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Abstract 10 

The outsourcing of amino acid (AA) production to the environment is relatively common 11 

across the tree of life. We recently showed that the massive loss of AA synthesis capabilities in 12 

animals is governed by selective pressure linked to the energetic costs of AA production. 13 

Paradoxically, these AA auxotrophies facilitated the evolution of costlier proteomes in animals 14 

by enabling the increased use of energetically expensive AAs. Experiments in bacteria have 15 

shown that AA auxotrophies can provide a fitness advantage in competition with prototrophic 16 

strains. However, it remains unclear whether energy-related selection also drives the evolution 17 

of bacterial AA auxotrophies and whether this affects the usage of expensive AAs in bacterial 18 

proteomes. To investigate these questions, we computationally determined AA auxotrophy 19 

odds across 980 bacterial genomes representing diverse taxa and calculated the energy costs of 20 

all their proteins. Here, we show that auxotrophic AAs are generally more expensive to 21 

synthesize than prototrophic AAs in bacteria. Moreover, we found that the cost of auxotrophic 22 

AAs significantly correlates with the cost of their respective proteomes. Interestingly, out of 23 

all considered taxa, Mollicutes and Borreliaceae—chronic pathogens highly successful in 24 
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immune evasion—have the most AA auxotrophies and code for the most expensive proteomes. 25 

These findings indicate that AA auxotrophies in bacteria, similar to those in animals, are shaped 26 

by selective pressures related to energy management. Our study highlights bacterial AA 27 

auxotrophies as costly outsourced functions that allowed bacteria to more freely explore protein 28 

sequence space. It remains to be investigated whether this relaxed use of expensive AAs also 29 

enabled auxotrophic bacteria to evolve proteins with improved or novel functionality. 30 

Keywords: bacteria; amino acids; auxotrophy; energetics; synthesis; selection; evolution; 31 

functional outsourcing 32 

 33 

Introduction 34 

The concept of functional outsourcing posits that organisms streamline their genomes by losing 35 

costly functions that can be substituted through external biological interactions [1]. This 36 

principle clearly applies to the outsourcing of amino acid (AA) production, a phenomenon 37 

observed widely across the tree of life [1–5]. A particularly striking example is animals, which 38 

almost universally lack the ability to synthesize about half of the proteinogenic AAs [2,5]. 39 

Recent research demonstrates that this phenomenon is driven by selective pressure related to 40 

the high energy cost of AA production, enabling animals to evolve costlier proteomes that 41 

incorporate expensive AAs more frequently [5]. These findings raise the possibility that similar 42 

correlations between proteome energetics and AA biosynthetic capabilities exist in other major 43 

clades on the tree of life, including bacteria. 44 

Compared to animals, the understanding of bacterial AA biosynthesis remains relatively 45 

incomplete. Earlier studies indicated that most bacteria possess at least a few auxotrophies 46 

[6,7]. However, recent research has revealed that the prevalence of AA auxotrophies may have 47 

been overestimated due to gaps in knowledge regarding bacterial biosynthetic pathways, 48 

though many bacteria still lack the ability to synthesize the full set of AAs [4,8]. Experimental 49 

evidence shows that AA auxotrophies can confer a fitness advantage in competition with 50 
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prototrophic strains [7,9], and they may serve as an evolutionary strategy to reduce biosynthetic 51 

burdens via cooperative interactions within microbial communities [10]. 52 

The adaptive benefits of AA auxotrophies in bacteria remain under debate. D’Souza & Kost 53 

[9] speculated that outsourcing AA biosynthesis might reduce cellular metabolic costs. While 54 

it is well-established that AAs differ in their biosynthetic costs [10–12] and that costlier AAs 55 

foster stronger microbial cross-feeding interactions [10], a recent study found no significant 56 

correlation between AA biosynthesis costs and the prevalence of AA auxotrophies among 57 

bacteria [4]. However, alternative approaches could be employed to rigorously test whether 58 

energy-related selection drives the evolution of AA auxotrophies. For instance, if such selection 59 

influences the loss of AA biosynthetic capabilities, it should also manifest in the integration of 60 

more expensive AAs into bacterial proteomes [5]. To our knowledge, no study has yet 61 

examined bacterial proteome energetics in this context. 62 

Detecting auxotrophies is itself an active area of research, employing various methodologies. 63 

Many rely on in silico approaches, including genome-scale metabolic modeling [13,14] or 64 

homology-guided annotation of enzymes [4,7,15]. These computational approaches are 65 

typically validated against a limited number of datasets obtained by experiments [4,14]. 66 

