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Abstract: Molecules that act on the biological target at micromolar level at least are called hits. The usual method for identifying hits is high-
throughput screening (HTS) of chemical libraries in relevant in vitro assays. An even more efficient, cost-effective and faster method for 
identifying hits is to perform virtual pre-screening, where the top scoring hits are validated in appropriate in vitro assays. Both wet HTS and 
virtual screening using structure- or ligand-based approaches utilise large libraries containing millions to billions of drug-like compounds. In this 
paper, we provide an insight into the state of the art in large collections of small molecular weight molecules, i) public databases for synthetic 
compounds (PubChem, ChEMBL) and natural products (COCONUT, LOTUS) and commercial ultra-large chemical libraries, ii) make-on-demand 
virtual libraries (Enamine, Galaxi®, ZINC-22) and iii) wet DNA-encoded libraries (DELs). Machine learning methods for characterising and 
visualising molecular diversity in screening collections are also described. 
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INTRODUCTION 
E live in an era of extensive use and development 
of automated screening platforms including high-

throughput screening (HTS) assays, aimed at the rapid, 
cost-effective and efficient discovery of hit molecules with 
targeted activity. Hits are low molecular weight (MW) 
molecules that show at least μM activity on a target 
macromolecule of interest (Figure 1).[1] Despite the 
increasing focus of large pharmaceutical and biotech 
companies on biological therapeutics like antibodies, 
vaccines and gene editing therapies, efforts to discover 
small MW compounds with specific biological activity 
continue in small and medium-sized companies.[2] 
 Projects in the life sciences are aimed to discover and 
develop modulators of the activities of biological target 
macromolecules, such as inhibitors, agonists or antagonists 
of disease-relevant proteins, or to develop fluorescent 
molecular probes to monitor certain biological processes. 
Although the chemical space is estimated to have 1063 
organic molecules with up to 30 C, N, O and S atoms, only 

about 2650 small drugs (MW up to 850) are approved in the 
US, Canadian and EU markets.[3,4] 
 In the search for novel biologically active small 
molecules, various methods have been developed to 
optimise the efficiency of the discovery process, i.e. to 
reduce time and costs while mitigating the high risks 
associated with targeting complex biological networks. 
Nowadays, the design of novel molecules with a specific 
biological mechanism of action usually begins with the 
identification of hit molecules by HTS and their validation 
by appropriate in vitro counter-screens and orthogonal 
assays, whereby inactive compounds are filtered out and 
dismissed (Figure 1 a).[1] The first step of such HTS 
campaigns commonly involves multi-stage virtual screening 
(VS) of large chemical libraries (Figure 1 b). VS enables fast 
identification of a set of structurally diverse hit molecules 
with (sub)micromolar affinity among millions of 
compounds. In silico screening is based on the sequential 
application of different computational approaches 
including molecular modelling methods and unsupervised 
and supervised machine learning (ML) methods. 
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Unsupervised ML approaches include e.g. clustering of 
compounds and/or targets according to their structural 
similarity. Classification and quantitative structure activity 
relationship (QSAR) ML models are used for filtering out 
non-drug-like and inactive molecules.[6] Drug-likeness is a 
commonly applied concept with the aim to reduce a vast 
chemical space to those compounds that are similar to 
drugs in terms of absorption, distribution, metabolism and 
excretion (ADME) properties. It is commonly assessed by 
applying simple classification rules pioneered by Lipinski’s 
rule-of-five (Ro5) for oral bioavailability.[5,6] Depending on 
the availability of the 3D structure of the target 
macromolecule and diverse active molecules, VS includes 
structure- and ligand-based methods such as molecular 
docking and pharmacophore modelling, respectively.[7] The 
ultimate goal of VS is to detect best-scoring and diverse hits 
which are further validated in vitro in relevant assays. 
 Large chemical libraries used for HTS are compiled 
either from proprietary collections or from commercially 
available compound collections by applying different in 
silico approaches and tools and taking into account the 
needs of a project. VS precedes in vitro screening as it can 
be efficiently applied to libraries containing billions of 
actual compounds within a few days on high-performance 
computing (HPC) clusters.[8] Structure-based VS not only 
reduces the number of compounds to be experimentally 
screened, but has also been shown to improve the hit rate 
in a screening by 10- to 1000-fold.[9] Pre-elimination of 
compounds with undesirable molecular features such as 
reactive electrophiles and redox active compounds or 
those containing toxicophores reduces the false positive 
rate of HTS and improves the optimization performance 
and cost of the downstream pipeline (Figure 1 a). 
 This review focuses on the state-of-the-art collec-
tions of compounds that have already been synthetized or 
can be readily made-on-demand. Such collections are 
available for researchers to design their own experim-
ents/projects while searching for starting compounds and 
their analogues and/or target activities by VS. First, we give 
a brief overview of the publicly available chemical 
databases with data on millions of known chemicals. We 
then describe chemical libraries and their types. There are 
various sorts of chemical libraries that are designed 
according to their intended use. Thereafter, we present 
huge virtual libraries of synthesisable compounds that are 
made on demand and finally DNA-encoded libraries (DELs). 
DELs are collections of enumerated molecules, each of 
which is coupled with unique DNA tags that serve as 
amplifiable identification barcodes, allowing fast 
identification of active compounds. The review also 
describes ML methods for the description of chemical 
libraries, including their visualisation. 

