduce the dry-
ing time compared to conventional hot air drying and freeze-
drying. Microwave vacuum drying is more effective than hot 
air drying in terms of energy consumption as this system 
consumes less energy per kilogram of evaporated water than 
conventional drying. For example, research on microwave 
vacuum drying (VMD) of kiwifruit compared to freeze dry-
ing (FD) and air drying (AD) has shown that the energy 
savings with VMD are 96.18% and 95.42%, compared to FD 
and AD, respectively [27].

This technique has been very popular in the food industry, 
especially for food containing considerable amounts of heat-
sensitive compounds, such as fruits, vegetables, and meat 
[30–35]. The nutritional value of the food can be preserved 
more in VMD systems than in conventional hot air drying, 
as the long time and long temperature drying process lead to 
the degradation of many functional components, for exam-
ple, phenolics [36]. However, there may be some exceptional 
cases. Gül et al. [36] stated that conventional drying resulted 
in higher lycopene content than VMD in tomatoes, as the 
release of lycopene is promoted at higher temperatures and 
longer processing times [36]. Another study on the drying of 
“Deveci” pear has suggested that a vacuum-assisted micro-
wave system has provided higher protein content, rehydra-
tion ratio, and mineral content with increasing vacuumi-
zation [37]. In addition, energy consumption was reduced 
while the drying rate was increased at higher vacuum levels. 
The microstructure of the fruit was also affected by VMD 
applications. The pore size and its distribution increase 
with VMD applications. A lower oxygen concentration in 
the vacuum chamber causes less oxidation of polyphenols 
in food [38].

Moreover, browning reactions in the food can be inhibited 
by VMD, so the color is improved. Another study pointed 
out that VMD reduces the degradation of quercetin deriva-
tives in apple slices compared to hot air drying [26]. In addi-
tion to substantial health benefits, VMD systems can achieve 
better environmental sustainability and reduce greenhouse 
gas emissions [39]. The VMD system has been utilized to 
reformulate Mediterranean food products [36], and it was 
found that a functionalized tomato snack bar can be pro-
duced using this methodology. This drying type has reduced 
processing time and energy consumption while maintaining 
the physicochemical properties and preservation of bioactive 
compounds such as lycopene in tomatoes.

Since consumers become more aware of the importance 
of a healthy Mediterranean diet, there has been consider-
able growth in the popularity of microwave vacuum appli-
cations for those foods. For example, apples, strawberries, 
mangoes, carrots, potatoes, tomatoes, mushrooms, and rai-
sins are dried utilizing this method [28, 40–44]. The foods 
can have higher quality, lower processed, better nutritional 
value, reduced risk of certain diseases, longer shelf life, cost-
effective processing, and improved palatability as opposed 
to air drying. These are the main benefits of this technol-
ogy [45]. Vitamins, minerals, and fiber are essential dietary 
nutrients in Mediterranean foods. Therefore, the freshness 
of the food should be maintained by dehydration to preserve 
it during the processing of fruits and vegetables. The excel-
lent quality of dried banana slices was achieved by checking 
the sensorial properties [46]. Lower density, better rehydra-
tion potential, and more color retention were achieved in 
dried carrot slices by microwave vacuum drying compared 
to traditional air drying [28]. Also, the overall preference for 
the sensory properties of these carrots was rated better than 
that of freeze-dried ones. The unique puffed structure of the 
carrot slices after microwaving was considered a preferred 
property, especially for the reformulation of Mediterranean-
based snack-type products [43]. Smaller alpha-carotene con-
tent loss was achieved by VMD as opposed to air drying due 
to rapid processing [47]. Vitamin C was also retained better 
in VMD. Honey drying was completed without darkening by 
using VMD [41]. Although many research and development 
endeavors exist for microwave applications in reformulat-
ing Mediterranean-based food, vacuum-assisted microwave 
applications must be evaluated in further studies [48].

High‑intensity Ultrasound

High-intensity ultrasound is the non-thermal method of food 
processing whose mechanism is based on mechanical ultra-
sonic waves that generate vibrations in the medium. The 
ultrasonic generator produces an alternating electrical cur-
rent at the required ultrasound frequency, while the ultra-
sonic transducer, which is usually piezoelectric, converts the 
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electrical pulses into sound energy. The resulting mechani-
cal vibrations are amplified in the amplifier and the ultra-
sonic waves are emitted into the target medium. Taking 
into account the intensity and frequency of the ultrasonic 
waves and the field of application, ultrasound is divided 
into low-intensity ultrasound (less than 1 W/cm2) with high-
frequency waves (above 100 kHz) and high-intensity ultra-
sound (from 10 to 1000 W/cm2) with low-frequency waves 
(from 20 to 100 kHz) [49]. Low-intensity ultrasound is most 
commonly used in the food industry to analyze the physico-
chemical properties of food, while high-intensity ultrasound 
is used in various food processing procedures, with emphasis 
on the inactivation of microorganisms [50, 51].

In food processing, ultrasound has physical and chemi-
cal effects on the treated raw materials. The chemical effect 
of ultrasound is attributed to the formation of free radicals 
H + and OH-, which result from the decomposition of water 
molecules within the oscillating bubbles. In contrast, the 
physical effects are numerous and complex and are based on 
transient acoustic cavitation with numerous associated phe-
nomena, rapidly changing mechanical loads and sometimes 
cellular resonance [52].

The primary mechanism of ultrasound is based on tran-
sient acoustic cavitation and the formation of thousands of 
bubbles caused by the propagation of ultrasonic waves in 
a liquid medium [50]. The action of the ultrasound on the 
liquid leads to alternating cycles of compression and expan-
sion of the molecules, which changes the distance between 
them. If the distance between the molecules is large enough, 
cavities are created and the bubbles grow until they reach a 
critical size. When the critical size is reached, the bubbles 
collapse abruptly, creating micro-regions with extremely 
high temperatures (from 4500 to 5000 K), pressures (over 
100 MPa) and shock waves [53].

The increase in temperature and pressure, the formation 
of free radicals and their recombination with other mole-
cules as well as the decomposition of macromolecules are 
part of the mechanism of microbial inactivation supported 
by ultrasound. The transient acoustic cavitation causes the 
collapse of the microorganism's cell wall and the release of 
cytoplasmic contents from the cell. In addition to the afore-
mentioned destruction, coagulation of the cell proteins also 
occurs, which consequently contributes to the lethal effect of 
ultrasound treatment on microorganisms, i.e. cell death [50]. 
The success of inactivation largely depends on the applied 
amplitude, treatment time, power, temperature, sample vol-
ume, food properties, but also on the characteristics of the 
microorganism [52]. One of the many positive studies is 
the study on tomato juice, where the inhibitory effect of 
ultrasound on microorganisms was observed without sig-
nificant effects on the nutritional and sensory properties of 
the tomato product [54]. Compared to conventional thermal 
methods, ultrasound ensures the microbiological safety of 

the product at significantly lower temperatures and shorter 
treatment time (energy more efficient) [52, 55]. This makes 
ultrasound a more cost-effective and sustainable alternative 
to conventional methods. During storage, however, there is 
the possibility of recovery of damaged cells. A solution for 
this could be a barrier technique that combines ultrasound 
with other non-thermal food processing techniques or meth-
ods such as pH reduction. This approach can slow down the 
growth of microorganisms or cause their death. If recovery 
is successfully prevented, the microbial cells can no longer 
grow and a higher degree of inactivation and better micro-
biological stability of the product can be achieved [56].

In addition to the positive effects on microbiological 
safety, the processing of fruit juices with ultrasound ena-
bles better preservation of the nutritionally valuable ingre-
dients, the sensory properties and the general quality of the 
final product compared to conventional thermal treatments. 
In addition, the antioxidant activity of fruit juices can be 
increased, which consequently affects the better stability of 
the product during storage time. Furthermore, ultrasound 
is widely used in the food industry for meat processing 
and mass transfer processes of fruits and vegetables [52]. 
Despite the many benefits, ultrasonic treatment can cause 
the degradation of lipids, changes in the color and viscosity 
of the product, as well as the formation of atypical aromas 
and free radicals [52], so widespread application should be 
approached with caution.

Ultraviolet‑C (UV‑C) Light

UV-C light is a part of the electromagnetic spectrum with 
wavelengths ranging from 200 to 280 nm. This non-thermal 
technology has been granted approval by the US Food and 
Drug Administration (FDA) for the treatment of juices and 
solid foods (e.g. minimally processed or ready-to-eat fruits 
and vegetables) [57], and by the European Food Safety 
Authority (EFSA) for treating milk (for the enhancement of 
vitamin D content and shelf-life extension) [58] and bread 
for shelf-life extension [59]. These approvals make UV-C 
a compelling choice for manufacturers looking to improve 
product quality and extend shelf-life. UV-C is also used 
for the decontamination of food contact surfaces, air, and 
water [60]. The food industry finds this treatment appeal-
ing because of its antimicrobial effectiveness and minimal 
impact on physicochemical and sensory properties when 
used at proper doses [57, 61].

Also, UV-C doesn't produce any potentially hazardous 
chemical residues, has a low cost and a low carbon foot-
print, and can prevent cross-contamination because it can 
be applied after packaging [62–64]. In addition, the utiliza-
tion of UV-C stands out as a highly effective non-thermal 
technology for microbial inactivation in low-water activity 
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powdered foods, such as semolina and flour that is largely 
used in the production of pasta in Mediterranean countries 
like Italy [65, 66].

UV-C radiation has been proven to be effective for inac-
tivating a wide range of microorganisms, such as bacteria 
(including endospores), viruses, yeast, molds, and parasites. 
Microbial inactivation is achieved through the absorption 
of UV-C radiation by the DNA/RNA and proteins of these 
organisms, leading to structural damage through photo-oxi-
dation and ultimately rendering them inactive or non-viable 
[59]. The wavelength range of 250 nm to 270 nm has been 
demonstrated to yield optimal germicidal efficacy, as this 
is the range where maximal absorption by nucleic acids is 
achieved [67, 68]. UV-C-induced damage in DNA and RNA 
is caused by the dimerization of pyrimidine molecules which 
leads to the formation of pyrimidine dimers that impede the 
processes of transcription and replication of nucleic acids, 
resulting in genetic mutations and cellular death [67]. UV-C 
absorption by amino acids inhibits enzymatic activity and 
reduces the functionality of proteins [69]. DNA photoprod-
ucts formed after UV-C absorption include cyclobutane 
pyrimidine dimers and pyrimidine 6–4 pyrimidone pho-
toproduct [70]. It is observed that cyclobutane pyrimidine 
dimers that are formed between adjacent thymine bases [71] 
are the predominant and most cytotoxic lesions after UV-C 
irradiation. However, the 6–4 pyrimidine-pyrimidone photo-
products possess more severe and potentially fatal mutagenic 
consequences [72].