However, no simple and standardized protocol currently exists for comparing AA auxotrophy 67 

estimates across studies. 68 

To address these gaps, we assembled a taxonomically diverse dataset of bacterial proteomes 69 

and analyzed whether AA biosynthesis costs can explain trends in AA auxotrophy composition. 70 

Using a simple methodology for auxotrophy detection based on MMseqs2 clustering, we 71 

achieved results comparable in quality to those of previous approaches. Our findings reveal 72 

that more expensive AAs are more frequently lost and that bacteria with greater numbers of 73 

expensive AA auxotrophies encode costlier proteomes, paralleling patterns observed in 74 

animals. These results suggest that energy-driven selection plays a key role in shaping 75 

auxotrophic phenotypes in bacteria, allowing them to explore protein sequence space more 76 

freely during evolution. 77 
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 78 

Results 79 

To uncover global trends in the evolution of bacterial auxotrophies, we compiled a database of 80 

980 high-quality proteomes representing the diversity of bacteria (Table S1). We assessed the 81 

completeness of amino acid (AA) biosynthesis pathways in these species using a MMseq2 82 

clustering approach [16]. This method clusters, in a single step, a representative sample of 83 

bacterial enzymes known to catalyze reactions in AA biosynthesis pathways together with all 84 

proteomes in our database (see Materials and Methods). Based on the composition of the 85 

recovered clusters, functional information on the AA anabolism is then transferred between 86 

cluster members allowing us to determine the completeness of 20 AA biosynthesis pathways 87 

for each species. Unlike previous studies that rely on strictly defined cutoff values to designate 88 

auxotrophies—thereby losing part of the available information—we analyzed the pathway 89 

completeness values directly. This approach provides a more accurate representation of the 90 

odds that a particular pathway is present. 91 

For each of the twenty amino acids, completeness scores range from 0 to 1, where 0 indicates 92 

that all enzymes in the pathway are absent, and 1 indicates that all enzymes are present in a 93 

given species (Fig. 1, File S1). We found that the total pathway completeness for the 20 amino 94 

acids has an average value of 17.33, with a median of 19.5, for the whole dataset. Consistent 95 

with these values, nearly 66% of the species in our dataset exhibit total pathway completeness 96 

above 19. These high completeness values suggest that many bacteria are prototrophic for most 97 

amino acids, aligning with findings from recent studies [4,8]. However, certain taxonomic 98 

groups—including Lactobacillales, Mollicutes, and Borreliaceae—show a significant 99 

reduction in multiple amino acid biosynthetic pathways (Fig. 1, File S1), indicating that 100 

auxotrophies are common in these groups. 101 

 102 

 103 
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 104 

 105 

Figure 1. Completeness of AA biosynthesis pathways in bacteria. We created a database of 106 

980 bacterial species to get a comprehensive overview of AA dispensability in this group. Fully 107 

resolved tree is shown File S1. We retrieved data on enzymes involved in AA biosynthesis 108 

pathways from the KEGG and MetaCyc databases. We searched for their homologs within our 109 

Spirochaetes

Borreliaceae

Proteobacteria

Actinobacteria

Chloroflexi

Cyanobacteria

Clostridia

Negavicutes

Mollicutes

Lactobacillales

Bacillales

G
lu
ta
m
at
e

G
lu
ta
m
in
e

Al
an
in
e

G
ly
ci
ne

Se
rin
e

Pr
ol
in
e

As
pa
rta
te

As
pa
ra
gi
ne

Ar
gi
ni
ne

Th
re
on
in
e

C
ys
te
in
e

Va
lin
e

H
is
tid
in
e

Ly
si
ne

M
et
hi
on
in
e

Le
uc
in
e

Is
ol
eu
ci
ne

Ty
ro
si
ne

Ph
en
yl
al
an
in
e

Tr
yp
to
ph
an

Pathway
completeness

0.00
0.25
0.50
0.75
1.00

Increasing opportunity cost

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted January 27, 2025. ; https://doi.org/10.1101/2025.01.24.634666doi: bioRxiv preprint 

https://doi.org/10.1101/2025.01.24.634666
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 6 

reference database using MMseqs2 clustering (see Methods). For each AA, we showed a 110 

completeness score, which represents the percentage of enzymes within a pathway that returned 111 

significant sequence similarity matches to our reference collection of AA biosynthesis 112 

enzymes. In the case of AAs with multiple alternative pathways, we showed the results only 113 

for the most complete one. 114 

 115 

If energy-driven selection generally influences the evolution of bacterial amino acid (AA) 116 

auxotrophies, one would expect that the ability to synthesize energetically expensive AAs is 117 

more frequently lost. To test this hypothesis, we devised an AA auxotrophy index (AI), defined 118 

as 1 minus the completeness score, and compared it against the opportunity cost [5], which 119 

estimates the energy expenditure associated with AA synthesis (see Materials and Methods). 120 