PUBLICLY AVAILABLE  
CHEMICAL DATABASES 

Chemical libraries can be ensembled from compounds 
which have already been synthetized and tested in 
biological assays, and are listed in an online database. The 
most commonly used freely available and manually curated 
databases are PubChem, ChEMBL and DrugBank (Table 1). 
These databases provide information on chemical, 
physicochemical, bioactivity and omics data as well as 
patents. They can be searched by compound structure, 
name or CAS number for similar compounds and biological 
activities, or by the a protein or gene name for the active 
and inactive compounds. Open-access chemical databases 
are frequently used for retrieving molecules with targeted 
biological activities using programmed scripts. The 
databases adhere to the FAIR (Findable, Accessible, 
Interoperable, Reusable) principles, ensuring that the data 
they contain can be easily found, retrieved, integrated, and 
used for research purposes. Here we give a short 
introduction. 

 

 

Figure 1. a) Modern drug discovery scheme. Screening of 
chemical libraries is carried out at a very early stage of drug 
discovery to identify hit compounds with an activity of at 
least 10 μM on a selected biological target.[9] Optimisation 
of the activity by modifying the structures of the hits 
generates lead compounds whose structures are further 
modified to optimize their pharmacodynamic and 
pharmacokinetic profile, ultimately leading to a candidate 
molecule that enters clinical trials. b) The VS cascade is 
composed of several computational steps with the aim of 
identifying the best-scored compounds – hits that are 
further validated in vitro. 
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 PubChem is a public chemical database launched by 
National Institutes of Health (NIH) in 2004.[10] It allows 
users to search for compounds, substances and BioAssay 
data. A compound is a normalized chemical structure 
representation found in one or more contributed 
substances. Given a particular chemical or protein/gene, 
PubChem is typically used by a synthetic chemist or 
molecular biologist to summarise a whole range of 
information about it by linking and integrating knowledge 
from various data sources including EPA DSSTox, 
DrugBank, Human Metabolome Database (HMDB), KEGG, 
Wikipedia, ChEMBL, etc. In other words, PubChem 
provides the integration of information on 
physicochemical and spectroscopic features, biological 
activities and targets and related patents as well as links 
to the databases from which they are retrieved. As of 
March 2024, PubChem contains data on 118 million (M) 
compounds, 315 M substances, 294 M bioactivities and 51 
M patents, drawn from 983 data sources. Instructions for 
using PubChem online, downloading data via FTP  
protocol and programmatic access can be found at: 
https://pubchem.ncbi.nlm.nih.gov/docs/about.[11] PubChem 
also allows community participation by uploading their 
own data. 
 Launched in 2009 by the European Molecular 
Biology Laboratory - European Bioinformatics Institute 
(EMBL-EBI), ChEMBL is a chemogenomic database that 
brings together chemical, bioactivity and genomic non-
proprietary data to facilitate the translation of genomic 
information into new medicines.[12] All data are fully 
traceable and explicitly referenced to the original source. It 
contains 2.4 M drug-like compounds (accessed March 
2024) and their binding, functional, ADME and toxicological 
bioactivity data (1.6 M bioassays; 5 K data with assigned 
mechanism of action for compounds) extracted from the 
primary scientific literature. In addition to small bioactive 
compounds, ChEMBL also contains peptides and 
therapeutic antibodies. Chemical Entities of Biological 
Interest (ChEBI) corresponds to ChEMBL’s resources that 
focus on small chemicals, their nomenclature, structure, 
and biological properties.[13] ChEMBL - Neglected Tropical 
Disease (ChEMBL – NTD) is a subset of compounds 
targeting neglected tropical diseases in Africa, Asia and the 
Americas. SureChEMBL contains 14 M compounds extrac-
ted daily from 24 M patent documents including full texts, 
images and attachments of patent documents (accessed 
May 2024).[14] ChEMBL and ChEBI are part of the ELIXIR 
Core Data Resources. ELIXIR is a European intergovern-
mental organisation that coordinates and develops an 
infrastructure for the life sciences that provides bio-
molecular data, computational tools, training material, 
cloud storage and supercomputers (https://elixir-
europe.org/services ).[15] 

 Since its release in 2006, DrugBank has grown to 
become a ‘gold standard’ resource for knowledge about 
drugs, their indications, physicochemical properties 
(including MS and chromatographic properties) and various 
pharmacodynamic and pharmacokinetic information 
including drug-drug and drug–target interactions.[4] The 
newest version DrugBank 6.0 contains data on 4563 FDA-
approved drugs (a 72 % increase from the 2018 version), 
6231 investigational drugs, 1 413 413 drug–drug inter-
actions, 2475 drug–food interactions and 29802 drug–
target interactions. An investigational drug is a medication 
in the development phase that is being studied for a 
specific condition and has entered clinical trials. 
 In addition to databases of molecules synthetized in 
labs, more than 120 electronic resources on natural 
products (NPs) have been published in the last 20 years.[16] 
NPs are often difficult to synthesize and cover different and 
more diverse areas of the chemical space than synthetic 
compounds.[17] NPs are secondary metabolites from living 
organisms, mostly microbes, plants and fungi. The 
development of new technologies greatly facilitates the 
development of NPs and their use especially as drugs, and 
increases the rate of unambiguous identification of new NPs 
from biological matrices from years to days. Three years 
ago, the first comprehensive open accessed online 
database COlleCtion of Open Natural prodUcTs (COCONUT) 
was published by Steinbeck’s group.[18] COCONUT is the 
largest collection of 407 270 unique NPs mainly from 53 
sources. Researchers from various fields, from drug 
discovery to research of molecular aspects of biodiversity 
can use the user-friendly COCONUT web interface (Table 1) 

Table 1. Links to frequently used online databases and 
make-on-demand chemical libraries. 