Several key factors play a role in the efficiency of UV-C 
light for decontamination purposes. These factors include 
the dosage of UV-C light applied (this is influenced by fac-
tors such as the type of lamps used), the duration of expo-
sure, the equipment configuration, and the optical properties 
of the matrix to be treated. Additionally, the effectiveness of 
UV-C light can vary depending on the type of microorgan-
ism being targeted. For example, Gram-positive bacteria typ-
ically are more resistant than Gram-negative bacteria due to 
their thicker peptidoglycan layer which may impede the pen-
etration of UV light [73]. Higher UV-C doses cause severe 
alterations in microorganisms, making their reactivation 
non-viable but when UV-C is used at lower doses, micro-
organisms have the ability to survive [74–76] because they 
can undergo dark-repair or photo-repair (photoreactivation) 
mechanisms to repair damage caused by UV-C exposure 
[77, 78]. Additionally, the presence of organic matter, color 
compounds, or suspended particles in food (liquid foods in 
particular) can absorb UV-C rays or block their transmission 
[79]. A high amount of both organic and inorganic particles 
in the product to be treated decreases UV transmittance (a 
measure of the level of radiation absorbance) and hinders the 
ability of UV-C photons to effectively penetrate the product, 
ultimately limiting their ability to deactivate microorgan-
isms [78]. Thus, it is crucial for food processors to consider 

all of these factors when utilizing UV-C light for preserva-
tion purposes, and to have a thorough understanding of the 
scientific principles behind this technology to maximize its 
effectiveness. To overcome these issues and improve food 
quality, UV-C has been applied in conjunction with other 
preservation methods such as refrigeration, ozonated water 
(10 ppm) activated with UV-light, disinfection/antimicrobial 
solutions, ultrasound, microwave, high-pressure processing, 
and mild heat treatments [58, 79].

Besides the demonstrated efficiency of UV-C in microbio-
logical inactivation, previous studies have shown that UV-C 
irradiation can increase the availability of phytochemicals in 
a variety of foods and beverages. Following UV-C treatment, 
certain studies have shown elevated carbohydrate content 
as well as preserved or even increased phenolic content and 
antioxidant activity [80]. UV-C increased the levels of total 
phenolic content, flavonoid content, and antioxidant activity 
of tomato, broccoli, amaranth, and red cabbage [81].

Despite these advantages, UV-C treatment can cause the 
degradation of health-promoting bioactive compounds in 
food. Exposure to high doses and/or long exposure time to 
UV-C radiation can lead to oxidative stress, which in turn 
can damage cell membranes and disrupt the balance of cel-
lular components resulting in a decrease in antioxidant con-
tent [81, 82]. Some experiments showed a reduced content 
of ascorbic acid, anthocyanins, and total phenols along with 
a decreased antioxidant activity after UV-C treatments for 
15, 30, and 60 min [83]. The impact of UV-C processing 
cannot be accurately predicted and must be evaluated on a 
case-by-case basis. The effects of this treatment on the levels 
of beneficial compounds vary, depending on factors like the 
kind of food matrix, processing conditions (e.g. intensity 
or duration), and in the case of fruits and vegetables, the 
variety, climate, and season [84]. As such, more research is 
necessary to draw reliable conclusions. Therefore, caution 
should be exercised and preliminary tests should be carried 
out when considering the application of UV-C technology 
in the food industry.

Pulsed Electric Field

Pulsed Electric Field (PEF) technology is one of the promis-
ing preservation methods in food processing that uses short 
bursts of high-voltage electricity to deactivate microorgan-
isms in foods. A non-thermal method, PEF is applied to 
foods to extend shelf life without significantly affecting their 
nutritional quality, flavor, color, and texture. The technology 
is based on applying electric fields to foods placed between 
the electrodes in the chamber for a very short time (typi-
cally microseconds to milliseconds) [85]. The electric field 
develops pores in the cell membrane, leading to increased 
permeability. This phenomenon, known as electroporation, 
disrupts cell integrity, leading to the inactivation of enzymes 
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responsible for spoilage or even cell death, thereby extend-
ing the shelf life of food products [86]. Therefore, PEF has 
been referred to as cold pasteurization in the food industry, 
especially for liquid products such as milk, egg, yogurt, oil, 
beverages, fruit juices, and soups [87].

Since its invention in the 1950s, PEF technology has been 
utilized for different purposes, including juice production, 
extraction of bioactive compounds, microbial inactivation, 
drying time reduction, and biomass processing [85, 88].

A comprehensive study on the extraction of virgin olive 
oil from different Spain-originated cultivars with different 
operating parameters revealed that the PEF treatment gave 
the best oil yield with short malaxation times at low pro-
cessing temperatures [89]. Moreover, according to sensory 
results, PEF-treated oils showed no defect or off-flavor.

Another study applies PEF for olive oil production in a 
pilot plant scale [90]. It was found that PEF can assist to 
mechanical extraction methods without changing quality and 
sensorial properties. PEF even yielded higher phenolic con-
tent (oleouropein derivatives). Authors suggested that even 
if PEF treatment does not require high levels of energy, ini-
tial investment should be considered. Carpentieri et al. [91] 
conducted a study to extract bioactives from oregano and 
wild thyme with PEF and Ultrasound (US) assisted method 
[91]. They reported both treatments (PEF and US) yielded 
noticeably higher phenolic compounds while US was found 
out to be more cost effective. In study of El Kantar et al. [92] 
PEF was used as pretreatment before juice extraction from 
whole fruits or peels stack of orange, pomelo and lemon 
[92]. According to electron microscopy data, PEF did not 
cause severe damages in the cell structures of fruits. Yet, 
PEF was remarkable in increasing polyphenol content espe-
cially for the lemon. This was explained with the selective 
extraction of polyphenols due to electropermeabilization.

There have been studies which PEF was used for differ-
ent purposes other than extraction such as preservation, or 
pretreatment before drying or freezing. In the study of Rios-
Corripio et al. [93], pomegranate fermented beverage was 
treated with PEF to compare its effects on microbial, phys-
icochemical and bioactive characteristics with pasteurization 
(VAT and HTST) [93]. Using PEF on the beverages killed 
all microorganisms on freshly prepared juices and main-
tained this effect throughout the storage period. However, 
while antioxidant capacity was the highest for PEF treated 
samples, it decreased at a greater extend during storage for 
the same samples. The reduction in total soluble content for 
VAT-pasteurized and PEF treated samples was attributed 
to the caramelization of sugar due to heat and pulse effect. 
They noted that PEF can be used as an alternative method to 
conventional pasteurization methods. An interesting study 
searches effect of PEF treatment on the microbial, physico-
chemical, and nutritional properties of milk added orange 
juice [94]. Authors concluded that PEF was very successful 

to kill microorganisms while preserving juice’s taste, color 
and nutrient property. However, they reported that long 
processing times are required to satisfy country standards 
in terms of microbial load. Telfser & Gómez Galindo [95] 
applied PEF as the pretreatment before drying (air, vacuum 
and freeze) of basil leaves [95]. They concluded that PEF 
shortened drying times due to reversible permeabilization 
for all methods. In fact, PEF application regardless of drying 
method was found out to be very successful to obtain most 
fresh leaves in terms of color and smell. Another study aims 
to improve freezing tolerance of spinach leave by treating 
with PEF and vacuum impregnation (VI) in the presence 
of trehalose as cryoprotectant [96]. Authors claimed that 
even if freezing provides microbial safety, it can damage cell 
structure by forming ice crystals. Therefore, they applied 
PEF and VI as pretreatments before freezing and thawing 
cycles to facilitate the distribution cryoprotectant into cell. 
They cultivated the spinach under two different temperatures 
(5 ℃ and 20 ℃). Even though survival rate of the leave was 
lower for 20 ℃, PEF and VI were reported to keep tissue 
vitality and improved drastically the freezing tolerance.

High‑Pressure Homogenization

With the steadily increasing demand to improve the organo-
leptic quality and nutritional value of food products, several 
innovative methods, such as high-pressure homogenization 
(HPH), which are non-thermal or physical treatments, as 
alternatives to the conventional ones, have been utilized 
in the food industry [97–99]. HPH is considered a kind of 
green technology because it promises short processing time, 
low carbon dioxide emission, reduced energy consumption, 
and a process free from pollution solvents [100]. The work-
ing principle of HPH technology is to subject fluids continu-
ously to high pressures, up to 300 MPa, forcing them through 
a narrow gap, which causes shear stress distribution across 
the food products resulting from cavitation, turbulence, 
collision, and impingement [98–101]. This energy trans-
formation directly affects the structure of food components 
[101]. Preparation of emulsions, enhancing the stability and 
rheological properties of dispersions, reduction of particle 
size, inactivation of spoilage microorganisms, extension of 
shelf life, increasing the extractability of phytochemicals, 
modification of functional properties and improvement of 
solubility and foaming ability of proteins can be achieved  
using HPH method in the food industry [54, 98–102].

HPH technology especially plays a key role in Mediter-
ranean foods such as tomato and olive oil, known for their 
fresh flavors and health benefits in preserving nutritional 
quality and sensory characteristics. Several studies demon-
strated the promising effects of HPH in recovering com-
pounds from tomato peels [103], tomato pomace [104], and 
the alcohol-insoluble residue of processing tomato [105]. In 
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addition, Van Audenhove et al. [106] and Liang et al. [107] 
revealed that HPH enhanced the network-forming potential 
of tomato cell wall material [106, 107]. Liang et al. [107] 
also determined that the release of lycopene from tomato 
pulp and its stability and bioaccessibility were improved by 
HPH treatment [107]. It was also supported in the study of 
Carpentieri et al. [108] that the extraction of valuable bioac-
tive components such as phenolic compounds and lycopene 
from tomato pomace increased with the HPH process [108].