We observed a significant moderate correlation between opportunity cost and auxotrophy index 121 

when opportunity cost values for respiratory metabolism were applied (Fig. 2A, B). However, 122 

under fermentative conditions, this correlation was much weaker and not statistically 123 

significant (Fig. 2C). Together, these findings suggest that the evolution of AA auxotrophies in 124 

bacteria, similar to animals, is generally driven by selection favoring energetic savings during 125 

AA synthesis, a pattern most pronounced under respiratory conditions. 126 

 127 
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 128 

Figure 2. Correlation between AA biosynthesis cost and the average AA auxotrophy 129 

index. We estimated the AA auxotrophy index (AI), a measure which equals one minus 130 

completeness score, for 980 bacterial species and calculated the average value for each AA. 131 

We correlated this value with the opportunity cost of each AA, calculated for three different 132 

respiratory modes (see Materials and Methods). Pearson correlation coefficient and p-value are 133 

shown on the graph. 134 

 135 

However, the central question remains how these reductions in AA biosynthetic pathways 136 

influence overall proteome energetics. If energy-driven selection underpins the evolution of 137 
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AA auxotrophies in bacteria, one would expect auxotrophic species to maintain more expensive 138 

proteomes than their prototrophic counterparts. This is because auxotrophs consume 139 

considerably less energy on AA biosynthesis and acquire the missing AAs at a relatively low 140 

cost from the environment. In essence, this pattern would suggest that the energy saved on the 141 

synthesis of costly AAs offsets part of the proteome’s energy expenditure, enabling auxotrophs 142 

to incorporate more expensive proteins, potentially contributing to novel functions [5]. 143 

To test this idea, we calculated the opportunity cost of an average amino acid (AA) for each 144 

bacterial proteome (OCproteome) as well as the overall biosynthetic cost savings achieved through 145 

AA auxotrophy (OCsavings, see Materials and Methods). These calculations were performed 146 

across three respiratory modes: fermentation, low respiration, and high respiration [5]. We then 147 

assessed the correlation between OCproteome and OCsaving (Fig. 3). Regardless of the respiratory 148 

mode used to estimate energy expenditure, our results showed that species achieving the 149 

greatest energy savings in AA production also maintain the most expensive proteomes. Similar 150 

to animals, bacterial auxotrophies appear to influence not only the immediate energy budget 151 

related to AA production but also reduce selective pressure against the use of energetically 152 

costly AAs in proteomes. 153 

 154 
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 155 

Figure 3. Correlation between the cost of an average AA per proteome and the amount of 156 

outsourced energy for AA biosynthesis. We estimated the AA biosynthesis pathway 157 

completeness for 980 bacterial species. For each proteome, we calculated its opportunity cost 158 

(OCproteome) by calculating for each AA the product of its opportunity cost and its frequency in 159 

the proteome and then by taking the sum of the obtained values (see Materials and Methods). 160 

For each species, we also estimated the energy that was saved by outsourcing AA biosynthesis 161 

(OCsavings). To obtain this value we first multiplied auxotrophy index with opportunity cost for 162 

every AA and then we summed the obtained values for all 20 AAs (see Materials and Methods). 163 

We repeated all calculations for three different respiratory modes. Pearson correlation 164 

coefficient (r) and p-value are shown on the graph. 165 
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Discussion 167 

In our previous work, we applied the concept of functional outsourcing [1] to AA biosynthesis 168 

in animals and developed a model describing the conditions necessary for the evolution of AA 169 

auxotrophies [5]. This model predicts that the loss of AA biosynthetic pathways is selectively 170 

favored in respiring organisms with abundant environmental availability of AAs. Crucially, the 171 

loss of AA production capabilities is not random—energy-optimizing selection favors the loss 172 

of pathways for energetically costly AAs. This, in turn, enables auxotrophs to more freely 173 

explore protein sequence space by reducing selective constraints on the use of expensive AAs 174 

in their proteomes [5]. To test the broader validity of this model across major clades, we 175 

investigated the patterns of AA auxotrophies in bacteria. 176 

While animals exhibit nearly identical sets of auxotrophies among each other, bacterial 177 

metabolisms are far more diverse, making bacterial auxotrophies more challenging to detect 178 

and interpret [4,7,8]. Although it is known that AA auxotrophies can confer a fitness advantage 179 

in competition with prototrophic strains [7,9], it was unclear whether this advantage arises 180 

solely from the immediate increase in available energy or if, in the long run, it also influences 181 

proteome composition [5]. 182 

Our results reveal a significant positive correlation between the AA auxotrophy index averaged 183 

across tested bacteria and the AA opportunity cost, as predicted by the AA outsourcing model 184 

