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Konjik, N.; Jurić, T.; Samsarov, A.;
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Abstract: Within the framework of noncommutative (NC) deformation of gauge field
theory by the angular twist, we first rederive the NC scalar and gauge field model from
our previous papers, and then generalize it to the second order in the Seiberg–Witten (SW)
map. It turns out that SW expansion is finite and that it ceases at the second order in
the deformation parameter, ultimately giving rise to the equation of motion for the scalar
field in the Reissner–Nordström (RN) metric that is nonperturbative and exact at the same
order. As a further step, we show that the effective metric put forth and constructed in
our previous work satisfies the equations of Einstein–Maxwell gravity, but only within the
first order of deformation and when the gauge field is fixed by the Coulomb potential of
the charged black hole. Thus, the obtained NC deformation of the Reissner–Nordström
(RN) metric appears to have an additional off-diagonal element which scales linearly with
a deformation parameter. We analyze various properties of this metric.

Keywords: noncommutative spaces; angular twist; black hole and effective metric

1. Introduction
So far, general relativity (GR) has been shown to be a highly successful theory of gravity,

manifested in its remarkable ability to explain a series of observations [1–4] ranging from
the early-days examinations of the perihelion precession of Mercury, the bending of light,
and the gravitational redshift of radiation from distant stars, to modern day experimental
achievements in detecting gravitational waves and imaging of black holes. What was
in the not-so-recent past only a mere theoretical conception, following the appearance
of advanced ground-based and space-based missions [5–9] like the LIGO and the Event
Horizon Telescope, soon became a factual physical reality. While the LIGO experiment set
the ground for the first ever detection of gravitational waves from colliding black holes
and neutron stars, the Event Horizon Telescope provided an image of the black hole M87*
(actually an image of the gas orbiting around the black hole at the center of the supergiant
elliptical galaxy Messier 87), thus further adding to GR’s enviable predictive power [10–16].

However, in order that a premise of general relativity as the correct theory of gravity
be sustained, it was necessary to introduce into consideration a few exotic ingredients, such
as dark matter and dark energy [17–19], to explain the galactic rotation curves and the
accelerated expansion of the universe. In addition, the conceptual problems with black
holes and the Big Bang singularity [20,21] point to the fact that the ultraviolet character of
gravity still lacks a complete understanding. With all these issues, any attempt to modify
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general relativity or to consider alternative gravity models appears to come as a quite
natural endeavor.

In this paper, we use the methods of noncommutative geometry and noncommutative
gravity [22–30], first to recapitulate a construction of the NC scalar and gauge field model
from reference [31], and then to generalize it to the second order in the Seiberg–Witten
map [23]. It is shown that the second order in the expansion is at the same time an
ultimate order, and consequently the model obtained is nonperturbative and exact. Using
certain duality symmetries that are present at the first order in SW expansion, we recap a
construction from [31,32] that gives rise to a particular noncommutative deformation of
the RN metric. While this construction turns out to be possible at the first order in SW, it
fails at the second order. This is due to the fact that duality symmetry breaks at the second
order in SW expansion.

As a further step, we show that the metric put forth and constructed in [32] appears to
be a deformation of the Reissner–Nordström (RN) black hole that acquires an additional off-
diagonal element, linear in the deformation parameter, and satisfying the Einstein–Maxwell
equations at the first order of deformation. The construction in reference [32] was carried
out by utilizing the methods of noncommutative (NC) gauge field theory [22–30] coupled
to an NC spinor field and to a classical geometry of the RN type. The methods of NC gauge
theory and gravity offer yet another convenient way to modify general relativity in order
to capture effects that are expected to appear close to the Planck scale. The ultimate hope
is that the NC modifications of gravity will unravel something of its quantum character.
In the rest of the paper, we go on to explore the physical properties of this NC-deformed
metric and try to understand its origin and meaning.

It is noteworthy that the construction considered in [32] is not the only attempt in the
literature to deform the RN metric (within the framework of noncommutative physics). In-
deed, in recent years there have been several investigations concerning the noncommutative
versions of Reissner–Nordström (RN) black holes [33–38]. Most of the research in the litera-
ture however has dealt with the so-called Moyal-type noncommutativity [x̂µ, x̂ν] = θµν. For
example, in [33,34,36] the authors used this type of noncommutativity and implemented
it using smeared δ-functions for the mass and charge distributions. The main feature of
such systems is the change in Hawking temperature and entropy. An alternative approach
was presented in [35], where Moyal noncommutativity was introduced using deformed
embedding of RN into deformed Riemannian geometry. Using the framework of the NC
gauge theory of gravity, the authors of [37] were able to construct corrections to the RN
solution and showed that this could lead to a removal of singularities.

The structure of the paper is as follows: In the following section, we review our model
of the NC charged scalar field in a curved background coupled to the NC U(1) gauge
field. In Section 3, we extend our results to the second-order expansion in the deformation
parameter and show that the equation of motion for the NC scalar field does not contain
higher-order terms. This defines the exact (in the NC parameter expansion) model of an
NC charged scalar field coupled to the curved (spherically symmetric) background. In
Sections 4 and 5, we discuss the properties of the NC charged black hole, obtained from the
effective/dual metric in the equation of motion for the NC scalar filed. Section 6 contains
further discussion and some conclusions. In particular, we comment on the possibility of
constructing the effective metric up to the second order in the deformation parameter by
introducing the nonmetricity tensor.