Open-access databases 

PubChem https://pubchem.ncbi.nlm.nih.gov/ 

ChEMBL https://www.ebi.ac.uk/chembl/ 

DrugBank https://go.drugbank.com/ 

COCONUT https://coconut.naturalproducts.net/ 

LOTUS https://lotus.naturalproducts 

TCM ID https://bidd.group/TCMID/index.html 

KNApSAcK http://www.knapsackfamily.com/knapsack_core/top.php 

Make-on-demand libraries 

ZINC20 https://zinc20.docking.org/ 

ZINC-22 https://cartblanche.docking.org/ 

Enamine REAL https://enamine.net/ 

Chemspace 
Freedom 

https://chem-space.com/compounds/freedom-space 

WuXi AppTec 
GalaXi® 

https://wuxibiology.com/drug-discovery-services/hit-
finding-and-screening-services/ 

ULTIMATE https://ultimate.mcule.com/ 

 

https://pubchem.ncbi.nlm.nih.gov/docs/about
https://elixir-europe.org/services
https://elixir-europe.org/services
https://pubchem.ncbi.nlm.nih.gov/
https://www.ebi.ac.uk/chembl/
https://go.drugbank.com/
https://coconut.naturalproducts.net/
https://lotus.naturalproducts/
https://bidd.group/TCMID/index.html
http://www.knapsackfamily.com/knapsack_core/top.php
https://zinc20.docking.org/
https://cartblanche.docking.org/
https://enamine.net/
https://chem-space.com/compounds/freedom-space
https://wuxibiology.com/drug-discovery-services/hit-finding-and-screening-services/
https://wuxibiology.com/drug-discovery-services/hit-finding-and-screening-services/
https://ultimate.mcule.com/
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to search NPs in multiple ways: by their structure, 
compound name and simple molecular features related to 
drug-likeness and structural complexity. Structural 
complexity is usually described by the fraction of 
tetrahedral, sp3 hybridised carbons Fsp3 and a number of 
stereogenic carbons. Increasing Fsp3 has been reported to 
improve solubility as well as target specificity and 
selectivity.[19] However, molecules with a high Fsp3 content 
are also generally more challenging to produce. 
 The LOTUS initiative is an upgrade of COCONUT with 
open assessed information on more than 750 000 NP-
containing organism pairs and thus it represents a unique 
resource for taxonomic and evolutionary studies.[20] The 
LOTUS data is hosted in the community-managed 
knowledge base Wikidata which allows mining of the 
literature underlying the experimental work, and is also 
mirrored on the interactive web portal (Table 1) which 
allows searching for NPs in a similar way to COCONUT. 
COCONUT and LOTUS Initiative also contain compounds 
from traditional Chinese medicine (TCM). A representative 
TCM database is the TCM Information Database (TCM ID) 
which contains comprehensive information on all aspects 
of TCM including 7443 recipes, 2751 constituent herbs and 
7375 herbal ingredients linked to therapeutic and side 
effects, putative targets and biological pathways.[21] The 
KNApSAcK is a comprehensive database of species-
metabolite relationships that enables searches for 
metabolites and associated plant species and vice versa 
using integrated metabolite-plant species resources.[22] 

 

CHEMICAL LIBRARIES 
Chemical libraries are collections of compounds that are 
prepared for screening experiments carried out with the 
ultimate goal of discovering biologically active molecules, 
called hits (Figure 1). They can be made of proprietary, 
public or commercially available chemicals.[23] In general, 
screening libraries contain drug-like molecules, or certain 
chemical classes that lie outside the chemical space of Ro5 
such as macrocycles or peptides. A library is assembled 
prior to synthesis from compounds/building blocks that 
have specific substructures or functionalities and 
associated specific molecular and/or biological features.  
 There are different sorts of libraries with respect to 
their generation strategies, domain of interest and 
commercial availability. Chemical libraries can be formed 
and enlarged by enumeration of side chains from central 
scaffolds such as privileged scaffolds which are known to 
generate biologically active compounds.[24,25] Examples of 
privileged structures yielding ligands for several biological 
receptors are benzodiazepines, indoles, quinolines, 
isoquinolines, benzoxazoles, coumarin, prostanoic acid, 
etc. Nowadays, combinatorial libraries can be generated by 