[5]. This finding aligns with earlier observations that costlier AAs promote stronger microbial 185 

cross-feeding interactions [10] and that AA auxotrophies confer a fitness advantage [7,9]. Apart 186 

from our study, only one prior investigation has explicitly examined bacterial AA auxotrophies 187 

from an energetics perspective, reporting no significant correlation between the frequency of 188 

an AA being auxotrophic and its biosynthetic cost [4]. 189 

The reasons for this discrepancy are unclear and may stem from differences in bacterial genome 190 

datasets, auxotrophy detection pipelines, or biosynthetic cost estimates. Thus, to further test 191 

the robustness of our findings, we analyzed data from another comparable study that calculates 192 
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AA auxotrophies across the bacterial tree of life using metabolic modeling but lacks energetic 193 

calculations [14]. Similar to our study, this dataset also exhibited a significant correlation 194 

between the frequency of an AA being auxotrophic and its biosynthetic cost (Figure S1), with 195 

an even higher correlation coefficient than observed in our results. Collectively, these findings 196 

suggest that, in at least some bacterial groups, AA auxotrophies are influenced by energy 197 

savings at the level of AA biosynthesis. 198 

The second prediction of our model is that bacterial species with more auxotrophies should 199 

have more expensive proteomes. Our results confirm this prediction, showing that auxotrophic 200 

species indeed maintain more expensive proteomes. This finding indicates that AA auxotrophy 201 

fundamentally influences proteome composition. The energy savings achieved through the 202 

outsourcing of AA biosynthesis relax the constraints on the incorporation of costly AAs into 203 

the proteome, thereby enabling auxotrophic organisms to explore protein sequence space more 204 

freely [1,5,17–19]. 205 

Based on these findings, we hypothesize that the increase in the frequencies of costly AAs in 206 

auxotrophic species’ proteomes could result in the evolution of proteins with novel functions 207 

[1,5,17–19]. Interestingly, the most auxotrophic groups with the most expensive proteomes in 208 

our analysis are Mollicutes and Borreliaceae, the members of which are notorious for causing 209 

severe infections that are difficult to manage [20–22]. It is also known that Borreliella (syn. 210 

Borrelia) burgdorferi (Spirochaetales) harbors many Borreliaceae-specific genes with 211 

unknown functions, which may be implicated in the development of Lyme disease [23]. The 212 

evolution and function of these novel genes may be explainable in terms of auxotrophy-related 213 

energetic shifts, which should be explored in future studies.  214 

In conclusion, our results suggest a global macroevolutionary trend where AA biosynthesis 215 

capability is shaped by energy-saving selection, ultimately leading to the evolution of more 216 

expensive proteomes. However, bacteria exhibit remarkable ecological and metabolic diversity, 217 

thriving in an array of physically and chemically unique habitats [8,24,25]. This diversity raises 218 

the possibility that factors beyond energetic costs influence reductions in AA biosynthetic 219 
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pathways. Future studies focusing on specific bacterial lineages and ecologies will be crucial 220 

to uncover the role of such factors in shaping the evolution of AA biosynthetic capabilities. 221 

 222 

Materials and Methods 223 

To create the database of bacterial proteomes (Table S1), we combined datasets previously 224 

assembled for the phylostratigraphic analyses of Bacillus subtilis [26] and Borrelia burgdorferi 225 

[23], along with a resolved phylogeny of Escherichia coli. This resulted in a database of 980 226 

species representing most major bacterial lineages. The proteomes, primarily retrieved from 227 

the NCBI database and supplemented by the Ensembl database, were evaluated for 228 

contamination using BUSCO [27], and all were confirmed to be free of contamination [1]. 229 

In our previous study [5], we retrieved pathways and enzyme codes involved in amino acid 230 

(AA) biosynthesis from the KEGG and MetaCyc databases. For Aas that can be synthesized 231 

via multiple alternative pathways, we treated each pathway separately, even when they shared 232 

some enzymes. Using this collection of enzyme codes associated with AA biosynthesis, we 233 

retrieved bacterial protein sequences from the KEGG database [28]. For each genus with 234 

representatives annotated in KEGG, we selected the species with the largest number of 235 

enzymes catalyzing reactions in AA biosynthesis pathways. This process resulted in a protein 236 

sequence reference database comprising 387,892 enzymes across 2,095 species (Table S2). 237 