2. NC Scalar Field in the Reissner–Nordström Background
Consider a system consisting of a charged scalar and U(1) gauge field, as well as the

classical gravitational field. We want to deform this system in order to ultimately generate
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one type of deformation of the classical solution to Einstein’s gravity. In particular, it is a
noncommutative deformation of the RN metric that we focus our attention on. The required
steps may be carried out by following [32], where noncommutativity was introduced at
the level of the scalar field that is probing the underlying RN background. After a careful
derivation of the corresponding equation of motion, which we briefly repeat here, one
comes to the conclusion that this system of an RN black hole coupled to an NC scalar and
gauge fields is equivalent/dual to a system of a commutative scalar field and a new effective
background, which up to the first order in the deformation parameter absorbs all NC effects.
We refer to this effective background as the noncommutative Reissner–Nordström (NCRN)
black hole.

Let us start with writing the action functional for the NC U(1)⋆ gauge theory of a
massless charged scalar field ϕ̂ in an arbitrary background (that has Killing vectors ∂t and
∂φ) [31]:

S [ϕ̂, Â] =
∫
(dϕ̂ − iÂ ⋆ ϕ̂)† ∧⋆ ∗(dϕ̂ − iÂ ⋆ ϕ̂)− 1

4

∫
F̂ ∧⋆ ∗F̂

=
∫

d4x
√
|g| ⋆ gµν ⋆ Dµϕ̂† ⋆ Dνϕ̂ − 1

4

∫
d4x

√
|g| ⋆ gαβ ⋆ gµν ⋆ F̂αµ ⋆ F̂βν

(1)

where Dµ is the covariant derivative defined by

Dµϕ̂ = ∂µϕ̂ − iqÂ ⋆ ϕ̂ (2)

and F̂ = F̂µν ⋆ dxµ ∧⋆ dxν is the field strength, defined by

F̂µν = ∂µ Âν − ∂ν Âµ − i[Âµ
⋆, Âν]. (3)

Action (1) is written in spherical coordinates as xµ = (t, r, θ, φ) and the Hodge dual is
denoted by ∗.

The ⋆-product is given by the Abelian twist

F = e−
ia
2 (∂t⊗∂φ−∂φ⊗∂t) = e−

i
2 θαβ∂α⊗∂β (4)

via (m is the multiplication map m(a ⊗ b) = ab)

f ⋆ g = m
(
F−1 ▷ f ⊗ g

)
= f g +

ia
2

(
∂ f
∂t

∂g
∂φ

− ∂ f
∂φ

∂g
∂t

)
+O(a2),

(5)

where f , g ∈ C∞ and θαβ are components of the NC deformation, with only θtφ and θφt being
different from zero: θtφ = −θφt = a. Note that this twist leads to the only nonvanishing
commutator [t⋆,eiφ] = −aeiφ. The twist (4) may be seen as a special case of the general class
of twists related to the Lie-algebraic deformation of Minkowski space [39]. Note that since
the twist F acts trivially on the metric, the ⋆-product in

√
|g| ⋆ gαβ ⋆ gµν can be omitted.

Now, it is straightforward to check that action (1) is invariant under the infinitesimal U(1)⋆
gauge transformations defined by

δ⋆ϕ̂ = iΛ̂ ⋆ ϕ̂, δ⋆ Âµ = ∂µΛ̂ + i[Λ̂⋆, Âµ], δ⋆ F̂µν = i[Λ̂⋆, F̂µν] (6)

where Λ̂ is the NC gauge parameter.
Using the Seiberg–Witten(SW) map [23], one can express the NC fields as functions

of the corresponding commutative fields, which can then be expanded as a series in
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the deformation parameter a. Using the twist (4), one obtains the following recursion
relations [40]:

ϕ̂(n+1) = − 1
4(n + 1)

θρσ
(

Âρ ⋆ (∂σϕ̂ + Dσϕ̂)
)(n)

,

Â(n+1)
µ = − 1

4(n + 1)
θρσ

(
{Âρ

⋆,(∂σ Âµ + F̂σµ)}
)(n)

,

F̂µν = − 1
4(n + 1)

θρσ
(
{Âρ

⋆,∂σ F̂µν + Dσ F̂(n+1)
µν }

)(n)
+

1
2(n + 1)

θρσ
(
{F̂µρ

⋆, F̂νσ}
)(n)

.

(7)

Using the first-order results of (7) and the ⋆-product (5), we expand action (1) up to the first
order in the deformation parameter a as follows:

S =
∫

d4x
√
|g|

(
Dµϕ†Dµϕ − 1

4
FµνFµν +

1
8

gµρgνσθαβ(FαβFµνFρσ − 4FµαFνβFρσ)

+
1
2

θαβgµν(−1
2

FαβDµϕ†Dνϕ + FανDµϕ†Dβϕ + FαµDβϕ†Dνϕ)
)
+O(a2),

(8)

where Dµ is the usual U(1) covariant derivative Dµϕ = ∂µϕ − iqAµϕ. If we add the
classical EH action to (8), the resulting functional may be viewed as a deformation of
Einstein–Maxwell gravity, leading to an effective theory of gravity akin to some effective
models of gravity obtained in the low-energy limit of a string theory action containing the
gravitational, gauge, and dilaton or axion fields [41,42].

By varying action (8) with respect to ϕ†, one obtains an equation of motion for ϕ:

gµν
[

DµDνϕ − Γλ
µνDλϕ

− 1
4

θαβ
(

Dµ(FαβDνϕ)− Γλ
µνFαβDλϕ − 2Dµ(FανDβϕ) + 2Γλ

µνFαλDβϕ − 2Dβ(FαµDνϕ)
)]

= 0. (9)

Varying the action with respect to Aλ, one can obtain the NC Maxwell’s equations [31].