Moreover, they showed that HPH reduced the particle 
size, providing enhancements in the stability of the tomato 
pomace suspension. HPH technique, on the other hand, 
has the outstanding capability of nanoemulsions, including 
olive oil, and it directly affects the particle size of droplets 
and physical stability [109, 110]. It was also used to pro-
duce cellulose-containing nanomaterials from the waste 
of olive leaves [111]. In addition, the effect of HPH on the 
structure and functional properties of plant proteins, which 
are a significant part of Mediterranean ingredients, has also 
drawn special attention in food science [102, 112]. It was 
revealed in the studies of [113] and Zhao et al. [114] that 
the homogenization of pea protein by the HPH method 
enhanced emulsifying and foaming properties and solubil-
ity [114]. In a study by Melchior et al. [115], the improve-
ment of the oil-holding capacity of pea protein and its solu-
bility by HPH was also shown [115]. The promising effects 
of HPH on the functional properties of Cyperus esculentus 
L. protein [116], quinoa protein [117], kidney bean protein 
[118] and lentil proteins [119] were also demonstrated in 
the related studies. The favorable effects of the HPH pro-
cess were also investigated on other Mediterranean ingre-
dients such as artichoke [120], citrus fiber [121] and orange 
juice [122].

Freeze Drying

Fresh foods that have high water content prone to microbial 
or nutritional deterioration during transportation and stor-
age. Drying is a technique to protect fresh foods for a long 
time. Drying process can increase the shelf life by reduc-
ing microbial growth and deteriorative reactions. Also, it 
provides convenience during transportation and storage by 
reducing size and weight of fresh foods [123–125]. There 
are several different drying techniques, which can affect the 
quality of the final product. Therefore, choosing appropri-
ate drying methods is important [125]. Freeze drying, also 
known as lyophilization, is one of the drying techniques 
which is used to produce high quality dried foods. Dur-
ing freeze drying, water in solid form turns directly into 
vapor form by sublimation. The drying process consists of 
3 steps which are freezing, first drying and second drying 
[123–126].

The freezing step is solidification of water prior to dry-
ing. The primary drying is where sublimation takes place by 
reducing pressure and supplying necessary heat. The sec-
ondary drying step involves desorption of unfrozen water 
[123, 124]. There are several process parameters such as 
loading capacity, freezing rate, heating level and pressure 
value, which affect drying time and final quality of the dried 
material [126, 127]. Therefore, selecting and controlling 
appropriate parameters are critical.

Freeze drying is a suitable drying method especially for 
foods that are susceptible to heat and oxidation. It provides 
high quality dried products with maximum nutritional val-
ues [124]. Hence, numerous studies have been conducted on 
freeze drying in the literature, and various studies on freeze 
dried Mediterranean foods are also available. For instance, 
Tan et al. [128] studied effects of drying methods (freeze 
drying and oven drying) on chemical components, anti-
oxidant activities and appearance of three different tomato 
cultivars [128]. As a result of this study, lycopene content 
was found higher in oven dried tomatoes and antioxidant 
activity did not change significantly with the different dry-
ing methods. On the other hand, freeze dried tomatoes had 
better appearance and higher polyphenols than oven dried 
tomatoes. Cecchi et al. [129] studied on the drying pro-
cesses of pomegranate peel and olive pomace (pâté), and 
they analyzed polysaccharide and phenolic contents of the 
dried products [129]. Pomegranate peel was dried at oven 
dryer with different temperatures. Pâté was dried at oven 
dryer with different temperatures (50, 70, 90, 110 °C) and 
freeze dryer at laboratory scales, and also it was dried with 
industrial dryer at 150 °C. When oven dried and freeze-dried 
pâté were compared, freeze dried one had better results. 
Oven drying caused toasted/burnt smell, brown color and 
higher reduction in total phenolic content as compared to 
lyophilized pâté. On the other hand, industrial drying at 150 
°C provides similar total phenolic content and better pres-
ervation of the polysaccharide structure. Also, the sensory 
properties of pâté were not negatively affected when dried 
in industrial or freeze dryer. Therefore, freeze drying gave 
better results than oven drying, but when industrial drying 
is considered, it provided shorter drying time for large scale 
production with good results.

Freeze drying is considered quite costly drying method 
due to its high energy and time consumption [123, 124]. 
The drawbacks are tried to be reduced by changing the pro-
cess parameters. However, the proper parameters should be 
selected according to material to prevent undesirable effects 
such as melting, shrinkage and loss of nutrition [126]. Char-
acterization of some quality parameters of dried products, 
like appearance, porosity, nutritional value, moisture content 
and rehydration ability, can be used to select process condi-
tions [127]. Feng et al. [130] studied the effects of freeze-
thawing pretreatment before freeze drying on the quality 



Food Engineering Reviews	

and drying process of garlic [130]. They have showed 
that the pretreatment reduced the energy requirement 
(14.25–15.50%) and drying time (22.22–33.33%) signifi-
cantly compared to drying of unpretreated garlic. Moreover, 
they obtained good quality dried garlic after pretreatment 
with improved flavor, chemical composition and thermal 
stability. Silva-Espinoza et al. [131] investigated freeze dry-
ing process parameters on the quality of formulated orange 
puree [131]. They changed the freezing rate (slow or fast), 
shelf temperature (30, 40 and 50 °C) and pressure value (5 
and 100 Pa), and the orange puree was dried at 30, 40 and 
50 °C for 25, 7 and 6 h, respectively. They concluded that 
the optimum process parameters of freeze drying are low 
pressure (5 Pa) and high temperature (50 °C) according to 
structure and nutritional value of the final dried product. 
Furthermore, energy requirement to freeze dry formulated 
orange puree was evaluated in another study to observe the 
effect of the process parameters. Optimum conditions were 
found as 5 Pa and 50 °C among different shelf temperatures 
(30, 40, 50 °C) and chamber pressures (5 and 100 Pa) to pro-
duce more economical product by reducing drying energy 
[132].

To conclude, freeze dryer is a good drying method for 
obtaining high quality dried foods when process parame-
ters are selected correctly despite its high energy and time 
requirement [126].

High Hydrostatic Pressure (HHP)

The demand for safe and nutritious food in today's techno-
logical era highlights the importance of food processing. 
While conventional thermal methods help control microor-
ganisms and are commonly used in the food industry, they 
can be associated with sensory and nutritional loss [133, 
134]. Thus, food industry continuously seeks processing 
technologies that preserve natural flavors and quality, lead-
ing to the development of high-pressure processing (HHP).

HHP processing offers a sustainable alternative to tra-
ditional thermal methods by significantly reducing water 
consumption and manpower costs while ensuring microbio-
logical and physicochemical safety, preserving the quality of 
the end product [135, 136]. Additionally, it has the capac-
ity to enhance nutrient bioavailability and eliminate anti-
nutritional factors, ultimately resulting in higher-quality food 
products [134, 137]. HHP applications are largely preferred 
for non-solid products due to significant ease of operation.

HHP demonstrates remarkable efficacy in olive oil pro-
duction [138–141]. HHP effectively deactivates spoilage 
enzymes and pathogens when olives are subjected to ele-
vated pressures, exhibiting lower microbial spoilage. Find-
ings of Andreou et al. [139] using virgin olive oils revealed 
significant improvements in cell disintegration, total 

phenolic content concentrations, and antioxidant capaci-
ties, leading to enhanced extractability of intracellular olive 
oil, while exhibiting high nutritional content and improved 
oxidation stability [139]. This suggests that HHP promises 
potentially superior virgin olive oil with improved yields.

In a similar vein, the utilization of high-pressure applica-
tion in tomato processing represents a significant advance-
ment in the production of tomato-based products. HHP 
has demonstrated superior effectiveness in preserving the 
natural color, flavor, and nutrient composition of tomatoes 
when compared to traditional thermal processing meth-
ods that involve high temperatures [142, 143]. HHP, being 
particularly well-suited for liquid products, can effectively 
inactivates pathogenic microorganisms such as bacteria, 
yeasts, and molds present on the tomato sauce and juice. 
The high pressure disrupts the cellular structure of these 
microorganisms, leading to their inactivation or destruction 
[144–146]. This antimicrobial action helps extend the shelf 
life of tomato products by reducing microbial spoilage and 
contamination, thereby enhancing food safety and quality. 
Additionally, HHP preserves the natural microbiota present 
in tomatoes, which can contribute to their flavor develop-
ment and overall sensory characteristics. Consequently, HHP 
serves as a valuable tool in the production of safe and high-
quality tomato-based products with extended shelf life.

Many other products and materials from the Mediterra-
nean region are being subjected to HHP to evaluate viability 
of use and understand interaction kinetics. Such materials 
include even fermented products like yogurt, kefir, or alco-
holic beverages [147–150]. HHP has been documented to 
alter sugar consumption and inhibits lactic acid produc-
tion, influencing pH variation, or completely inhibiting 
the fermentation process if conducted at pressures above 
100 MPa [148, 149]. However, Ferreira et al. [147] extended 
this by adapting S. cerevisiae to sublethal pressures, noting 
enhanced ethanol production after cycles at 15 and 25 MPa, 
showing that appropriate pressure modulation with product 
specific modifications should be investigated further [147].

Overall, the integration of HHP technology in the char-
acterization and reformulation of Mediterranean ingredi-
ents proposes valuable shifts in the industry. Manufactur-
ers can uphold the authenticity and nutritional integrity of 
these foods while meeting safety standards and consumer 
expectations.

Cold Plasma Technology

Plasma is an electrically conductive medium with an approx-
imately equal number of positively and negatively charged 
particles created by the ionization of atoms in the gas. In 
addition to electrons and ions, plasma contains gas atoms, 
molecules in the ground and excited states, free radicals, 
quanta of electromagnetic radiation, i.e. UV photons and 
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visible light. Free ions and electrons make the plasma elec-
trically conductive and interactive with electromagnetic 
fields. There are two types of plasma: equilibrium (ther-
mal) and non-equilibrium (non-thermal) plasma. In non-
thermal plasma or cold plasma (CP), the cooling of ions 
and uncharged molecules is more efficient than the transfer 
of energy from electrons, whereby the gas remains at a low 
temperature [151]. CPs are often safe to touch and can be 
used in combination with heat-sensitive materials. Although 
temperatures are around room temperature or slightly higher, 
CP exhibits unique properties required for a wide range of 
applications in food industry [152–155].