 238 

In the next step, we combined the downloaded enzyme sequences known to be involved in 239 

amino acid (AA) biosynthesis pathways with all sequences from our bacterial proteomes 240 

(4,230,625 sequences across 980 species) into a single database. We then clustered this 241 

combined database using MMseqs2 [16] with the following parameters: -cluster-mode 0, -cov- 242 

mode 0, -c 0.8, and -e 0.001. Clustering with these parameters generated clusters whose 243 
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members exhibit highly similar architectures, as the alignment between query and target 244 

sequences covered at least 80% of their length [1]. 245 

Based on the presence of enzymes involved in AA synthesis, we functionally annotated the 246 

remaining members of the respective clusters. For each AA biosynthesis pathway and species 247 

in the database, we calculated a pathway completeness score (i.e., prototrophy index) by 248 

dividing the number of detected enzymes by the total number of enzymes in that pathway, 249 

resulting in values ranging from 0 to 1. If a species contained alternative biosynthetic pathways 250 

for an AA, the pathway with the highest completeness score was selected. We then calculated 251 

the AA auxotrophy index (𝐴𝐼!) using the formula: 252 

𝐴𝐼! = 	1 − 	𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑛𝑒𝑠𝑠	𝑠𝑐𝑜𝑟𝑒 253 

In this formula i denotes one of 20 AAs (i = 1, ..., 20). 254 

To evaluate the performance of our method, we utilized a previously established testing set of 255 

experimentally identified prototrophies and auxotrophies [4,14] to estimate pathway 256 

completeness scores. The first tested dataset comprised 160 fully prototrophic species [4]. Our 257 

approach exhibited an error rate of 0.012, indicating that approximately 1.2% of amino acids 258 

were incorrectly identified as auxotrophic (Data S1). The second dataset included 15 species 259 

with at least one known auxotrophy [14]. In this case, we detected an error rate of 0.188 for 260 

false prototrophs, meaning that around 19% of amino acids were incorrectly classified as 261 

prototrophic (Data S2). Taken together, these error rates suggest that our approach to 262 

auxotrophy detection is conservative and aligns with error rates reported for similar methods 263 

[4,14]. 264 

In our earlier study, we calculated the opportunity cost of biosynthesis for each AA depending 265 

on the three respiration modes: high respiration, low respiration and fermentation [5]. The 266 

opportunity cost is calculated as the sum of the energy lost in the synthesis of AAs (direct cost) 267 

and the energy that would have been produced if a cell catabolized precursors instead of making 268 

AAs [5]. This measure reflects the overall impact of AA synthesis on the cell's energetic budget. 269 
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Using the AA opportunity cost, we also calculated the opportunity cost of an average AA in 270 

each proteome (𝑂𝐶"#$%&$'&) using the following formula: 271 

𝑂𝐶"#$%&$'& 	= 	
∑ )*!	×	-!
"#$%
!#&
∑ -!"#$%
!#&

 = ∑ 𝑂𝐶! 	× 	𝑓!./01
!/2  272 

In this formula, OCi represents the opportunity cost of a given AA, 𝑁! denotes the total number 273 

of occurrences of this AA in the entire proteome, and 𝑓! represents the frequency of the AA in 274 

the proteome (calculated as the number of occurrences of the AA divided by the total number 275 

of AAs in the proteome). 276 

We also introduced a new measure to quantify the energetic savings of a species by linking the 277 

AA pathway completeness to the opportunity cost. This measure estimates the energy saved by 278 

outsourcing AA production to the environment, relative to the energy required to synthesize 279 

the full set of 20 AAs. It is calculated as follows: 280 

𝑂𝐶345!.63 	= 	 7 𝑂𝐶! 	× 	𝐴𝐼!

./01

!/2

 281 

In this formula, OCi denotes the opportunity cost of a given AA, while 𝐴𝐼! denotes the AA 282 

auxotrophy index. 283 

To calculate correlations, we used the cor.test() function in the R stats (v. 3.6.2) package. The 284 

heatmap was visualized using the ggtree R package [29]. 285 
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Figure S1. Correla/on between AA biosynthesis cost and the average AA auxotrophy based 
on data from Starke et al. (2023). We calculated the average of AA auxotrophy measures 
provided in the Starke et al. (2023) study for 3687 bacterial species. We correlated this value 
with the opportunity cost of each AA, calculated for high respiraFon mode (see Materials 
and Methods). Pearson correlaFon coefficient and p-value are shown on the graph. 
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