chemical assembly of a large set of building blocks, and 
such ultra-large libraries encompass a vast chemical 
space. The foundations of combinatorial chemistry were 
laid in 1963 by Merrifield in his report on the synthesis of 
peptides by addition of protected amino acids to a chain 
bound to a solid resin particle.[26] This approach enabled 
not only straightforward creation of desired sequences, 
but also simple purification of the peptide product by 
dissolving and washing away impurities instead of 
recrystallization. The mid to late 80s witnessed a strong 
development in combinatorial peptide chemistry with the 
advent of several new methods for combinatorial 
synthesis of peptides.[27] Although combinatorial libraries 
can be very large, the efforts to produce and test them 
often suffered from problems with assay artefacts due to 
limited solubility and a lack of diversity. A strategy using 
so-called DNA encoded libraries (DELs) has overcome 
some of these deficits. 
 Commercially available libraries are presented in 
form of various catalogues available on internet (e.g. 
https://enamine.net/compound-libraries). There are 
diversity, targeted, focused, fragment libraries as well as 
make-on-demand libraries. Make-on-demand compounds 
are synthetized on request of a customer and they usually 
correspond to hit molecules pre-selected by performing an 
extensive VS of (ultra-)large chemical libraries or their 
rationally chosen subsets (Figure 1 b). Make-on-demand 
libraries are formed virtually by applying computational 
methods for combinatorial generation of compounds 
taking into account various molecular features and 
synthesis possibilities. Such virtual libraries with 
compounds of high synthetic accessibility can be built from 
collection of starting building blocks with validated 
chemical reactions.[28] 
 Drug-like molecules are selected based on their 
similarity in terms of physicochemical and simple structural 
features with drugs and generally in vivo active compounds. 
These properties determine absorption i.e. oral 
bioavailability (blood concentration of a molecule after 
taking it per os), distribution, metabolism and excretion 
(ADME) of chemicals in the body, i.e. they largely determine 
their pharmacokinetic profile. Drug-like molecules fulfil 
statistically found rules in terms of simple structural 
features (e.g. numbers of hydrogen bond acceptor (HBA) 
and donor (HBD) atoms, topological polar surface area 
(TPSA)) and/or physicochemical features (lipophilicity, 
solubility and permeability).[5,29] Drug-likeness concept is 
successfully applied by medicinal chemists in the early 
stages of drug discovery to reduce the attrition rate in late 
clinical phases (Figure 1).[30] Biologically active macrocycles 
with MW greater than 500 have been shown to have a 
drug-like physicochemical profile similar to small 
compounds that fulfil Ro5.[31] 

https://enamine.net/compound-libraries
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 For a large multi-million/billion collection of drug-like 
compounds, so-called diversity library corresponds to its 
reliable structural representation. Diversity library is a 
compilation of compounds that are diverse in their molecular 
structures or targets whose activity they modulate, and is 
intended for hit searching. Targeted library is designed as a 
screening collection of drug-like compounds directed at 
specific biological targets, including protein families such as 
protein kinases, G protein-coupled receptors, ion channels, 
proteases, epigenetic and protein-protein interaction related 
targets, nuclear receptors, and others. Focused libraries are 
compilations of molecules based on their structural similarity 
to compounds that have been shown to act against the 
target of interest. Higher hit rates are observed when 
screening target focused libraries than when screening 
diversity sets, and the resulting hit clusters typically exhibit 
SARs that facilitate subsequent structural optimisation.[32] 
Screening collections can also be made of compounds with 
potential biological activity against specific diseases (such as 
anticancer, antiviral or antibacterial collections), as well as 
specific areas of application (agrochemical libraries, targeted 
CNS library). As already mentioned, there are also collections 
of compounds with specific chemical classes such as peptides 
or macrocycles. Catalogues of different types of screening 
libraries can be found on the websites of companies offering 
diverse and pharmacologically relevant collections of drug-
like or lead-like small molecules, such as Enamine’s REAL, 
MCule’s ULTIMATE, Chemspace’s Freedom, WuXi’s GalaXi®, 
TargetMol and so on. There are also fragment libraries of 
structurally diverse small MW chemicals which are built in a 
way to enable efficient exploration of chemical space and 
whose linking may produce a good lead molecule. The 
fragments usually satisfy the rule of 3 stating that on average, 
fragment hits tend to exhibit MW < 300, have ≤ 3 HBDs, ≤ 3 
HBAs, a lipophilicity coefficient CLogP ≤ 3, number of 
rotatable bonds on average ≤ 3 and polar surface area 
around 60 Å2.[33] 

Structural Diversity 
One way to characterize the structural novelty of chemical 
libraries is to assess their structural diversity. Diversity 

analysis helps to explore the heterogeneity of chemical 
libraries and to design diverse libraries for screening or SAR 
analysis.[34] Library diversity is commonly described in terms 
of scaffold diversity and shape diversity which are usually 
represented by a frequency count of 2D Bemis−Murcko (BM) 
scaffolds and the inertial ratios calculated from 3D 
conformations, respectively (Figure 2). The BM framework or 
skeleton represents a molecular backbone composing of ring 
systems and linkers connecting them (Figure 2a).[35] 
Compared to the BM framework/skeleton, the BM loose 
framework/scaffold also retains information on atom/bond 
types. The BM frameworks and scaffolds are usually used for 
clustering of compounds according to their 2D structural 
similarity and the number of clusters is used as a measure of 
diversity. Shape diversity is quantified by normalized ratios of 
first and second principal moments of inertia (PMI) which are 
calculated from 3D conformations and plotted into 2D 
triangular rod/disk/sphere graph (normalized principal 
moment of inertia ratio, NPR-analysis) (Figure 2b).[36,37] 
Molecular diversity can also be quantified using similarity 
metrics among which the Tanimoto coefficient (TC) is the 
most commonly used.[38] Molecules are usually represented 
with fingerprints which describe the presence (1) or absence 
(0) of atoms, bonds and various structural features and the 
TC is calculated by using fingerprint representation of 
compounds. The TC ranges from 0 for completely dissimilar 
molecules to 1 for identical molecules. Calculations of various 
diversity/similarity parameters are illustrated in Figure 2 on 
the example of two selected compounds - the drug 
bortezomib and the herbicide florasulam. 2D BM scaffolds 
are generated by Marvin (Figure 2a).[39] Like many 
structures and core scaffolds relevant to medicinal 
chemistry, these two compounds tend to have a rod-like 
shape (Figure 2b). The PMIs were calculated from 
rotational constants for 3D conformations of minima 
determined at the M062X/6-31+G** level by using 
Gaussian 16.[36,40] Measured by the TC with the 
representation of molecules by the MACCS fingerprints, 
bortezomib and florasulam are dissimilar compounds with 
the TC of only 0.361 (calculated with the R packages rcdk 
ver. 2.9).[41,42] 