The most significant and widespread application of CP is 
in the sterilization of surfaces due to its ability to deactivate 
microorganisms, i.e. to effectively eliminate bacteria, viruses 
and other pathogens, without damaging sensitive surfaces. 
However, the mechanisms of inactivation by high voltage 
atmospheric cold plasma are different for Escherichia coli 
and Staphylococcus aureus, for pathogens that are impor-
tant for the food industry, so treatment should be adjusted 
[156]. CP technology degrades pollutants and microorgan-
isms due to the presence of reactive species that are formed 
in the discharged plasma: reactive oxygen species, reactive 
nitrogen species and OH radicals in plasma discharges play 
an important role in the degradation of contaminants such as 
metals, metalloids, VOCs, colors and microorganisms [155]. 
Atmospheric CP treatment for 10, 60 and 120 s resulted 
in reduction of Escherichia coli, Salmonella and Listeria 
monocytogenes populations on tomato to undetectable lev-
els from initial populations [157]. Microwave-powered CP 
treatment 2–10 min at 400–900 W was used for improving 
microbiological safety of cherry tomatoes against Salmo-
nella and without affecting their biological properties [158]. 
CP processing technology for food preservation has a recog-
nized potential to simultaneously meet consumer demands 
and deliver high-quality processed food with extended shelf 
life, without additives and without thermal processing [159, 
160]. Dielectric barrier discharge atmospheric CP treatment 
(35 kV, 1.1 A, 3 min) at 10 and 25 °C inactivated of Salmo-
nella and increased the storability of grape tomato without 
effects on the surface color, firmness, weight loss, lycopene 
concentration and residual ascorbic acid of grape tomatoes 
during storage [161]. Effects of dielectric barrier discharge 
CP treatments (10 kHz, 0–5 min, air) on degradation of 
anilazine fungicide and quality of tomato (Lycopersicon 
esculentum Mill) juice were found and with the increase 
in treatment time, the difference in the total color value of 
tomato juice increased significantly, which might be due to 
the decomposition of carotenoid pigments by plasma species 
[162]. Atmospheric CP treatment on vitamin C in tomato 
beverages showed that the vitamin C retention rate was the 
highest after 10 min of CP treatment, reaching 95% [163]. 
Treatment with CP technology showed a decrease in enzyme 

activity in treated extra virgin olive oil without harmful 
changes in volatile and phenolic profiles and without sig-
nificant changes in color, antioxidant activity and preoxide 
value [164]. CP is a promising non-thermal technology for 
the extraction of natural pigments, which requires the opti-
mization of the extraction process, i.e. the operating condi-
tions of plasma production for each case separately and with 
the monitoring of the changes caused by the plasma on the 
molecules of chlorophylls, carotenoids, anthocyanins and 
betalains [165]. The combination of using atmospheric CP 
technology and natural antimicrobial agents such as grape 
seed extract proves to be a good alternative to conventional 
food decontamination methods, without the use of chemical 
preservatives or antibiotics [166]. It is possible to modify the 
structure of food and introduce specific functionality using 
CP: modulation of the hydrophobicity or hydrophilicity of 
the food surface [167]; inactivation of enzymes as a modi-
fication of functional properties [168, 169]; modification of 
the protein structure [170]. Atmospheric CP shows the great-
est potential: in the process of removing biological agents 
[168], toxins or surface contamination from food and sur-
faces with which food comes into contact [171], in the mod-
ification of packaging materials [172, 173], in improving 
the functionality of food ingredients [174, 175], and in the 
decontamination of water and wastewater in food produc-
tion [176]. Multiple applications of CP technology in food 
processing enable the improvement of production process 
performance, food safety and sustainability as an impera-
tive for the future [177–179]. CP is used as a preparative 
analytical technique that enables a more sensitive classifica-
tion of adulterated olive oil because non-thermal discharges 
are the source of highly oxidizing species, and oxidation 
induced by CP triggers unique mechanisms of lipid oxida-
tion depending on the specific composition of the oil matrix 
and other ingredients [180, 181]. Plasma is characterized by 
the ability to deactivate the peroxidase enzyme in tomatoes. 
By using air plasma, various active species and radicals are 
produced with the possibility of performing chemical reac-
tions, which leads to chemical changes in amino acid chains, 
causing a decrease in enzyme activity. At the same time, due 
to the low temperature of the reaction, the nutritional con-
tent is retained [182]. By combining the ultrasonic synthetic 
method and CP treatment, good effects on the antibacterial 
and physicochemical properties of tomato juice are obtained 
without a negative effect on the color of the juice [183]. 
Plasma jet is used to reduce the microbial load in tomatoes, 
whereby contaminants are reduced to immeasurable levels, 
and the sensory properties remain unchanged. The treatment 
also significantly extended the shelf life of tomatoes, and it 
was carried out at low temperatures [184]. The development 
of consumer awareness and preference for healthy food that 
is raw or non-thermally processed has encouraged the devel-
opment of CP technology [185, 186]. It is used to improve 
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the microbiological quality and to prevent rapid physical, 
chemical and sensory changes, which results in better quality 
foods [187–189] with an extended shelf life [190, 191]. The 
combination of CP technology with other new technologies 
such as pulsed electric field, pulsed light, ultrasound and 
nanotechnology gives even better results in food processing 
[192, 193].

Table 1 summarizes the application of various novel tech-
nologies in the reformulation of Mediterranean ingredients.

Characterization of Mediterranean 
Ingredient by Novel Technologies

Nuclear Magnetic Resonance (NMR)

The food industry has experienced a paradigm shift in ana-
lytical methods in recent years due to the introduction of 
new techniques like Nuclear Magnetic Resonance (NMR) 
spectroscopy and relaxometry as powerful instruments for 
quick and thorough analysis. Particular attention has been 
paid to how these techniques help with nutritional profiling, 
quality assurance, and authenticity evaluation [194–196]. In 
1H NMR (proton nuclear magnetic resonance) spectroscopy, 
the idea is related to the magnetic characteristics of hydrogen 
nuclei, or protons [197]. During the process, the alignment 
of hydrogen nuclei due to an external magnetic field occurs 
to produce different energy levels in the sample. Protons 
absorb energy and move between the energy levels when 
exposed to radiofrequency pulses. When the pulses stop, the 
protons revert to their initial states and release energy that 
is identified as an NMR signal. These signals are utilized 
to create a spectrum that provides details on the chemical 
environment of hydrogen atoms in a sample. Water, lipids, 
proteins, carbohydrates, and other food components can all 
be analyzed simultaneously using NMR spectroscopy [198]. 
This technique also makes it possible to identify and quan-
tify various chemicals, resulting in a thorough understand-
ing of food composition [199]. NMR relaxometry, a subset 
of NMR spectroscopy, focuses on measuring the relaxation 
times of nuclear spins in a sample [200]. This approach has 
been extensively used in many areas of food science because 
of its rapid analysis of physicochemical parameters such as 
water distribution, hydration behavior, solid fat contents, 
crystallinity, and moisture content of food products [196, 
201–203].

Mediterranean-based diet is well known for its flavorful 
cuisine and health benefits [204]. In recent years, NMR has 
proven to be a powerful method for interpreting the molecu-
lar complexes of key Mediterranean ingredients, including 
tomatoes, olives, herbs, and spices [205–208]. In a study, 
Time Domain NMR (TD-NMR) was applied to tomatoes 
with a focus on characteristics like color, soluble solids 

content (SSC), and defects [209]. The study tried to develop 
precise and nondestructive classification models by com-
bining computational techniques with TD-NMR. Remark-
ably, varied decay times were noted for every class; green 
tomatoes, for example, showed a shorter decay signal than 
red tomatoes, which was associated with water mobility in 
various tissue compartments. The results showed how use-
ful TD-NMR is for screening applications before process-
ing and how accurate sample categorization in the tomato 
processing sector can be achieved by applying CPMG decay 
times. Not only the tomato itself but also its components 
were examined with NMR. In one research, NMR relax-
ometry was employed to explore the proton relaxation dis-
tribution in tomato seeds, evaluating the effects of osmotic 
stress, ultrasonication, and high hydrostatic pressure on 
cell membrane integrity [208]. With varied NaCl concen-
trations, ultrasonication durations, and pressure levels, the 
NMR spectra revealed four peaks indicative of distinct water 
proton compartments within the plant cell. The study found 
that NMR relaxometry was an effective method for examin-
ing the cell integrity of tomato seeds subjected to various 
treatments, providing insightful information about the extent 
of cellular damage.

The examination of olives, one of the most important 
foods of Mediterranean culture, using NMR has been also a 
major area of research. Most of the studies have examined 
the metabolic profile of the edible olives to investigate how 
NMR can be used to evaluate various cultivars, geographical 
origins, and processing methods that affect a product's flavor, 
aroma, and nutritional value [206–210]. Besides, NMR was 
utilized to learn more about the oxidation status, fatty acid 
composition fluctuations, and olive oil quality [211–214]. 
Examining these characteristics is essential to evaluate the 
data and verify the nutritional value and authenticity of olive 
oil. For spices and herbs, NMR spectroscopy using a chemo-
metric approach has proven to be a useful technique, just 
like in the case of olives and their components. Significant 
volatile molecules that contribute to different flavors and 
factors influencing the sensory qualities of herbs and spices 
have been examined through the use of NMR methods [207, 
215, 216].

In recent years, there has been a noticeable increase in the 
popularity of plant proteins especially derived from Mediter-
ranean cuisine due to growing awareness of sustainability 
and health [217]. Accordingly, the plant proteins from seeds 
and legumes that are used in Mediterranean cuisine, such as 
peas, chickpea, lentils, pumpkin seeds, and sesame seeds 
generated a great deal of interest in NMR studies [218–221]. 
Through the examination of relaxation periods, these studies 
have investigated the hydration dynamics of these proteins 
to assess their integration into functional foods and distin-
guish between their structural and functional properties. The 
findings indicated that NMR, which is quick, accurate, and 
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Table 1   Reformulation of Mediterranean ingredients by novel technologies

Method Samples Application References

Semi-industrial continuous microwave 
system

Tomato Puree Higher total antioxidant capacity and vitamin C content, 
enhanced viscosity and lycopene extraction, lower 
residual enzyme activity

[21]

Industrial scale microwave pasteurizer Tomato Juice Similar physicochemical and microbiological char-
acteristics, higher initial antioxidant activity, better 
cytoprotective effect

[23]

Microwave Tomato Puree Similar flavor, color, and overall acceptability, 5-log 
reduction in E. coli, similar lethality values

[22]

Olive Fruits Significantly reduced lipase activity, increased stability 
of olive oil during storage, no significant differences in 
chemical composition

[24]

Lentil Flour Better water and oil absorption capacity, enhanced emulsi-
fication properties due to protein denaturation

[25]

Microwave-Vacuum Drying Tomatoes Investigated the effect of microwave-vacuum drying 
on the physicochemical properties, including texture, 
color, and nutrient retention, of a functional tomato 
snack bar.