The gravitational background is defined by the Reissner–Nordström spacetime, with metric

gµν =


− f (r) 0 0 0

0 1
f (r) 0 0

0 0 r2 0
0 0 0 r2 sin2 θ

, f = 1 − 2M
r

+
Q2

r2 , (10)

where M is the mass and Q the charge of the RN black hole, and the U(1) gauge field is

Aµ = (−Q
r

, 0⃗ ). (11)

The corresponding field strength Fµν has the only nonvanishing components:

Ftr = −Frt = −Q
r2 . (12)

Furthermore, since the only nonvanishing components of the NC deformation θαβ are
θtφ = −θφt = a, by inserting (10), (11), and (12) into (9), we finally obtain(

1
f

∂2
t − ∆ + (1 − f )∂2

r +
2M
r2 ∂r +

2iqQ
r f

∂t −
q2Q2

r2 f

)
ϕ +

aqQ
r3

((
M
r
− Q2

r2

)
∂φ + r f ∂r∂φ

)
ϕ = 0. (13)

Equation (13) is the equation of motion of an NC scalar field in the background of the RN
black hole. This equation, its quasinormal-mode solutions, and the Bekenstein–Hawking
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entropy were extensively studied in [31,43,44]. Note that in the limit a → 0 one obtains the
usual equation of motion of a commutative scalar field in the RN background.

3. Exact Equation in the Second-Order SW Map
In this section, we extend the previous analysis to the second order in the SW ex-

pansion. Remarkably, the SW expansion terminates at this order, and consequently the
resulting equations of motion is exact. In order to find the second-order NC corrections,
we use recurrent relations for the SW map (7) and follow steps similar to those in Sections
3 and 4 in [40]. Similarly to (7), the recursion relations for action (1) allow us to express
corrections in order n + 1 from the corrections in order n by substituting all pointwise
products with the ⋆-products and commutative fields with the corresponding NC fields.
By closer inspection and taking into account that the only nonvanishing components of
the θµν and Fµν are θtφ and Ftr, we see that the terms from the first-order expansion which
give nonzero corrections in the second order are the following (the superscript in (. . .)(i)

denotes that only the i-th order in the deformation parameter a is retained):

S(2) =
√
|g| θ

αβgµν

2
(Dµϕ̂† ⋆ F̂αν ⋆ Dβϕ̂ + Dβϕ̂† ⋆ F̂αµ ⋆ Dνϕ̂)(1). (14)

Inserting the SW map solutions (7) and expanding the ⋆-products, with the help of the
useful method for obtaining manifestly covariant results given in Appendix B in [45],
(14) becomes

S(2) =
√
|g|1

4
θαβθγδgµν(−2Aγ∂δ(Dµϕ†FανDβϕ) + iDγ(Dµϕ†Dβϕ)DδFαν

+iFαν(DγDµϕ†)(DδDβϕ) + Dµϕ†FανFγβDδϕ

+Dδϕ†FανFγµDβϕ + 2Dµϕ†FγαFδνDβϕ)

+
√
|g|1

4
θαβθγδgµν(−2Aγ∂δ(Dβϕ†FαµDνϕ) + iDγ(Dβϕ†Dνϕ)DδFαµ

+iFαµ(DγDβϕ†)(DδDνϕ) + Dβϕ†FαµFγνDδϕ

+Dδϕ†FαµFγνDνϕ + 2Dβϕ†FγαFδµDνϕ). (15)

After subsequent partial integrations and the use of the identity i[Dα, Dβ]ϕ = Fαβϕ, as well
as the fact that derivatives which are contracted with the NC deformation parameter matrix
θαβ do not act on the field strength tensor Fµν, we obtain

S(2) =
√
|g|1

4
θαβθγδgµν(−Fγδ(Dµϕ†FανDβϕ) + iDγ(Dµϕ†Dβϕ)DδFαν

−Fαν(Dµϕ†)Fγδ(Dβϕ) + Dµϕ†FανFγβDδϕ

+Dδϕ†FανFγµDβϕ + 2Dµϕ†FγαFδνDβϕ)

+
1
4

√
|g|θαβθγδgµν(−Fγδ(Dβϕ†FαµDνϕ) + iDγ(Dβϕ†Dνϕ)DδFαµ

+Fαµ(Dβϕ†)Fγδ(Dνϕ) + Dβϕ†FαµFγνDδϕ

+Dδϕ†FαµFγβDνϕ + 2Dβϕ†FγαFδµDνϕ). (16)

Since Ftφ = 0, some of the above terms vanish, while the others add to one term given by

S(2) =
√
|g|1

4
θαβθγδgµν(Dβϕ†FαµFγνDδϕ + Dβϕ†FαµFγνDδϕ) =

√
|g|1

2
θαβθγδgµν(Dβϕ†FαµFγνDδϕ). (17)
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Variation of these terms with respect to ϕ† gives rise to additional terms in the equation of
motion. It turns out that only one new term appears, which is of the form

1
2

θαβθγδgµνFαµFγνDβDδϕ.

More explicitly, we obtain

1
2

θtφθtφgrrFtrFtr∂2
φϕ =

1
2

a2(− f )
q2Q2

r4 ∂2
φϕ = − a2q2Q2

2r4 f ∂2
φϕ.