 
Figure 2. Characterisation of the chemical diversity of bortezomib and florasulam by (a) 2D BM scaffold variety and (b) 3D 
inertial ratios. Both chemicals have a rod-like shape as shown by their placement in the triangular rod/disk/sphere plot. NPR1 
– 1st normalised PMI (i.e. I₁ / I₃), NPR2 – 2nd normalised PMI (i.e. I₂ / I₃). 
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Visualization of Chemical Space 
The chemical space is made up of compounds with 
different structures and physicochemical and biological 
features. Visualization provides a fast and efficient way to 
gain insight into the diversity of compounds in the library 
and the importance of structural features and/or 
physicochemical properties governing target activity. 
Various methods have been developed for visualization of 
chemical space. The most commonly used methods for 
visualising chemical space are Principal Component 
Analysis (PCA), t-distributed Stochastic Neighbour 
Embedding (t-SNE) and Uniform Manifold Approximation 
and Projection (UMAP).[43,44] All three methods reduce the 
dimensionality of data. 
 In PCA, the original set of n vectors is linearly 
transformed into a new set of k orthogonal principal 
components, while retaining as much information 
(variance) as possible from the original data set, i.e. the 
global structure of the data. In contrast, t-SNE and UMAP 
are non-linear dimensionality reduction methods. T-SNE is 
a randomised algorithm for embedding high-dimensional 
data in a two- or three- dimensional space while preserving 
the local structure of the data, i.e. the distance. T-SNE 
converts high-dimensional distances/similarities into 
conditional probabilities by minimising the Kullback–Leibler 
divergence between the distributions in the high- and low-
dimensional space. For this purpose, the hyperparameters 
perplexity, the learning rate (eta) and the number of 
iterations are adjusted. Perplexity is related to the number 
of nearest neighbours and as a rule of thumb has a value of 
approximately ,n  where n is the number of data points. 
Eta determines how fast the algorithm converges, and its 
starting value is usually 200. If the data is not well 
separated, one can try to increase eta, whereas if it is too 
scattered, it should be decreased. UMAP preserves both 
the local and global structure of the data by constructing a 

high-dimensional graph representing the manifold 
structure of the data, and then optimizing a low-dimen-
sional graph to be as structurally similar as possible. UMAP 
parameters, a number of nearest neighbours and minimum 
distance can be tuned to balance between local and global 
structure preservation. Various distance metrics can be 
used to quantify similarities between data points in t-SNE 
and UMAP like Euclidean (usually the default metric), 
Manhattan, Jaccard (equals to 1-TC) and so on. Both t-SNE 
and UMAP can use PCA to initialize embedding.  
 The 2D visualizations obtained by PCA, t-SNE and 
UMAP for the chemical space of drugs are shown in Figure 
3. The drugs were represented by the 166-bit MACCS 
fingerprints (more than 10 drugs with specific structural 
feature) calculated with the R package rcdk.[41,42] PCA and 
t-SNE were done by the R function prcomp and the package 
Rtsne, respectively, while UMAP was performed by 
DataWarrior ver. 06.02.01.[45,46] Jaccard distance was used 
for both methods t-SNE and UMAP. The best embedding of 
drugs according to their therapeutic use (ATC classes) is 
achieved by UMAP, as it is known to preserve local and 
global structure and relationships of data.[47] 

Make-on-Demand Chemical Libraries 
Recently, chemical screening libraries have grown to 
billions of molecules with some private commercial 
collections containing more than 1020 compounds, whereas 
in 2020 the number of compounds in stock worldwide was 
around 14 million.[23,48] Such ultra-large virtual compound 
collections which can be made on demand, greatly facilitate 
findings of diverse hits for novel targets as well as the 
discovery of new chemotypes for known targets as they 
enable rapid and cost-effective exploration of chemical 
space by VS.[7,49] They are ground-breaking as they not only 
increase the probability of finding hit molecules (at least 
due to their size), but also significantly reduce the time and 

 
Figure 3. Comparison of 2D plots generated using PCA (left), t-SNE (middle) and UMAP (right) methods for the set of 1291 
approved drugs represented by MACCS fingerprints and coloured according to their ATC classes A-S for therapeutic use. Plots 
are drawn in DataWarrior. 