[36]

Evaluated the applicability of vacuum-microwave dry-
ing for tomato fruits, focusing on energy cost, color 
retention, preservation of functional components, and 
sensory qualities.

[33]

Olives Examined the effect of microwave-vacuum drying on the 
drying kinetics and quality of olive slices, focusing on 
texture, color, and antioxidant properties.

[30]

Sugar beet Studied the effects of microwave-vacuum drying on the 
physicochemical properties of sugar beet sugar, and 
efficiency of the device.

[35]

Herbs and spices Assessed the influence of microwave-vacuum drying on 
the quality and volatile compounds of Mediterranean 
herbs, focusing on flavor and aroma retention.

[32]

Beetroots Researched combining convective and vacuum-micro-
wave drying for beetroots, finding that this approach 
enhances efficiency and preserves quality better than 
traditional methods.

[31]

High Intensity Ultrasound Tomato juice Attenuation of Limosilactobacillus reuteri DSM 17938 
using ultrasound to prevent changes in a probiotic 
tomato juice

[306]

Improvement of tomato juice concentration process [307]
Inactivation of mesophilic aerobic microorganisms, 

lactic acid bacteria, coliform bacteria, and yeast
[52]

Fresh tomatoes Reduction of Listeria monocytogenes and Salmonella 
Newport

[308]

Increase in accumulation of secondary plant metabolites 
during storage time

[309]

Tomato seeds oil - based ice 
cream

Pasteurization and homogenization of innovative ice 
cream product based on Oleogels obtained from 
tomato seeds oil

[310]

Extra virgin olive oil Stabilization of organic extra virgin olive oil [311]
Virgin olive oil Improvement of extraction efficiency [312]
Olive pomace oil Increase in the bioactive potential after ultrasound 

assisted maceration
[313]

Ultraviolet-C (UV-C) Light Gelim black olives Log reductions in total aerobic count and yeast and mold 
counts of 0.53-1.71 and 0.31–1.43 CFU/g, respectively

[60]

Cauliflower 1 log reduction of Listeria monocytogenes, 0.7 log 
reduction of Escherichia coli, and 1 log reduction of 
yeasts and molds

[68]
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Table 1   (continued)

Method Samples Application References

Durum wheat semolina Increasing water absorption of semolina dough for 
improved dough yield and reduced staling and shrink-
age of flour products

[65]

Date fruit powder Increased content of phenolic compounds from 20.97 to 
111.62 mg/100 g after 20 minutes of UV-C exposure

[80]

Tomatoes Increase in lycopene content after 21 days of post-har-
vest storage with minimal impact on the color, texture 
(i.e. hardness) and °Brix

[314]

Immature green tomatoes UV-C applied to each of the two sides of the fruits for 1 
h (dose of 2 J/cm2/side) led to a 5.23-fold increase in 
lycopene content, a 1.5-fold increase in total carotenoid 
content, and a 1.3-fold increase in phenolic content

[315]

kailan-hybrid broccoli UV-C dose of 2.5 kJ m−2 led to a 2.61, 1.22 and 0.72 log 
reduction in the populations of Salmonella Enter-
itidis, Escherichia coli and Listeria monocytogenes, 
respectively

[316]

Strawberries Enhanced antioxidant capacity linked to an increase 
in the polyphenol content (flavonoids, anthocyanins, 
fisetin, and pelargonidin) after 16.5 minutes of UV-C 
exposure at 1.2 W/m2 dose

[317]

Orange-Tangerine Juice Saccharomyces cerevisiae, Lactiplantibacillus plan-
tarum, and Escherichia coli were reduced by 1.6, 2.4, 
and 3.8 log cycles, respectively

[318]

Brocolli 10%, 13%, and 14% increase in total phenolic content, 
antioxidant activity and ascorbic acid, respectively

[319]

Pulsed Electric Field (PEF) Olive Oil PEF increased the oil extraction yield with short malaxa-
tion times at low processing temperatures

[89, 90]

PEF was successful to assist mechanical extraction 
methods without changing quality and sensorial prop-
erties. PEF application even yielded higher phenolic 
content.

[90]

Oregano and wild thyme PEF increased bioactive extraction yield [91]
Orange, pomelo and lemon PEF was used as pretreatment before juice extraction and 

did not cause severe damages in the cell structures of 
fruits. PEF was remarkable in increasing polyphenol 
content especially for the lemon

[92]

Pomegranate beverage PEF killed all microorganisms on freshly prepared juices 
and maintained this effect throughout the storage 
period

[93]

Basil leaves PEF shortened drying times and was found out to be 
very successful to obtain most fresh leaves in terms of 
color and smell

[95]

Spinach PEF was applied to improve freezing tolerance. PEF kept 
tissue vitality while improving the freezing tolerance.

[96]

High Pressure Homogenization Tomato peel Increased the release of intracellular compounds and 
water-insoluble lycopene

[320]

Reduced oil-water interfacial tension
Increased antioxidant activity

Tomato pomace Increased cellulose isolation yield [104]
Increased phenolic compounds in side streams
Enhanced morphological and functional properties

Tomato pomace Reduced particle size [108]
Reduced surface tension
Increased antioxidant activity, total phenolic content, 

dietary fiber content
Enhanced lycopene stability
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Table 1   (continued)

Method Samples Application References

Enhanced lycopene bioaccessibility during intestinal 
digestion phase

Tomato pulp Increased the release of lycopene [107]
Reduced particle size
Increased homogeneity and turbidity
Enhanced lycopene stability and bioaccessibility

Processing Tomato Increased pectin solubilization and extractability [105]
Increased purity, molecular mass and amount of rham-

nogalacturonan I domains
Increased hemicellulose and cellulose content in unex-

tractable fractions
Enhanced functional properties

Tomato cell wall material Increased pectin solubilization and extractability [106]
Enhanced viscoelastic properties
Enhanced network forming potential
Increased water binding capacity

Extra virgin olive oil-in-
water nanoemulsion

Determination of optimum conditions for emulsfying 
agents, lecithin and Tween 20

[109]

Effects of homogenization pressure and cycles on stabil-
ity, droplet diameter and polydispersity index

Olive leaf waste Production of nanocellulose and characterization of 
morphology, chemical composition, thermal, colloidal 
properties and crystallinity

[111]

Pea Protein Reduced particle size, [114]
Increased solubility and in vitro antioxidant activityEn-

hanced stability
Enhanced emulsifying and foaming properties
Increased solubility, surface hydrophobicity and intrinsic 

fluorescence
Reduced particle size
Enhanced emulsifying and foaming properties
Effects of homogenization pressure on protein unfolding, 

protein aggregation and functionality
Increased solubility, oil holding capacity and digest-

ibility
[312]

Enhanced emulsifying properties [115]
Cyperus esculentus L. 

protein
Reduced β-sheet content [116]

Increased α-helix and random coils
Increased absolute value of Zeta potential
Reduced particle size
Reduced apparent viscosity and increased fluidity
Enhanced emulsion stability

Quinoa protein Reduced particle size [117]
Reduced oil droplet size with increased quinoa protein 

isolate concentration
Enhanced emulsion stability and gel strength with 

increased quinoa protein isolate concentration and heat 
treatment

Kidney bean protein Effects of homogenization pressure on intramolecular 
interactions, particle size, molecular weight, viscosity, 
emulsifying properties and stability

[118]
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Table 1   (continued)

Method Samples Application References

Lentil protein Effects of homogenization pressure on unfolding of pro-
tein, solubility, emulsifying and foaming properties

[119]

Reduced particle size
Enhanced functional properties

Freeze drying Tomato Analyzing effects of freeze drying and oven drying on 
properties of different tomato cultivars.

[128]

Olive pomace Comparison of freeze drying with oven drying at lab 
scale and freeze drying with industrial drying system 
by studying on phenol and polysaccharide content of 
the final product.

[129]

Garlic Monitoring effects of freeze-thawing pretreatment on the 
drying process and quality of the dried garlic.

[130]

Formulated orange puree Investigating impacts of freezing rates, shelf tempera-
tures and pressure on quality of the final product.

[131]

Studying effects of pressure and shelf temperature on 
energy consumption.

[132]

High Hydrostatic Pressure (HHP) Olive oil Optimizes HPP to enhance olive oil yield and qual-
ity. Increased yield, improved phenolic, and boosted 
a-tocopherol, enhancing oxidative stability and reduc-
ing malaxation time and temperature.

[322]

Table olives Monitors acrylamide and phenolic compounds in table 
olives after high hydrostatic pressure (HHP) and cook-
ing treatments. Acrylamide is not found after HHP but 
forms during frying and baking, with frying causing 
less acrylamide and phenolic loss than baking. Fresh 
olives are best for high phenolic intake and reduced 
acrylamide.

[141]

Tomato Impact of thermal and pressure-based technologies on 
the retention of carotenoids and the quality attributes 
of tomato juice. Minimal color changes after high-
pressure processing at 600 MPa/45°C/5 min.

[323]

Tomato sauce The study evaluates high hydrostatic pressure (HHP) 
treatment on enriched tomato sauce, focusing on qual-
ity changes and nutrient retention. HHP increases total 
phenolic content, retains higher lycopene compared 
to thermal pasteurization, and causes no significant 
change in color parameters.

[324]

Tomato The study investigates the effect of high hydrostatic 
pressure (HHP) on the carotenoid profile and lipophilic 
antioxidant capacities of tomato purées, finding that 
HHP enhances antioxidant capacity but reduces lyco-
pene and β-carotene concentrations.