Finally, the resulting equation of motion is

( 1
f

∂2
t − ∆ + (1 − f )∂2

r +
2MG

r2 ∂r + 2iqQ
1
r f

∂t −
q2Q2

r2 f

)
ϕ

+
aqQ
r3

(
(

MG
r

− GQ2

r2 )∂φ + r f ∂r∂φ

)
ϕ − a2q2Q2

2r4 f ∂2
φϕ = 0. (18)

As already noted, the equation of motion (18) is not just a perturbative result valid
up to the second order in deformation. It is an exact result and may be attributed to the
SW map terminating at that same order. As an advantageous outcome, one finds that all
analysis that is ever going to follow from this equation requires no perturbative protocols
anymore. All results following from (18) are exact automatically. There is one more way
to justify why Equation (18) is exact and no higher-order corrections appear. Namely, the
SW map is linear in matter fields, while action (1) is quadratic in the matter field ϕ. The
only nonzero components of the deformation parameter θ are θtφ, so each new order of
expansion contributes one additional set of φ and t indices. Note that the index φ can only
appear contracted to Dφϕ, since all Fµφ = 0. Since action (1) is quadratic in the field ϕ and
we can always partially integrate multiple covariant derivatives on ϕ to obtain Fρσ, we
conclude that the maximal number of Dφ in the expanded action is two, and therefore the
expansion of the action has to terminate at the second order.

4. Noncommutative Reissner–Nordström Black Hole
In this section, we focus on the first order in the SW expansion, that is, the equation of

motion (13), and identify a duality symmetry that exists at that order. This symmetry will
allow us to absorb the noncommutative contributions into a single d’Alembertian operator
and ultimately to identify the effective metric related to this problem, which will turn out
to be a deformation of the Reissner–Nordström metric. We later discuss possible extensions
of the duality symmetry to higher orders.

The equation of motion for the NC scalar field minimally coupled to the RN back-
ground can be written in the following form [32]:

1√
|g|

Dµ(
√
|g|gµνDνϕ) +□aϕ = 0, (19)

where □a is the part of (13) which contains only NC contributions. Now, we try to rearrange
(19) so that the NC operator □a is absorbed into some effective metric g′µν. Namely, we write

1√
|g′|

Dµ(
√
|g′|g′µνDνϕ) =

1√
|g|

Dµ(
√
|g|gµνDνϕ) +□aϕ. (20)
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We can write an ansatz for g′µν, and after carefully comparing the left- and right-hand sides
of (20), we can extract the components of the effective metric g′µν to obtain

g′µν =


− f 0 0 0
0 1

f 0 aqQ
2 sin2 θ

0 0 r2 0
0 aqQ

2 sin2 θ 0 r2 sin2 θ

+O(a2). (21)

Since we have an effective metric g′µν, we can notice an equivalence between the equation of
motion of an NC scalar field in the RN background (9) and the equation of motion guiding
a commutative scalar field on some effective background endowed with the effective metric
g′µν. The similar property has already been observed for the NC scalar field on the BTZ
background [46–49] in the context of κ-deformation. In particular, in [46–49] it was shown
that noncommutativity may give rise to black hole spin and that it essentially mimics its
advent. It is interesting to note that a similar type of feature, where the noncommutativity
is assigned the role of a mimicker of some specific physical property, is quite usual in the
literature; see, for example, reference [50]. As the effective metric g′µν appears to absorb all
NC effects, we name this new effective space as NCRN, and in what follows we investigate
its physical properties. This effective metric provides a dual picture to the same physical
system, comprising the NC scalar field with the charge q and the background metric
generated by the black hole with mass M and charge Q. Note that from now on we deal
with only one metric, that pertaining to NCRN, and for simplicity we switch the notation
accordingly, i.e., g′ → g.

Thus, the metric of NCRN is given by

gµν =


− f (r) 0 0 0

0 1
f (r) 0 A sin2 θ

0 0 r2 0
0 A sin2 θ 0 r2 sin2 θ

, (22)

written with the abbreviations

f (r) = 1 − 2M
r

+
Q2

r2 and A =
aqQ

2
. (23)

As A → 0, we recover the commutative limit. Interestingly, when the same procedure is
carried out for the spin 1/2 field up to the first order in deformation, the same effective
metric (22) arises [32]. The situation with the extension of this analysis to the vector field
is, however, a little bit different. Namely, for the electromagnetic spin 1 field there are
no corrections to the equation of motion in the first order, while in higher orders in Θ,
due to the SW map (7) the NC Maxwell equation becomes nonlinear in Aµ, rendering any
possibility of constructing a dual picture with an effective metric impossible. On the other
hand, in order to extend this construction to the second order in the deformation parameter,
we need to allow a more general connection. We comment on this in the concluding section.

From now on, we drop the scalar field from any subsequent discussion and the only
subject of our interest is a system consisting of the gauge field and the gravitational field
(metric tensor).
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Now, the main question is what geometry and physics lie behind the NCRN metric (22).
Let us evaluate the Einstein tensor:

Gµν = Rµν −
1
2

Rgµν =


Q2 f
r4 0 0 0

0 − Q2

r4 f 0 A Q2 sin2 θ
r4

0 0 Q2

r2 0

0 A Q2 sin2 θ
r4 0 Q2 sin2 θ

r2

+O(A2) . (24)

As can be seen, the Einstein tensor is nonzero, so the NCRN metric, as expected, is not a
vacuum solution to the Einstein equation.

Thus, the NC effect may be encrypted within some effective matter source, ap-
pearing on the right-hand side of the Einstein field equation. The interesting feature
is that for the metric (22) this effective matter source may be fixed by Maxwell’s energy–
momentum tensor:

TM
µν =

1
4π

(
FµλF λ

ν − 1
4

gµνFλσFλσ

)
. (25)

Indeed, it may be shown that up to first order in the deformation A the metric (22) satisfies
the Einstein–Maxwell field equation:

Gµν = 8πTM
µν. (26)

We first note that the zeroth order in A in (24), i.e., the Einstein tensor for the RN metric,
is proportional to the Maxwell energy–momentum tensor (25), where the only nonvan-
ishing component of the electromagnetic tensor Fµν is Frt = −Ftr = Q/r2. In order to
see what happens in higher orders, in particular the first order in A, we absorb the NC
corrections appearing in (24) into the energy–momentum tensor TM

ab , and simultaneously
allow the modifications in the electromagnetic tensor Fab. In this way, we propose the
following ansatz:

Fµν =


0 −Q

r2 − AF0 AF1 AF2
Q
r2 + AF0 0 AF3 AF4

−AF1 −AF3 0 AF5

−AF2 −AF4 −AF5 0

 (27)

where Fi = Fi(t, r, θ, φ) are yet-unknown functions. Now, using the Einstein tensor (24)
calculated for the metric (22) and the energy–momentum tensor (25), evaluated for the
ansatz (27), we can calculate the difference tensor:

Gµν − 8πTM
µν =


− AQ f

r2 F0 0 − 2AQ f
r2 F3 − 2AQ f

r2 F4

0 2AQ
r2 f F0 − 2AQ

r2 f F1 − 2AQ
r2 f F2

− 2AQ f
r2 F3 − 2AQ

r2 f F1 −2AQF0 0

− 2AQ f
r2 F4 − 2AQ

r2 f F2 0 −2AQF0 sin2 θ

+O(A2). (28)

The only way that the above difference tensor vanishes is if

F0 = F1 = F2 = F3 = F4 = 0, (29)

leaving the function F5(t, r, θ, φ) still arbitrary. Thus, we see that up to first order in A, the
metric (22) satisfies the Einstein–Maxwell field Equation (26).

An alternative perspective on this situation might be that the nonvanishing Gµν in (24)
results from a modification of Einstein’s gravitational field equation. In that case, we are
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interpreting all corrections as coming from the (NC) geometry part [40,45,51–60]; i.e., as
corrections to the left-hand side of the Einstein equation. In this way, one would obviously
fix the energy–momentum part and modify the Einstein tensor Gµν −→ Ĝµν according to

Ĝµν = Rµν −
1
2

gµνR +O(A).

5. Physical Properties of NCRN
In the following we make a review of some general properties of the metric (22). Later

on, we shall see that many of these properties may be easily understood through the lenses
of a transition to another coordinate system.

5.1. Various Aspects of NCRN

Primarily, it is easy to see that this metric is static since its stationary Killing vector
field k = ∂/∂t satisfies k ∧ k. = 0 and the metric is written explicitly in block-diagonal form.
Furthermore, by the Vishveshwara–Carter theorem we know that ergosurfaces, consisting
of points where the Killing vector field ka becomes null, coincide with the Killing horizon
H[k] generated by ka.

On the other hand, the horizon can be quickly found by looking at the zeros of
the metric function f (r), which are formally identical, as in the commutative Reissner–
Nordström black hole. However, as the original coordinate system in which the metric
is written is not regular at the black hole horizon, we have to use some of the light-
like coordinates, such as v = t + r∗ with the tortoise coordinate r∗, introduced via the
r.∗ = r./ f (r): spacetime metric in the coordinate system {v, r, θ, φ}, that takes the form

ds2 = − f (r)dv2 + 2 dv dr + 2A sin 2θ dr dφ + r2(dθ2 + sin 2θ dφ2). (30)

Nevertheless, here we have k = ∂/∂v and again k2 = gvv = − f (r). Let us denote the zeros
of f (r) with r+ and r−, so that

r± = M ±
√

M2 − Q2,

as in the case of an RN black hole.
Another interesting point is the temperature of the NCRN black hole. It appears

that the temperature of the Reissner–Nordström black hole remains unaltered by the
noncommutative corrections. This may be seen from the following line of arguments,
starting from the well-known expression for surface gravity:

κ2 = − lim
H

(kb∇bka)(kc∇cka)

kaka
. (31)

The evaluation of the expression in the numerator gives

kα∇αkµ = kα∂αkµ + kαΓµ
αβkβ = 0 + Γµ

tt =
1
2

gµr∂r f (r)

and consequently

(kα∇αkµ)(kβ∇βkµ) =
1
4

gµνgµrgνr(∂r f )2 =
1
4

grr(∂r f )2 , k2 = gtt = − f . (32)
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Since the only component of the metric that we need is grr and it is given by

grr =
1

1
f −

A2 sin2 θ
r2

,

one finally obtains

κ2 = lim
r→r+

1
4

( f ′)2

1 − A2 sin2 θ
r2 f

= lim
r→r+

( f ′)2

4
.

Formally, as above, this has to be checked in a regular coordinate system, such as {v, r, θ, φ}.
Here, we have

kα∇αkµ = Γµ
vv =

1
2

gµr∂r f (r)

and consequently

(kα∇αkµ)(kβ∇βkµ) =
1
4

grr(∂r f )2 =
1
4

( f ′)2

1
f −

A2 sin2 θ
r2

.

Again, the conclusion remains unaltered, κ = f ′(r+)/2. Expectedly, this result is in
accordance with that obtained in [31] when calculating the emission rate of the scalar
particles using the Parikh–Wilczek tunneling formalism. Moreover, the conclusion that the
lowest nonvanishing NC correction to the horizon temperature is beyond the linear one
seems to be in agreement with other approaches in the literature [61–63].

5.2. The Newtonian Limit

The Newtonian limit is defined by the three following premises [64]:

1. The particle is moving slowly with respect to the speed of light;
2. The gravitational field is weak and can be considered as perturbation of a flat space;
3. The gravitational field is static.

The mathematical description of premise 1 is given by the requirement

dxi

dτ
≪ dt

dτ
, (33)

which simplifies the geodesic equation

d2xµ

dτ2 + Γµ
tt

(
dt
dτ

)2
= 0. (34)

Moreover, since the gravitational field is static, we have

Γµ
tt = −1

2
gµr∂rgtt.