 
 
 
 V. STEPANIĆ et al.: The State-of-the-art on Chemical Databases and Libraries (not final pg. №) 7 
 

DOI: 10.5562/cca4130 Croat. Chem. Acta 2024, 97(4) 

 

 

 

cost of synthesis and the time needed to optimise the 
structure and generate SARs for the biological target and 
other relevant biological parameters. The chemical 
diversity, scaffold diversity, and shape diversity of make-
on-demand libraries far exceed public physical libraries, 
and probably private ones as 97 % of the scaffolds in make-
on-demand libraries have no representative in physical 
libraries.[50] Here we list the most commonly used make-on-
demand libraries (Table 1). 
 ZINC is a free enumerated database of commercially 
available and make-on-demand compounds established 
already in 2005.[51] Originally, it focused on providing 3D 
conformations of commercial i.e. synthesisable compounds 
in proper protonation and tautomeric forms for VS based 
on molecular docking. It is an analog-by-catalog (ABC), that 
enables fast search for similar compounds by using 2D 
atomic-level graph-based methods for whole-molecule 
similarity (SmallWord algorithm) and pattern and 
substructure search (Arthor), and exploring SARs. ZINC has 
grown from fewer than 1 M compounds in 2005 to 1.4 
billion (B) compounds in 2020, of which 1.3 B can be 
acquired from 310 catalogues from 150 companies.[50] 
ZINC-22 provides an online search for more than 37 B 
enumerated commercially available compounds from the 
Enamine REAL Database (5 B), Enamine REAL Space (29 B), 
WuXi (2.5 B), Mcule (Ultimate 128M), and ZINC20 in stock 
(4 M).[52] Due to the huge increase in purchasable chemical 
space, compared to ZINC20, ZINC-22 has been restructured 
addressing challenges in disk access, rapid lookup, 
database distribution and download, and the relational 
database structure. There are more than 4.5 B 3D 
conformations ready-to-dock. Over 95 % of the available 
molecules with up to 24 heavy atoms (HAC24) and over  
80 % with up to 25 heavy atoms (HAC25) have been built in 
3D. The database is chemically and structurally diverse, 
reflecting the enormous effort by vendors to add new 
reaction schemes and, particularly, new building blocks. 
 Ukrainian company Enamine provides access to the 
largest enumerated virtual database of 48 B compounds that 
are REadily AccessibLe (REAL) through validated parallel 
synthesis using in-stock building blocks.[53] The REAL 
compounds are generated by more than 167 well-validated 
parallel synthesis protocols applied to over 143 000 qualified 
reagents and building blocks. The REAL space can be 
searched online for analogue compounds by using virtual 
chemical space navigation platform infiniSee developed by 
BioSolveIT (https://enaminestore.com/search)[54] Instead of 
TC, the infiniSee tool uses pharmacophoric features as a 
measure of similarity, which are not rigidly bound to 
substructure patterns but rather relate to molecular 
properties. 
 The further extension of the REAL space in terms of 
chemical scaffolds and their diversity is represented by the 

Freedom space.[55] The Freedom space with 5B make-on-
demand compounds provided by Chemspace was 
developed according to the principles of Enamine’s REAL 
space and consists of chemicals with a synthesis success 
rate of over 75 per cent, which differ from those of the REAL 
library and also the ChEMBL database. 
 WuXi AppTec GalaXi®is an online platform that 
provides a reaction-based ultra-large virtual library of 3.4 B 
compounds that complements the commercial chemical 
space. Launched in 2019, it is also the result of a strategic 
partnership with BioSolveIT, where WuXi AppTec provides 
selected and novel building blocks with proven chemistry 
and BioSolveIT contributes with its infiniSee software and 
algorithms. 
 The online platform mcule.com offers a huge space 
with around 6 M in-stock and purchasable chemicals  
which can be easily searched by structure and filtered  
by molecular features (https://mcule.com/database).[56] 
Mcule has also launched the virtual collection ULTIMATE 
with more than 100 M novel indexed chemicals generated 
by an AI algorithm ARCHIE to ensure an average synthetic 
feasibility rate of over 80 % by encoding robust, well-
validated reactions rigorously reviewed by experts.[57] 
ULTIMATE can be searched by Pharmit based on 
pharmacophore, molecular shape, and energy 
minimization to enable scaffold hopping, navigating out of 
the patented space, and identifying new chemotypes.[58] 

DNA-Encoded Libraries 
DNA-Encoded Libraries (DELs) were first introduced in 1992 
as encoded combinatorial chemical libraries.[59] In such 
libraries, the potential compounds of interest are tagged 
with unique DNA sequences that serve as their identifiers. 
When creating DELs, a building block is appended to a 
larger molecular structure, followed by an addition of an 
oligonucleotide sequence (the encoder) which serves as a 
tag for that particular building block. DELs harness the 
advantages of genetic methods, namely the possibility of 
amplification of DNA sequences using polymerase chain 
reaction (PCR), their enrichment with active molecules and 
easy decoding of active molecule structures by DNA 
sequencing, as well as the possibility of expanding the 
chemical space to millions of DNA tagged compounds using 
combinatorial methods.[60,61] In such a way, DELs facilitate 
identification of molecules that bind macromolecular 
targets. 
 At first, DELs were synthesised using the split-and-
pool strategy.[62,63] The splitting part consisted of 
separating DNA oligonucleotides attached to an insoluble 
solid support material such as polystyrene beads into 
multiple vessels, while the pooling part included attaching 
a series of small molecules onto the oligonucleotide 
encoders. After each pooling the separated support beads 