[137]

Cold Plasma Technology Tomato Atmospheric CP treatment for reduction of Escherichia 
coli, Salmonella and Listeria monocytogenes popula-
tions

[325]

Microwave powered CP treatment for improving micro-
biological safety

[158]

Dielectric barrier discharge atmospheric CP treatment 
for microbiological safety and preservation

[161]

Dielectric barrier discharge CP treatment for degradation 
of anilazine fungicide

[162]

Dielectric barrier discharge for tomato peroxidase 
inactivation

[182]

Intermittent corona discharge plasma jet for microbial 
load reduction

[184]

CP treatment impacts on physicochemical characteristics [188]
Inactivation of microorganisms with CP treatment [326]
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non-destructive, could be an alternative approach for looking 
into hydrated water on molecules, which are known to be 
difficult to analyze through conventional methods.

NMR has also been used to investigate more complex and 
functional foods reformulated with Mediterranean ingredi-
ents, including tomato sauces, juices, and snack bars. In the 
study of Gul et al. [36], tomato snack bars enriched with 
olive powder and pea proteins were analyzed through NMR 
relaxometry [36]. The aim was to evaluate how various 
drying techniques affected the distribution of water in the 
samples. By studying T2 relaxation times, the study found 
that microwave vacuum dried samples had shorter T2 times 
than conventional dried samples. All things considered, the 
NMR relaxometry supplied information about the dynam-
ics of water distribution that are impacted by various drying 
techniques with the contribution of different ingredients. 
In another study, TD-NMR was used to examine the com-
position of a novel functional tomato sauce enriched with 
tomato peel powder, olive powder, and pea protein [222]. 
Following analysis of the T2 relaxation times data, it was 
discussed that tomato peel powder and pea protein content 
had a substantial impact on T2 times, with a decrease noted 
as their concentrations increased. This indicated that both 
components reduced molecular mobility, leading to faster 
relaxation times. The results demonstrated a match with the 
other experiments such as rheology and solubility, indicat-
ing that NMR supplies valuable information when used in 
conjunction with other experiments.

The use of NMR to investigate Mediterranean foods by 
themselves and interaction in a complex matter has gained 
popularity in recent years. As technology advances, more study 
is expected to enhance these techniques and offer novel molec-
ular insights. In conclusion, NMR is a priceless analytical tool 

that offers a comprehensive and non-invasive way to dig into 
the molecular mysteries of Mediterranean foods.

Electron Paramagnetic Resonance (EPR)

EPR (electron paramagnetic resonance) or ESR (electron 
spin resonance) is a spectroscopic technique for studying 
the chemical species characterized by at least one unpaired 
electron. The principle of EPR spectroscopy is similar to 
that of NMR spectroscopy, but EPR is based on the splitting 
of electronic spin states, whereas NMR detects the splitting 
of nuclear spin states. Since detection is not dependent on 
color, porosity, or aggregate state, EPR is widely used as a 
unique, direct, non-destructive, and very sensitive technique 
for the identification, quantification, and characterization of 
free radicals in food systems based on monitoring the inter-
actions of unpaired electrons [223–225].

However, the EPR spectra are often very complex due 
to the hyperfine structure that forms in the presence of 
neighboring magnetic nuclei, such as 1H, 13C, 14N, 19F, etc. 
Food systems with Mediterranean ingredients also exhibit 
a complex nature. Therefore, this paper presents different 
approaches to increase the useful information obtained 
by EPR spectroscopy for food characterization. These 
approaches are based on directly detecting and identify-
ing endogenous metal ions or organic radicals in the food, 
EPR labeling with spin probes, and EPR spin-trapping tech-
niques. These three main methods, in addition to their non-
destructive nature and high sensitivity [224, 226, 227] of 
EPR, are, therefore, further advantages for the versatility of 
the application. The EPR signal of stable radicals formed in 
food could be monitored directly, while unstable radicals can 
be measured indirectly by adding spin traps.

Table 1   (continued)

Method Samples Application References

Tomato Juice Atmospheric CP processing on quality parameters [163]
Combining ultrasonic synthetic method and CP treat-

ment for preservation
[183]

Changes in ascorbic acid, sugars, phenolics, carotenoids 
induced by CP application

[189]

Olive Oil CP effects on the lipoxygenase enzyme activity, aroma 
and phenolic profiles of olive oil

[164]

CP as preparative analytical technique for olive oil 
adulteration

[180, 181]

Herbs and Spices CP treatment for decontamination [327]
Effects of CP on chlorophylls, carotenoids, anthocya-

nins, and betalains in natural pigment extraction
[165]

Plant Proteins Cold atmospheric plasma processing on the techno-
functional protein properties

[170]
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EPR spectroscopy has been successfully used to directly 
detect biologically important metal ions (iron, copper, 
manganese, molybdenum, chromium) in food and deter-
mine their oxidation states. This is very important in food 
production to assess the suitability of the metal content for 
human or animal consumption. The content of manganese is 
of particular interest as it occurs as a micronutrient in almost 
all foods of plant origin and in the soil, but also as a heavy 
metal whose excess can have a toxic effect on plants. Man-
ganese occurs in the soil in a wide range of oxidation states, 
with its solubility depending on soil pH and redox condi-
tions, and is mainly taken up by roots as Mn (II). In a study 
by Kostova and co-authors [227], the oxidative state of man-
ganese, i.e., Mn (II), has been confirmed by EPR investiga-
tion of the amount of Mn (II) that is accumulated in tomato 
plant itself, stems, leaves and fruits to gain insight into the 
role of chemical composition [227]. Subbaiah Kotakadi et al. 
[228] determined the presence of Fe3+ ions in rhombic sym-
metry and the presence of Mn2+ ions in the divalent state in 
leaves of Spinacia oleracea, one of the main components of 
the Mediterranean diet, as well as in Hibiscus sabdariffa and 
Amaranthus gangeticus [228]. The EPR spectra exhibited 
the presence of these Fe3+ and Mn2+ ions, which help in 
the oxidation-reaction of many carcinogenic free radicals 
like superoxide. In addition to the metal ions, the sharp sig-
nal centered at g = 1.98 has been observed. This signal cor-
responds to the usual organic radical, probably due to the 
C-O carboxyl radical. The exposure of food in atmospheric 
oxygen or the food preparation processes can form persistent 
organic radicals in food. Mainly, these are stable carbohy-
drate radicals, quinones, and stable semiquinone radicals 
naturally occurring in plants produced by the oxidation of 
polyphenolics [229, 230]. These findings provide important 
insights into metabolic processes and the absorption of nutri-
ents, and consequently, into human health.

The most common and well-known application of EPR 
spectroscopy is the identification of free radicals formed 
after applying various food processing methods, including 
ionizing radiation, frying, grinding, and novel methods like 
high pressure, pulsed electric fields, ultrasound, cold plasma 
treatment, and microwaves. Therefore, EPR spectroscopy 
is an already established method for detecting free radicals 
induced by ionizing radiation and trapped in the dry parts of 
irradiated food, as well as an established method for iden-
tifying and detecting food sterilized by gamma irradiation 
[229–231]. The same methods have been developed for suc-
cessfully detecting and controlling radiated tomatoes and 
other spices, fruits, and vegetables belonging to the group 
of Mediterranean ingredients [231, 232]. In addition, tran-
sient free radicals are often formed during food processing, 
especially when heat or ultrasonic processes are used and 
sterilization with ionizing radiation. Reactive oxygen species 

(ROS) are most frequently formed, especially hydroxyl and 
superoxide radicals [233–235]. The concentration of gen-
erated transient free radicals is usually below the limit of 
detection of EPR spectroscopy, so indirect methods are 
needed for identifying and quantifying of species present 
[236, 237].

The concentration of free radicals generated during food 
processing can be assessed indirectly using two types of 
compounds: spin traps and spin probes. Spin traps react 
directly with the generated free radical by addition to the 
molecule, thus forming a stable free radical adduct that can 
be detected and quantized using EPR spectroscopy. Depend-
ing on the radical, different adducts form with different EPR 
spectra (Fig. 1a). Spin probes also react with the free radicals 
via a redox process, generating a stable free radical (Fig. 1b).

Spin traps are most commonly some cyclic or aro-
matic nitrones, where various structural modifications can 
adjust the polarity and cell permeability of the compound. 
For example, the cell-permeable hydrophilic spin trap 
5,5-dimethyl-1-pyrroline-N-oxide, 2,2-dimethyl-3,4-di-
hydro-2H-pyrrole 1-oxide (DMPO) is frequently used for 
trapping O, N-, C- and S-radicals both in vivo and in vitro 
conditions, while N-tert-butyl-α-phenylnitrone (PBN) is 
hydrophobic and more suitable for spin trapping studies in 
non-polar media. α-(4-pyridyl 1-oxide)-N-tert-butylnitrone 
(POBN) is a hydrophilic analog of the PBN spin trap [238] 
(Fig. 2a and c). DMPO and its analogs are preferred due to 
larger differences in EPR spectra of spin trap adducts [239, 
240]. Spin probes, most often cyclic hydroxylamines such 
as 1-hydroxy-3-methoxycarbonyl-2,2,5,5-tetramethylpyrro-
lidine (CMH), 1-hydroxy-3-carboxy-2,2,5,5-tetramethyl-
pyrrolidine (CPH) or 1-hydroxy-4-methoxy-2,2,6,6-tetra-
methylpiperidine (TMH), are oxidized into nitroxyl radicals 
in reactions with ROS and cannot be used to differentiate 
between different types of free radicals [241, 242].

Unlike direct EPR, spin trap methodology depends on 
the absolute fidelity of the spin trap reaction. The reaction 
kinetics of spin traps/probes with ROS and RNS species var-
ies wildly with solvent polarity, temperature, viscosity, and 
other reaction conditions, so the precise control of the exper-
imental parameters is crucial for intercomparison of results 
between different treatments [243, 244]. Ideally, the speed of 
the radical entrapment reaction is the fastest process, and all 
of the ROS generated are quantitatively converted into stable 
free radicals that can be analyzed by EPR spectroscopy. ROS 
and RNS species are known for their short half-lives (less 
than a millisecond) and low concentration levels in biologi-
cal systems [245, 246].