In the subsequent analysis, we will need the inverse of the metric (22), which is given by

gµν =


− 1

f 0 0 0

0 f 0 −A f
r2

0 0 1
r2 0

0 −A f
r2 0 1

r2 sin2 θ

+O[A]2. (35)
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Now, if we examine Equation (34) for µ = t, we obtain

d2t
dτ2 = 0 =⇒ dt

dτ
= const. (36)

which enables us to rewrite (34) in terms of the coordinate time t only:

d2xµ

dt2 + Γµ
tt = 0 . (37)

At this point, we use premise 2, which tells us that the gravitational field is weak and that
it can be treated as a perturbation of the flat metric. In fact, one is dealing here with two
types of perturbations: gravitational and noncommutative. Therefore, the inverse of the
metric can be written as

gµν = ηµν − hµν + Akµν +O(A · h, h2, A2), (38)

where only the lowest order in h and A is kept. Let us calculate the Christoffel symbol in
this approximation:

Γµ
tt = −1

2
gµr∂rgtt = −1

2
(ηµr − hµr + Akµr)∂rgtt = −1

2
(ηµr + Akµr)∂rgtt +O[h2, A2]. (39)

In the last equality, we used the fact that in the lowest order −gtt = f (r) = 1 +O[h], i.e.,
∂g ∼= O[h]. Thus, the Christoffel symbols are

Γt
tt = Γθ

tt = 0, Γr
tt =

1
2

∂ f
∂r

, Γφ
tt = − A

2r2
∂ f
∂r

(40)

so that (34) in the Newtonian limit reduces to

r̈ = −1
2

∂ f
∂r

, φ̈ =
A

2r2
∂ f
∂r

, θ̈ = 0. (41)

While the noncommutativity does not affect the radial equation, it affects the equation for
the polar coordinate. The equations of motion (41) can be written in a unified way as

ẍi = −∂̃iV(r), (42)

where V(r) = 1
2 f is the generalized Newtonian potential (for all practical purposes it is

really the Newtonian potential since f ≈ 1 − 2M
r for 2M

r ≫ Q2

r2 ) and ∂̃i ≡ ∂i + Θ̃ j
i ∂j is the

generalized Laplacian, with

Θ̃ j
i =

 0 0 A
2r2

0 0 0
− A

2r2 0 0

. (43)

Equation (42) represents the noncommutative version of the Newton equation.

5.3. Geodesics in NCRN

Let us investigate the geodesics for the classical, electrically neutral particle moving
in the background of NCRN (22). For the sake of simplicity let us examine geodesics in
the θ = π/2 plane. The 4-velocity is uµ = (ṫ, ṙ, 0, φ̇), where the dot denotes the derivative
with respect to proper time (in case of time-like geodesics), or with respect to some affine



Symmetry 2025, 17, 54 12 of 19

parameter (in case of null geodesics). The kinematics is encapsulated in the square of the
4-velocity,

−κ = uµuµ = − f (r)ṫ2 +
ṙ2

f (r)
+ r2 sin2 θ φ̇2 + 2A sin2 θ ṙφ̇ , (44)

written with the parameter

κ =

{
1 , timelike
0 , null

(45)

On the other hand, due to the Killing vectors k = ∂/∂t and m = ∂/∂φ, there are two
conserved quantities: energy e and angular momentum ℓ,

e = −gµνuµkν = f (r)ṫ ⇒ ṫ =
e

f (r)
,

ℓ = gµνuµmν = A sin2 θ ṙ + r2 sin2 θ φ̇ ⇒ φ̇ =
ℓ

r2 sin2 θ
− A

r2 ṙ.

Thus, taking into account that θ = π/2 and noting that terms linear in A cancel, we have

−κ =

(
1

f (r)
− A2

r2

)
ṙ2 − e2

f (r)
+

ℓ2

r2 .

Formally, we can put this into standard form with an effective potential via auxiliary
function R(τ):

Ṙ2

2
+ V(r) =

e2

2
, (46)

where

V(r) =
f (r)
r2 (l2 + κr2),

Ṙ2

f (r)
=

(
1

f (r)
− A2

r2

)
ṙ2 i.e., R. = r.

√
1 − A2

r2 f (r) .

However, it is difficult to write this relation explicitly.

Interestingly, in this analysis the circular trajectories (ṙ = 0) are completely unaffected
by noncommutativity. However, a particle that would be released from rest (i.e., with ℓ = 0)
at great distance from the black hole would nevertheless gain some nonvanishing shift in
the angle due to the NC term −Aṙ/r2. This implies that the total time of the free fall for the
photon would display a difference when calculated and compared between commutative
and noncommutative cases. Indeed, if l = 0 we see that the radial motion is unchanged (up
to A2 it is the same situation as in the commutative case) and unfolds according to

r(τ) = R0 + eτ, (47)

where R0 is the initial radius r(0) = R0. The polar coordinate should then acquire the
NC correction

φ̇ = − A
r2 ṙ =⇒ φ(τ) = φ0 − Ae

(
1

R0e − e2τ
− 1

R0e

)
. (48)

However, one should be careful about proper interpretation of these results, in particular
about observational claims. As far as it goes, in our analysis we are relying on a specific
coordinate system, and in this particular case it is not as intuitive as one would initially
expect, this being due to the presence of the grφ component in the metric. For example,
we could say that the experiment is performed by “static observers”, that is observers
with 4-velocities ua-tangent to the orbits of the stationary Killing vector field ka = ∂a

t ;
more concretely, uµ = (1/

√−gtt, 0, 0, 0), in which case the conclusions drawn might be
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somewhat different. These issues are addressed in more detail in the final section, where
we take on the task of finding a genuine physical interpretation of the NCRN metric (22)
and specifically of its only nonvanishing off-diagonal component grφ.