https://enaminestore.com/search
https://mcule.com/database
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were mixed and split again in a random fashion. The 
differentiation between the DNA synthesis phase and the 
active molecule (peptide) synthesis phase was achieved by 
using orthogonal protection groups, that had to be 
attached to the reactive functional groups of either 
oligonucleotide or peptides.[64] Posterior selective 
deprotection enables the conjugation step without cross-
reactivity. 
 The solution-phase synthesis offered a different 
approach by avoiding the constraints of solid-phase 
systems. This method allows for more straightforward 
purification processes and can be more suitable for 
synthesizing molecules that change their binding 
properties from solid phase to solution. The solution-phase 
synthesis also enabled the development of encoded self-
assembling chemical (ESAC) libraries, which are synthesised 
through the aggregation of macromolecular units such as 
DNA into larger supramolecular complexes via non-
covalent bonding (e.g. π-π stacking, hydrogen bonding, 
hydrophobic interactions) under appropriate conditions 
(temperature, pH, ion strength, etc.).[65] Such 
supramolecular structures spontaneously form both on 
solid surfaces and in solution. ESAC libraries can be large in 
size and diversity, as they can be constructed from smaller 
sub-libraries, and their oligonucleotide tags can form DNA-
heteroduplexes and triplexes.  
 Large variety of binding ligands in an ESAC library has 
been achieved through the design of dual- and trio-
pharmacophore DELs where two and three pre-purified 
sub-libraries, respectively, have been combined.[66,67] In 
trio-DEL, a fragment from one sub-library (denoted as SL-B) 
binds to the target and it serves as a linker to connect to 
fragments from the other two sub-libraries (SL-A and SL-C) 
through self-assembly of their flanking DNA strands.[67] The 
authors have designed a library with over 23 M unique 
members, developed a strategy for optimising the linkers 
using bovine trypsin and identified a series of de novo 
compounds with inhibitory activity on human matrix 
metalloproteinases. The applicability, size and robustness 
of dynamic dual display DELs has recently been further 
increased by a large encoding design (LED) strategy, with  
Y-shaped dynamic self-assembling DELs consisting of two 
partially complementary DNA strands, each bearing two 
sets of molecular building blocks.[68] The Y-junction splits 
the DNA strand into two sets of encoding regions, thus 
enabling separate and independent encoding sequences 
for each set of molecular assemblies and constructing DELs 
with a "2+2" configuration. 
 The early problem of combinatorial DEL chemistry 
for small molecules was the absence of straightforward 
strategies for amplifying the selected molecules of interest. 
The mere affinity selection, namely the enrichment of the 
library mixture through the iterative removal of the non-

bound members resulted in relatively scarce hits among 
the vast number of molecules from the initial concoction. 
The first strategy for in vitro selection and evolution of 
combinatorial libraries was reported and patented in 
2004.[69] The strategy consisted of three steps: 1) 
conversion of genes to their respective products, 2) product 
selection and 3) gene amplification, where the support 
material for the translation of genes to active molecules 
was a single-stranded DNA chain (ssDNA). 
 The first systematic study of discovery of new small 
MW ligands using large-scale DELs was reported in 2009, 
where double stranded DNAs (dsDNA) were used as 
encoders.[70] The dsDNA design provided enhanced tag 
stability during the synthetic processes and reduced 
likelihood of interference with the target. A library 
containing around 800 M different molecules produced 
using the split-and-pool method, was tested for inhibition 
against kinases p38 MAP and Aurora A, whereby three 
potential high affinity inhibitors were identified through 
affinity selection and enrichment measurement, whose 
SAR was in line with previously reported results. The 
method of affinity selection enables the identification of 
not only specific high affinity ligand molecules, but rather 
families of structurally related ligands. 
 DNA Encoded Dynamic Libraries (DEDLs) or Dynamic 
Combinatorial Libraries (DCL) originate from the concept of 
reversible thermodynamically controlled synthesis of 
macromolecular blocks.[71–73] In such libraries, the selection 
events stabilise the library members of interest and shift 
the chemical equilibrium towards their creation and away 
from the less desired members.[74] Such selection events 
enable a more efficient isolation of desired compounds 
with higher chemical yields. The first step in screening 
DEDLs/DCLs is the preparation of a mixture of molecules of 
interest, followed by the amplification of molecules that 
bind best to the target by shifting the chemical equilibrium, 
and the final step includes isolation of such binding 
molecules.[72] Fine tuning of conditions can be used for 
switching off the interconversion between potential 
binders. Non-covalently assembled binder-target 
complexes can further be stabilised through the reversible 
covalent binding.[75] This target-accelerated combinatorial 
synthesis has been successfully applied for the discovery of 
novel vancomycin derivatives as antibiotics against 
vancomycin-resistant bacterial strains, and of in situ 
assembly of acetylcholinesterase inhibitors (click-
chemistry).[76,77] A similar approach named “extended 
tethering” for identifying small MW ligands for cysteine 
containing proteins has been reported by Erlanson et al.[78] 
Their method is based on reactions of a library of disulphide 
containing molecules with an unpaired cysteine-containing 
target protein under partially reducing conditions (with 
presence of 2-mercaptoethanol) that promote rapid thiol 
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exchange. By changing the redox state of the buffer, either 
thiols or disulphides can be favoured. If a library member 
shows inherent affinity for the protein, the equilibrium will 
shift toward the modified protein. A more recent view on 
dynamic DELs proposed principles of Darwinian evolution 
pressure to the selection of important compounds, by 
enabling the translation of DNA genetic sequences into 
synthetic molecules, instead of simply using them as mere 
tags.[79] The authors have addressed the issue of efficient 
screening of a vast chemical space that are beyond the 
reach of classical DELs, which extends to 1060 small drug-
like molecules. By applying the Darwinian selection 
processes (affinity selection, panning), the DEL techniques, 
especially the dynamic ones, allow for finding hit molecules 
that are not present in the starting library. 
 One attractive alternative to tagging of active 
molecules using DNA was shown to be peptide (or 
polyamide) nucleic acid (PNA) tags, where the deoxyribose-
phosphate backbone of DNA is replaced with a backbone 
based on thiamine-aminoethyl glycil.[80,81] Such PNA 
strands have a much stronger affinity towards their 
complementary DNA strand and such a PNA-DNA complex 
is more stable than a DNA-DNA double helix. A PNA-Based 
Dynamic Combinatorial Library (PDCL) has been used to 
screen the series of fucose-based glycans for their binding 
affinity to fucose binding sites in bacterial lectins.[82] The 
cooperative effects with PNA tags increased the affinity 
compared to using glycans alone. 
 Besides DELs being applied in finding ligands with 
strong binding affinities to proteins, the same principles can 
be applied for the discovery of ligands to other types of 
molecules, such as RNA.[83] Such targets can be desirable, 
because most proteins are not amenable for inhibition due 
to e.g. conformational reasons, so the researchers have 
pursued the route of targeting their encoding mRNA, thus 
inhibiting the translation.[84] Other targets can be non-
coding RNA such as micro-RNA that regulate gene 
expression.[85,86] A recent study using HTS and sequencing 
reveals cardiac glycosides as potent inducers of miR-132, a 
key neuroprotective miRNA downregulated in Alzheimer’s 
disease.[87] 
 The target protein can also be used as a template for 
a selection approach that can identify full ligand/inhibitor 
structures from DEDLs without the need for subsequent 
fragment linking. The approach of Zhou et al. involves 
dynamic DNA hybridization and target-templated in situ 
ligand synthesis while also incorporates and encodes the 
linker structures in the library, along with the building 
blocks, to be sampled by the target protein.[88] They 
prepared multi-million-member DEDLs with different 
library architectures and selected hits against four 
therapeutically relevant target proteins. The dynamic 
hybridization between encoding DNA attached to building 