A varied mixture of antioxidant species further compli-
cates the quantitative determination of generated free radi-
cals due to the reaction with the stable free radicals gener-
ated from spin traps/probes. One should also consider the 
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half-life of the stable radical adducts/products in aqueous 
solutions, which, while significantly longer than those of 
ROS, is 35–80 s [245]. Yue Qian et al. [247] have found 
that extraction of 5,5-dimethyl-1-pyrroline-N-oxide- Reac-
tive Oxygen Species (DMPO-ROS) adducts prolongs their 
stability up to 10 h [247]. Spin trapping has been most com-
monly used to characterize the oxidative stability of oils 
before and after processing and lipid oxidation in general 
or when using extracts from medicinal and aromatic plants 
to improve the nutritional value and oxidative stability of 
vegetable oils [247], with Mediterranean olive oil being the 
most commonly studied oil [248].

The customary EPR application in the food industry is 
the measurement of the antioxidant capacity of foods. In 
the Mediterranean diet, antioxidants play an important role 
in health protection. Antioxidants reduce the risk of chronic 
diseases such as cancer and heart disease. DPPH (2,2-diphe-
nyl-1-picrylhydrazyl) is a free radical commonly used to test 
the ability of compounds to act as free radical scavengers 
or hydrogen donors and to assess antioxidant activity. The 
DPPH assay method is based on reducing DPPH radicals by 
antioxidants and is a rapid and simple method for measur-
ing the antioxidant capacity by EPR spectroscopy in foods 
[249]. This is paticulary important for monitoring changes 
in antioxidative activity after use of non-thermal treatments 
like HIU [250] and HVED [251, 252] or for monitoring tem-
perature-induced changes like histamine production, lipid 
peroxidation and antioxidant parameters in sardine during 
storage [253]. Mediterranean ingredients have been studied 
for different reasons: to monitor the quality of extraction 
[254], tomato waste [255] or the influence of drought and 
elevated ozone levels on the free radical contents of fruit 
from tomato [256].

Near Infrared Radiation (NIR) Spectroscopy

Near Infrared Radiation (NIR) Spectroscopy has become 
increasingly popular for quality control and analysis for 
agricultural products, pharmaceuticals, food safety, and food 
characterization [257]. It is an ideal alternative for complex 
chemical analysis methods that are particularly fast, non-
destructive, and require minimal preparation [258]. NIR is 
usually performed in the wavelength range between 780 and 
2500 nm [259]. This spectral region contains the vibrational 
overtone and combination bands of molecules, making it 
ideal for characterizing hydrogen-containing bonds (e.g., 

C-H, N–H, O–H) in many organic compounds. These fea-
tures allow NIR spectroscopy to analyze components such 
as water, protein, fat, and carbohydrates in a rapid and non-
destructive [259]. In recent years, research has been con-
ducted to determine the quality parameters of various areas 
using NIR spectroscopy. It is commonly used to determine 
the quality parameters of products such as olive oil, tomato, 
herbs, and grains that form the basis of the Mediterranean 
diet.

Moreover, critical quality parameters such as protein, fat, 
and moisture content could be determined quickly, and it is 
possible to monitor the quality during storage [260–262]. In 
particular, determining phenolic compounds and antioxidant 
capacity in olive oil, vitamin and mineral content in fruits 
and vegetables, and protein, fiber, and essential nutrients in 
whole grains is very important [263–265]. Methods used to 
analyze Near Infrared (NIR) Spectroscopy data play a vital 
role in understanding the results. In particular, multivariate 
regression analyses such as Partial Least Squares Regres-
sion (PLSR) model relationships between complex spectra 
parameters [266]. Support Vector Machines (SVM) excel 
in areas such as food authenticity and accurate classifica-
tion of different food products [267, 268]. Artificial Neural 
Networks (ANN) exhibit superior performance in modeling 
complex and non-linear relationships by being used to pre-
dict quality parameters such as the degree of ripeness or 
freshness of fruits and vegetables [269]. These techniques 
and advances in processing and analyzing NIR spectroscopy 
data enable industries to optimize quality control processes.

Tomatoes, the first product that comes to mind regard-
ing ingredients of the Mediterranean diet, have been stud-
ied many times using NIR spectroscopy. The amount of 
lycopene in tomatoes was measured by the NIR method 
[258, 270, 271]. In the study of S. Li, Wang et al. [271] 
focused on the online detection of lycopene content in 
two different tomato cultivars by using multipoint full 
transmission Vis–NIR spectroscopy [271]. To improve 
the correlation between the spectrum and lycopene con-
tent, several preprocessing techniques were used, includ-
ing Savitzky-Golay smoothing (SG), multiple scattering 
correction (MSC), and standard normal variable trans-
formation (SNV). The quantitative association between 
spectral data and tomato lycopene values was estab-
lished using the Partial Least Squares Regression (PLSR) 
model. The optimization of characteristic wavelength for 
lycopene in tomato was also studied [272]. 4 different 

Fig. 1   Reaction of transient 
radical (R) with a) a spin trap 
(ST) and b) a spin probe
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methods (Backward Interval Partial Least Squares (Bi-
PLS), Synergy Interval Partial Least Squares (Si-PLS), 
Uninformative Variable Elimination Partial Least Squares 
(UVE-PLS) and Genetic Algorithm Partial Least Squares 
(GA-PLS)) were studied. GA-PLS method was identified 
as the best method for selecting characteristic wavelengths 
and optimizing the prediction model. Moreover, the deter-
mination of soluble solid content (SSC) and firmness value 
of tomato by NIR have been studied in several studies 
[271, 273–280]. In the latest study, two different tomato 
varieties were gathered at various stages of maturity, and 
samples were divided into calibration and prediction sets 
using a systematic process. The spectral data was pre-
processed using multiple ways to improve its quality, and 
distinctive wavelengths for SSC detection were extracted 
using the least angle regression method. The outcomes 
showed that the SSC determination for both tomato types 
was successful [271]. In another study, the soluble solid 
content (SSC) in different fruits with varying skin thick-
nesses was measured by NIR spectroscopy [278]. The 
study developed prediction models for calculating fruits' 
soluble solid content (SSC) using partial least squares 
regression (PLSR) modeling. Tomatoes exhibited a low 
coefficient of determination in the prediction model for 
SSC, even though it has thin skin and high moisture con-
tent. This low correlation was attributed to the impact of 
water absorption, which led to noise in the measurement. 
Taste-related compounds of tomato were also studied 
using IR spectroscopy [281]. Soluble solids, sugars like 
fructose and glucose, and acids, citric, malic, and glu-
tamic acids found in tomatoes are among the taste-related 

substances. These chemicals greatly influence the flavor 
profile and overall perception of tomatoes. PLRS analy-
sis assessed the Root Mean Square Error of Prediction 
(RMSEP) values and the coefficient of determination (R2) 
for each taste-related compound. R^2 of the models ranged 
from 0.32 to 0.82, suggesting a good fit for the data mod-
eling. In addition, the ripening of tomatoes was studied 
with the NIR spectroscopy [243, 258, 282]. In the study of 
Nakashima et al. [243], handheld NIR equipment was used 
to monitor the ripening of mini tomatoes from their daily 
changes [243]. NIR spectroscopy was employed to convert 
reflection to absorption spectra for quantitative analysis of 
water, sugars, and some pigments such as chlorophyll a, 
carotenoids, and lycopene. The study compared changes 
in pigment band areas obtained from NIR spectra with 
color values (a* and b*) to understand the relationship 
between biochemical changes and color development dur-
ing ripening. The changes in chlorophyll content during 
the ripening process were quantitatively assessed with NIR 
data. The band area around 670 nm, associated with chlo-
rophylls, was monitored to track the variations in chloro-
phyll levels over time. Furthermore, the sensory qualities 
of tomatoes were also studied [283, 284]. In the study of 
[283], 19 different sensory attributes (sweetness, umami, 
flavor, mouthfeel, texture, odor, etc.) were analyzed by 
Gas Chromatography-Mass Spectroscopy (GC–MS), and 
NIR spectroscopy was used to understand the results [283, 
99]. PLSR models were constructed, and the stepwise 
selectivity ratio (SWSR) method was applied for variable 
selection to comprehend the sensory attributes. PLSR  
models function effectively in predicting sensory qualities,  

Fig. 2   a) Spin trap 5,5-dimethyl-1-pyrroline N-oxide (DMPO) gen-
erates radicals with distinct EPR spectra depending on the type of 
transient radical it captures. Spin probes (b), on the other hand, pro-

duce the same stable radical species regardless of the type of transient 
radical. c) Chemical structures of N-tert-butyl-α-phenylnitrone (PBN) 
and α- (4-pyridyl 1-oxide)-N-tert-butylnitrone (POBN)
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especially for sweetness, since they are built using inform-
ative wavelengths chosen by the SWSR method. Principle 
Component Analysis (PCA) was also conducted to inter-
correlate the sensory scores of different sensory proper-
ties, especially sweetness, umami, saltiness, and tingling, 
as well as the number of metabolites and spectral absorb-
ance of wavelengths. Detection of pesticide residues in 
tomatoes is another important topic that has been worked 
with NIR spectroscopy [285]. Various spectral preproc-
essing methods were applied in the 460–1050 nm spec-
trum range to stabilize the models. Key indicators such 
as correlation coefficients (R), root mean square errors 
of calibration (RMSEC), and root mean square errors of 
prediction (RMSEP) were used to evaluate the accuracy 
of the model. Among the eight combined models devel-
oped (PLSR, ANN, PCA, and RF), the SPA-ANN model 
performed best, with high R, RMSEC, and RMSEP values.