6. Concluding Remarks
This work has provided a study of the noncommutative U(1) gauge field gravity

model coupled to a scalar field all up to the second order in the Seiberg–Witten map. If
classical Einstein–Hilbert action is added to this model, the resulting setup may be viewed
as a deformation of the system consisting of the gauge field, gravitational field, and dilaton
field that one usually encounters in some models of quantum gravity after the low-energy
limit is taken. The approach that we use provides yet another procedure to modify GR in
order to make it more compatible with physics that is expected to occur at the Planck scale.

Using duality symmetry that is present at the first order in SW, we have rederived the
effective metric from the reference [32] (see Equation (22)), which turns out to be a non-
commutative deformation of the Reissner–Nordström metric, with the only nonvanishing
off-diagonal component sitting at the entry (r, φ) and scaling linearly with the deformation
parameter a. This metric has been shown to satisfy the equations of Einstein–Maxwell
gravity when the gauge field is fixed to be the Coulomb potential with its origin in a
black hole charge, albeit only within the first order of deformation. On the contrary, as
we demonstrate in the Appendix A, the construction of the effective metric fails at the
second order in SW expansion due to duality symmetry being broken there. However,
it is worthy to note that if we extend the definition of the connection and in addition to
the ordinary Christoffels take it to also involve the contorsion and nonmetricity, then the
construction of the effective metric can be pushed through up to the second order and
beyond. More precisely, it can be shown that the inverse of the effective metric that in such
an extended framework is able to produce the exact (nonperturbative) Equation (18) by
means of the general equation of motion (20) appears to pick up an additional term in the
component gφφ:

gφφ(2) = − a2q2Q2

2r4 f . (49)

Consequently, the effective metric itself in this more extended framework acquires the
corrections

g(2)φφ =
a2q2Q2

4
f sin4 θ, g(2)rr = − a2q2Q2

4r2 sin2 θ. (50)

Note that the inverse of the effective metric is given by the exact result, while its inverse,
i.e., the effective metric itself, has been expanded up to second order in deformation. For
details we refer the reader to the Appendix A. Here, we only make a note that such a
construction is nonunique.

In Section 4, we have touched upon an important question dealing with an actual
interpretation and better understanding of the metric (22), which we here come back to.
Specifically, we are interested in the interpretation of the grφ metric component, as well as
the meaning of the coordinates in which the metric is expressed and in which the calcula-
tions were carried out previously (especially in the preceding section). A call for caution
has already been given before, as there might be a possibility that the predictions obtained
in the previous section might not be fully trustworthy, due to possible misinterpretation of
the coordinates. Indeed, we should not jump to the conclusion that the obtained results
are completely reliable just because the coordinates we work with are denoted as standard
spherical coordinates. In other words, just because some coordinates are denoted by “r” or
“φ” does not automatically mean that they are “usual spherical coordinates” (e.g., it might
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be that r ∈ ⟨−∞, ∞⟩ or even φ ∈ ⟨−∞, ∞⟩). For this purpose, here we investigate this point
in some more detail.

Using the new coordinates (t̃, r̃, θ̃, φ̃) = (t, r, θ, φ − Ar−1) the metric turns into

gµ̃ν̃ =


− f (r)

h(r, θ)

r2

r2 sin2 θ

 , h(r, θ) =
1

f (r)
− (A sin θ)2

r2 . (51)

Therefore, we see that upon making a coordinate transformation, the NCRN metric (22) is
transformed into a new, more familiar, format, which to a first order of deformation appears
to be no different to the RN metric. Moreover, in this coordinate system it is manifestly clear
that the metric is asymptotically flat up to the first order in the NC deformation parameter.
In addition, it can be easily checked that the same change in coordinates may be used to
transform away the deflection of a photon in its free fall toward the center of the black
hole studied in the previous section; i.e., to erase the only seemingly nontrivial effect of
the NCRN presented in this work. This would consequently mean that the NC corrections
present in the metric (22) are trivial and that they do not have any physical meaning. In
light of these findings, it does not come as a surprise that the NCRN metric (22) appears
to have the properties that we have so far encountered, in particular that all nontrivial
changes appear at orders that are not lower than the second.

However, we want to stress that the above reasoning, as well as the conclusions drawn
from it, do not present the whole picture, but only a portion of it. As such, this reasoning
alone is insufficient to provide any reliable or far-reaching conclusion and in many aspects
is misleading. It is indeed true that the metric tensor in the new coordinates at the first order
in the NC parameter a seems to be the same as the ordinary RN metric. Nonetheless, the
problem with such a stance is that it completely ignores the context which brought about
the metric (22) and in which it was derived. Regarding the context in this concrete example,
imagine that we have two spacetimes, the background (M, gab) with RN metric gab, where
we place the NC scalar field, and “effective” spacetime (M, g′ab) with the effective metric
g′ab. Unfortunately, as the whole setting (background spacetime and NC action) is prepared
in a specific coordinate system, we cannot easily transform components of the effective
metric g′ab without going back to the origin of this construction. At best, coordinate changes
such as the one above may be trusted at infinity.

An additional point in this case is that the coordinates are noncommutative and the
partial derivatives are also noncommutative. In particular,

∂r̃ = ∂r −
A
r2 ∂φ. (52)

From these reasons, it is clear that the new geometry will have nontrivial NC effects up to
the first order in the NC deformation parameter a, contrary to the argument made around
(51). Not a bit less important is that the coupling of the NCRN metric with other fields
makes a huge difference in comparison with a situation when this metric is taken alone
and studied as an isolated entity. This is where the importance of the duality symmetry
and a validity of the corresponding requirement (20) comes into play. Namely, after the
coordinate transformation leading to (51), the duality does not hold anymore.