blocks is achieved through a 7 base complementary region, 
and the target protein shifts the equilibrium towards the 
production of desired ligands. Only those ligands 
assembled on the protein are finally decoded and 
identified. The method's advantage is the reduced need for 
a high concentration of the target protein and low building 
block concentration as well as it enables the selection of 
larger and more versatile chemical libraries.[89] 
 The first years of this decade have been marked by 
the COVID-19 pandemic, requiring urgent response from all 
facets of society, including the medical and scientific 
community to find new ways of battling its causative agent, 
the SARS-CoV2 virus.[90] The several billion membered DELs 
with their capacity for rapid screening have proven a useful 
tool for detection of compounds of interest in tackling the 
viral functional components, especially the spike protein 
and main protease Mpro.[91] 
 One such implementation is a recently reported 
usage of the RaPID (Random Nonstandard Peptides 
Integrated Discovery) platform with a genetically encoded 
library containing constrained macrocyclic peptides for fast 
identification of several macrocycles with strong binding 
affinities to the SARS-CoV2 spike glycoprotein and the main 
protease Mpro.[92] Macrocyclic peptides are generally found 
to be interesting class of potential therapeutics, because 
they can exhibit strong binding affinities and capability of 
disrupting their target protein-protein interactions, while 
also having relatively small MWs, thus being synthetically 
more accessible than larger proteins (the Goldilocks 
zone).[93] 
 This brief overview shows how DELs have advanced 
the field of drug discovery by providing a practical tool for 
biological profiling of vast chemical spaces in a test tube (~5 
µL per well in microplates). The ability to encode, amplify, 
and decode complex libraries of compounds has 
accelerated the discovery of novel bioactive molecules, 
offering new opportunities for the rapid development of 
novel therapeutics, especially when medical challenges 
such as new diseases arise. 
 In summary, billions of small MW compounds have 
been synthetized and screened against many 
therapeutically relevant target macromolecules, mostly 
proteins, e.g. through experiments with various DELs. 
Structures with possibly physicochemical and biological 
properties, for millions of synthetic and natural compounds 
are available through open access online databases 
including PubChem, ChEMBL, COCONUT etc. There are also 
huge, multi-billion ultra-large screening collections 
composed of make-on-demand compounds such as ZINC-
22, Enamine’s REAL, Chemspace’s Freedom and and Wuxi’s 
Galaxi®, that can be downloaded to perform VS with the 
aim of selecting a set of structurally diverse hits that can be 
synthesised and delivered on request within several weeks. 



 
 
 
10 (not final pg. №) V. STEPANIĆ et al.: The State-of-the-art on Chemical Databases and Libraries 
 

Croat. Chem. Acta 2024, 97(4) DOI: 10.5562/cca4130 

 

 

 

All these collections, primarily ultra-large combinatorial 
libraries, also enable fast generation of SARs facilitating the 
definition of research experiments and projects. This is 
game-changing as it increases the probability of finding hit 
molecules while significantly reduces the cost of the early 
research phase, facilitating the involvement of universities 
and small and medium-sized enterprises in the discovery of 
new biologically active molecules. 
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