The quality characteristics of olive oil, an important 
part of Mediterranean ingredients, have also been studied 
using IR spectroscopy [286–293]. This study conducted by 
Arroyo-Cerezo et al. [287] explains how important qual-
ity parameters such as acidity, peroxide value, 232 nm and 
270 nm absorbance values, and fatty acid content in extra 
virgin olive oil (EVOO) were measured by NIR spectros-
copy [287]. NIR detects absorption bands of chemical bonds 
in fatty acids, peroxide values of oxidation products, K232 
and K270 values indicating the presence of conjugated 
dienes and trienes, as well as specific absorption bands of 
fatty acids, allowing these parameters to be accurately esti-
mated. This method allows rapid and non-destructive assess-
ment of the quality of EVOO, thus becoming a valuable tool 
for manufacturers and consumers. Olive oil fraud detection 
was studied with NIR spectroscopy [294–296]. The study of 
Melendreras et al. [295] focused on developing an affordable 
NIR spectroscopic system for fraud detection in olive oil 
[295]. Various mixtures for analysis using different types of 
olive oils were prepared, including natural, extra virgin, and 
refined, as well as seed oil additives consisting of sesame, 
sunflower, and linseed oils. Calibration models built using 
PLSR were able to detect fraud with high accuracy. The 
research demonstrated the potential of this technology to 
provide a cost-effective and practical solution. The ripening 
stage of olives was another hot topic for NIR study [288, 
290, 297–299]. In the study of El Riachy et al. [288], the 
ripening processes of olives were examined by analyzing 
the fatty acids and phenolic profiles of extra virgin olive oils 
obtained from olive varieties grown in Europe and Leba-
non with the help of NIR spectroscopy [288]. Partial Least 
Squares Discriminant Analysis (PLS-DA) was used as the 
regression model. To determine the degree of ripening, the 
color of the olive skin was considered an indicator of ripe-
ness. Olives were classified into various ripening stages 
according to the color of their skins, and using a formula, 

the ripening index was calculated by considering the distri-
bution of olives according to these stages.

As a Mediterranean food ingredient, herbs (especially 
thyme) were studied. They generally explore the factors that 
influence spectrum development, phase and concentration 
impacts, essential oil components, authenticity, and PLS 
regression properties through the simulation of herb's NIR 
spectra [300–305]. NIR spectroscopy represents an innova-
tive approach that increases efficiency in the food industry 
while protecting consumer health and promoting sustainable 
use of food resources.

Table 2 summarizes the application of various novel 
technologies in the characterization of Mediterranean 
ingredients.

Challenges and Opportunities

The application of novel technologies for reformulating and 
characterizing Mediterranean ingredients presents various 
challenges and opportunities. One of the main challenges is 
the uneven energy distribution during microwave pasteuriza-
tion, which can lead to hot and cold spots within the prod-
uct, resulting in inadequate pasteurization or overprocessing. 
Addressing this requires design improvements and optimiza-
tion at both pilot and industrial scales. Additionally, while 
microwave vacuum drying (VMD) offers superior mois-
ture reduction and preservation of nutritional and sensory 
attributes, optimizing process parameters such as vacuum 
pressure and microwave power is critical to avoid nutrient 
degradation and maintain product quality. High-Pressure 
Homogenization (HPH) and High Hydrostatic Pressure 
(HHP) technologies present opportunities for enhancing 
Mediterranean foods' nutritional and sensory qualities by 
improving bioactive compounds' extraction and extending 
shelf life without significant thermal damage. However, the 
high costs associated with these technologies, as well as the 
need for specialized equipment and trained personnel, pose a 
significant challenges for widespread adoption. Cold Plasma 
Technology offers a non-thermal method to inactivate micro-
organisms and enzymes on food surfaces, maintaining nutri-
tional and sensory properties. This technology's main chal-
lenge is scalability and the need to ensure consistent and 
effective treatment across different food matrices. In terms of 
characterization technologies, Nuclear Magnetic Resonance 
(NMR), Electron Paramagnetic Resonance (EPR), and Near 
Infrared (NIR) spectroscopy provide detailed insights into 
the molecular composition and quality of Mediterranean 
ingredients. These techniques offer rapid and non-destruc-
tive analysis, but their high cost and the requirement for 
advanced technical expertise can limit their application in 
routine food processing.
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Table 2   Characterization of Mediterranean ingredients by novel technologies

Method Samples Application References

NMR Spectroscopy and 
TD-NMR Relaxom-
etry

Tomatoes Examining tomato fruits and leaves by NMR metabo-
lomics.

[205]

Investigation on cell integrity of tomato seeds exposed 
to some treatments by NMR Relaxometry

[208]

Selection of industrial tomatoes using TD-NMR data 
and computational classification methods.

[209]

Olives and Olive Oils Determining quality characteristics by NMR-based 
metabolic profiling of edible olives

[206]

NMR studies on Italian PDO olive oils for characteri-
zation.

[210]

1H-NMR screening of fatty acid composition in edible 
oils.

[211]

Detection of olive oil oxidation status during storage [214]
Herbs and Spices Quality variation and standardization of black pepper 

(Piper nigrum)
[215]

Geographical origin identification of Asian Red Pep-
per Powders using 1H NMR Spectroscopy

[216]

Determining Spice Authentication by NMR Spectros-
copy and Chemometrics

[207]

Plant Proteins Examining hydration behavior of plant proteins via 
TD-NMR Relaxometry

[218–220, 328]

Tomato-based Snack Bar Examining water distribution on snack bars [36]
Tomato-based Sauce Observing T2 relaxation decay of water protons in dif-

ferent formulated sauces.
[222]

EPR spectroscopy Tomatoes Antioxidant activities of tomato lipid extracts [254]
Antioxidant capacity of tomato waste and assessment 

of the capability to scavenge hydroxyl and superox-
ide anion radicals

[255]

Identification of free radicals after treatment of toma-
toes with γ - radiation

[232]

Identification of metal ions an9d determination of 
redox state and concentration manganese in tomato 
plant

[227]

Spinach leaves Identification of presence of Fe3+ and Mn2+ ions and 
determination rhombic symmetry of Fe3+ ions and 
divalent state of Mn2+ ions

[228]

Olives and Olive Oils Evaluation on the oxidative stability [329]
Effect of herbal extracts on oxidative stability and 

nutritional value of edible oils
[248]

Fruits Identification of free radicals after gamma irradiation 
treatment in fruit

[231]

Herbs and Spices Determination of free radicals generated by 
γ-irradiation and effect on antioxidant content

[231]

Antioxidant activity after use of HVED in green 
extractions of bioactives from oregano leaves

[252]

Antioxidant activity after use of HVED for recovery 
of bioactive compounds from Dalmatian sage

[251]

Oat and Barley Bran Antioxidative activity after ultrasound assisted modifi-
cation of oat and barley bran

[250]

Sardine (Sardina pilchardus) Effect of the gamma radiation on antioxidant param-
eters during storage at two different temperatures in 
sardine

[253]
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Despite these challenges, the opportunities presented 
by these novel technologies are significant. They offer 
the potential to enhance food quality, safety and sustain-
ability. For instance, VMD and freeze drying can produce 
high-quality dried products with extended shelf life and 
preserved nutritional values. Technologies like PEF and 
HPH can improve the functional properties of food ingre-
dients, making them more appealing to health-conscious 
consumers.

Moreover, integrating these technologies with traditional 
Mediterranean ingredients can lead to innovative food prod-
ucts that meet consumer demand for healthy, high-quality 
foods. Future research should optimize these technologies, 

reduce costs, and improve scalability to fully exploit their 
potential in the food industry.

Future Perspectives

The future of Mediterranean food processing looks promis-
ing with the adoption of novel technologies and innovative 
approaches such as nanotechnology, 3D food printing and 
biotechnological innovations, which hold significant poten-
tial for enhancing Mediterranean food products. Nanotech-
nology can facilitate the improved delivery of nutrients 
and bioactive compounds, thereby augmenting these foods' 

Table 2   (continued)

Method Samples Application References

NIR Spectroscopy Tomato Determination of lycopene, soluble solids content 
(SSC), ripeness, taste-related compounds, pesticide 
residues

[243, 257, 259, 275, 281, 285]

Quantitative analysis, predicting lycopene content, 
soluble solids content (SSC), taste-related com-
pounds, Partial Least Squares Regression (PLSR)

[257, 273, 278, 330]

Optimizing prediction models for lycopene content, 
Genetic Algorithm Partial Least Squares (GA-PLS)

[272]

Analyzing sensory attributes and metabolite content, 
Principal Component Analysis (PCA)

[283]

Classification and prediction of quality parameters, 
Support Vector Machines (SVM)

[268]

Olive Determination of ripening stage, fatty acid composi-
tion, phenolic profiles

[288, 297–299]

Analyzing ripening stages based on skin color, Partial 
Least Squares Discriminant Analysis (PLS-DA)

[288]

Analyzing fatty acid and phenolic profiles, Principal 
Component Analysis (PCA)

[288]

Olive Oil Quality control, determination of phenolic and 
antioxidant content, fatty acid composition, fraud 
detection

[286, 287, 291, 294, 295]

Quality control, predicting acidity, peroxide value, 
phenolic profiles, Partial Least Squares Regression 
(PLSR)

[287, 288]

Analyzing quality parameters like acidity, peroxide 
value, and phenolic content, Multivariate Regression 
Analysis

[263, 290]

Discriminating based on fatty acid profiles and phe-
nolic content, Principal Component Analysis (PCA)

[288]

Thyme and Herbs Quality control, determination of essential oil compo-
nents, authenticity

[300–302]

Analyzing essential oil components, Multivariate 
Regression Analysis

Classifying based on essential oil profiles, Principal 
Component Analysis (PCA)
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health benefits and disease prevention capabilities. The 
advent of 3D food printing offers the possibility of produc-
ing customized and aesthetically appealing food products 
that cater to individual dietary requirements and preferences 
while preserving the traditional flavors and textures of Medi-
terranean cuisine. Biotechnological innovations, including 
gene editing and advanced fermentation techniques, can 
enhance Mediterranean ingredients' nutritional profile and 
shelf life. These technologies also support the development 
of new food varieties with increased resilience to climate 
change and environmental stresses, ensuring a consistent and 
sustainable supply of high-quality Mediterranean food. By 
integrating these advanced technologies, the Mediterranean 
food industry can continue to innovate and provide consum-
ers with nutritious, safe and sustainable food options. Future 
research should also focus on the sustainable cultivation and 
processing of Mediterranean ingredients. Exploring agro-
ecological practices, such as vertical farming and precision 
agriculture, can enhance the yield and quality of crops like 
olives, tomatoes, and legumes while minimizing environ-
mental impact. Developing alternative protein sources, such 
as lab-grown meat, plant-based sources and insect-based 
proteins, can complement traditional Mediterranean foods, 
offering sustainable and nutritious options. Incorporating 
functional ingredients, such as probiotics, prebiotics and bio-
active compounds, into Mediterranean food products can 
enhance their health benefits and meet the evolving needs 
of health-conscious consumers. By embracing these inno-
vative approaches and technologies, the Mediterranean diet 
can continue evolving, offering a healthy, sustainable, and 
enjoyable nutritional model for future generations.
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