The latter argument is readily confirmed in references [31,32,43], where the metric (22)
was coupled to the spin 1/2 field and scalar field, respectively. We point out that, already
at the linear order in the deformation parameter, these couplings lead to QNM spectra
that differ from the corresponding QNM spectra when the same fields are coupled to the
ordinary RN metric. In this way, the assertion that at the first order in deformation the
NCRN metric is essentially the same as the RN metric directly contradicts with the findings
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in [31,43], where it was explicitly shown that scalar perturbations of RN and NCRN give
rise to different QNM spectra already at linear order in the deformation parameter. Also,
this assertion is in contradiction with the findings in [32], which show that the spin 1/2
field perturbations of RN and NCRN are governed by different equations of motion.

In summary, when talking about the physical properties of the NCRN metric (22), we
may conclude by saying that, observed only by itself, outside of the context in which it was
derived, it appears to be just the RN metric in different coordinates. However, what brings
something new to this metric and its consequences for physics is when it couples to other
types of fields, for example, the scalar, spinor, and gauge fields.
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Appendix A. Second-Order Corrections to the Effective Metric
In this appendix, we describe the challenges one encounters when trying to deduce

the form of the effective metric in higher orders of deformation. In order to make a
construction in higher orders possible, one has to extend the existing framework and
redefine the coefficients of affine connection Γρ

µν in such a way that, in addition to the
ordinary Christoffels {ρ

µν}, they also include the contorsion Kρ
µν and the nonmetricity Cρ

µν:

Γρ
µν = {ρ

µν}+
1
2

Cρ
µν + Kρ

µν.

Nonmetricity and contorsion are the symmetric and antisymmetric parts of the connection,
respectively.

It is readily seen that the second-order effective metric obtained by adding the con-
tribution (49) to the first-order metric (21) can easily account for the terms with second
derivatives in Equation (18). However, the issue with the first-order derivatives becomes
more involved. It appears that the only way to account for these redundant first derivative
terms is to extend the connection as described above, so that nonmetricity and contorsion
may absorb these terms. More precisely, from (20) it can be seen that the first derivative
terms have the form

−gµνΓρ
µν∂ρΦ = −gµν(0)Γρ(2)

µν ∂ρΦ − gµν1Γρ(1)
µν ∂ρΦ − gµν(2)Γρ(0)

µν ∂ρΦ (A1)

Here, all necessary nonzero Christoffels may be calculated from (49) and (50) to give
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{r
rr}(2) = −(aqQ)2 f sin2 θ

4r3 , {r
φφ}(2) = (aqQ)2 f f ′ sin4 θ

8
,

{θ
rr}(2) = −(aqQ)2 sin θ cos θ

4r4 , {θ
φφ}(2) = −(aqQ)2 f cos θ sin3 θ

2r2 ,

{θ
rφ}(1) = −(aqQ)

sin θ cos θ

2r2 , {θ
φφ}(0) = − sin θ cos θ,

{r
φφ}(0) = −r f sin2 θ.

Interestingly, as the contorsion needs to be antisymmetric in the last two indices, all
its contributions to (A1) will vanish, as they need to be contracted with the inverse metric
tensor gµν, which is symmetric. This means that the only terms that may annihilate the first
derivative corrections in (A1),

(aqQ)2 f sin θ cos θ

4r4 ∂θΦ + (aqQ)2( f ′ − 6 f
r
)

f sin2 θ

8r2 ∂rΦ, (A2)

are those that involve components of the nonmetricity tensor.
There are several ways one can remove unwanted first derivative terms:

• Nonmetricity may be introduced as a first-order deformation, so that we may demand

−grφ(1)Cθ(1)
rφ = (aqQ)2 f sin θ cos θ

4r4 ⇒ Cθ(1)
rφ = (aqQ)

sin θ cos θ

4r2

−grφ(1)Cr(1)
rφ = (aqQ)2( f ′ − 6 f

r
)

f sin2 θ

8r2 ⇒ Cr(1)
rφ = (aqQ)( f ′ − 6 f

r
)

sin2 θ

8
.

From there, the components of nonmetricity immediately follow.
• Nonmetricity may be introduced as a second-order deformation, so that we may

demand

−1
2

grr(0)Cθ(2)
rr = (aqQ)2 f sin θ cos θ

4r4 ⇒ Cθ(2)
rr = −2(aqQ)2 sin θ cos θ

4r4 ,

−1
2

grr(0)Cr(2)
rr = (aqQ)2( f ′ − 6 f

r
)

f sin2 θ

8r2 ⇒ Cr(2)
rr = −2(aqQ)2( f ′ − 6 f

r
)

sin2 θ

8r2 .

The other possibility is

−1
2

gφφ(0)Cθ(2)
φφ = (aqQ)2 f sin θ cos θ

4r4 ⇒ Cθ(2)
φφ = −(aqQ)2 f sin3 θ cos θ

2r2 ,

−1
2

gφφ(0)Cr(2)
φφ = (aqQ)2( f ′ − 6 f

r
)

f sin2 θ

8r2 ⇒ Cr(2)
φφ = −(aqQ)2( f ′ − 6 f

r
)

f sin4 θ

4
.

We may conclude that the way of implementing nonmetricity, which the framework
we work in allows, is certainly not unique. It would be interesting to understand more
deeply the physical consequences of the effective nonmetric geometry. Also, we point
out that while the equation of motion for the NC scalar field is exact, all other results,
such as the components of the metric and nonmetricity tensors, are not exact. They
are instead perturbative and given only up to a second order in the NC parameter a
(i.e., they have higher-order corrections).
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