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Abstract: The outsourcing of amino acid (AA) production to the environment is relatively
common across the tree of life. We recently showed that the massive loss of AA synthesis
capabilities in animals is governed by selective pressure linked to the energy costs of
AA production. Paradoxically, these AA auxotrophies facilitated the evolution of costlier
proteomes in animals by enabling the increased use of energetically expensive AAs. Exper-
iments in bacteria have shown that AA auxotrophies can provide a fitness advantage in
competition with prototrophic strains. However, it remains unclear whether energy-related
selection also drives the evolution of bacterial AA auxotrophies and whether this affects
the usage of expensive AAs in bacterial proteomes. To investigate these questions, we
computationally determined AA auxotrophy odds across 980 bacterial genomes represent-
ing diverse taxa and calculated the energy costs of all their proteins. Here, we show that
auxotrophic AAs are generally more expensive to synthesize than prototrophic AAs in
bacteria. Moreover, we found that the cost of auxotrophic AAs significantly correlates with
the cost of their respective proteomes. Interestingly, out of all considered taxa, Mollicutes
and Borreliaceae—chronic pathogens highly successful in immune evasion—have the most
AA auxotrophies and code for the most expensive proteomes. These findings indicate that
AA auxotrophies in bacteria, similar to those in animals, are shaped by selective pressures
related to energy management. Our study reveals that bacterial AA auxotrophies act as
costly outsourced functions, enabling bacteria to explore protein sequence space more
freely. It remains to be investigated whether this relaxed use of expensive AAs also enabled
auxotrophic bacteria to evolve proteins with improved or novel functionality.

Keywords: bacteria; amino acids; auxotrophy; energy costs; selection; evolution;
functional outsourcing

1. Introduction
The concept of functional outsourcing suggests that organisms streamline their

genomes by losing costly functions and substituting them through biological interac-
tions [1]. A particularly striking example is the outsourcing of amino acid (AA) production
in animals, which almost universally lack the ability to synthesize about half of the pro-
teinogenic AAs [1–6]. Our recent research demonstrates that this phenotype is driven
by selective pressures related to the energy cost of AA production, allowing animals to
evolve proteomes that incorporate expensive AAs more frequently [2]. These findings
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raise the possibility that similar correlations between proteome costs and AA biosynthetic
capabilities exist in other major clades on the tree of life, including bacteria.

Compared to animals, the understanding of bacterial AA biosynthesis remains rel-
atively incomplete. Earlier studies indicated that most bacteria possess at least a few
auxotrophies [7,8]. However, recent research has revealed that the prevalence of AA aux-
otrophies may have been overestimated due to gaps in knowledge regarding bacterial
biosynthetic pathways, though many bacteria still lack the ability to synthesize the full
set of AAs [4,9]. Experimental evidence shows that AA auxotrophies can confer a fit-
ness advantage in competition with prototrophic strains [7,10], and they may serve as an
evolutionary strategy to reduce biosynthetic burdens via cooperative interactions within
microbial communities [11].

However, the adaptive benefits of AA auxotrophies in bacteria remain debated. A pre-
vious study speculated that outsourcing AA biosynthesis might reduce cellular metabolic
costs [10]. While it is well-established that AAs vary in biosynthetic cost [11–13] and that
costlier AAs promote stronger microbial cross-feeding interactions [11], a recent study
found no significant correlation between AA biosynthesis costs and the prevalence of AA
auxotrophies among bacteria [4].

Nevertheless, alternative approaches could provide a more rigorous test of whether
energy-related selection drives the evolution of AA auxotrophies. For instance, if such a
selection influences the loss of AA biosynthetic capabilities, it should also be reflected in
the incorporation of more expensive AAs into bacterial proteomes [2]. To our knowledge,
no study has yet examined bacterial proteome costs in this context.

Detecting auxotrophies remains an active area of research, employing various method-
ologies. Many studies rely on in silico approaches, such as genome-scale metabolic model-
ing [14,15] or homology-guided enzyme annotation [4,7,16]. To assess their accuracy, these
computational methods are typically validated against a limited number of experimentally
derived datasets [4,14]. However, no simple or standardized protocol currently exists for
comparing AA auxotrophy estimates across studies.

To address these gaps, we assembled a taxonomically diverse dataset of bacterial
proteomes predicted from genome sequences and examined whether AA biosynthesis
costs explain trends in AA auxotrophy composition. Using a simple auxotrophy detection
methodology based on the MMseqs2 clustering pipeline, we obtained results comparable in
quality to previous approaches. Our findings reveal that costlier AAs are more frequently
lost and that bacteria with more expensive AA auxotrophies encode costlier proteomes,
mirroring patterns observed in animals. These results suggest that energy-driven selection
plays a key role in shaping AA auxotrophies in bacteria, enabling them to explore protein
sequence space more freely during evolution.

2. Results
2.1. Global Trends in Bacterial AA Auxotrophies

To explore global patterns in the evolution of bacterial auxotrophies, we assembled a
database of 980 high-quality proteomes, computationally inferred from their corresponding
genomes, capturing broad bacterial diversity (Table S1). We assessed the completeness
of AA biosynthesis pathways in these species using an MMseq2-based clustering ap-
proach [17]. Our method clusters, in a single step, a representative sample of bacterial
enzymes known to catalyze reactions in AA biosynthesis pathways together with all bacte-
rial proteomes in our database (see Section 4). Based on the composition of the recovered
clusters, functional information on AA anabolism is then transferred between cluster mem-
bers, allowing us to determine the completeness of 20 AA biosynthesis pathways for each
species. Unlike previous studies that rely on strictly defined cutoff values to designate
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auxotrophies—thereby losing part of the available information—we analyzed pathway
completeness values directly. This approach provides a more accurate representation of the
likelihood that a particular pathway is present.

For each of the twenty amino acids, completeness score (CS) range from 0 to 1, where
0 indicates that all enzymes in the pathway are absent, and 1 indicates that all enzymes
are present in a given species (Figure 1, File S1). When summing the completeness scores
for all 20 AAs, we found that the average value across all bacterial species is 17.33, and
that nearly 66% of species in our dataset exhibit total pathway completeness above 19.
These high completeness values suggest that many bacteria are prototrophic for most
amino acids, aligning with findings from recent studies [4,9]. However, certain taxonomic
groups—including Lactobacillales, Mollicutes, and Borreliaceae—exhibit substantial in-
completeness in multiple amino acid biosynthetic pathways (Figure 1, File S1), indicating
that auxotrophies are common in these groups.

2.2. Expensive AAs Are More Commonly Lost

If energy-driven selection influences the evolution of bacterial AA auxotrophies, one
would expect the ability to synthesize energy-expensive AAs to be lost more frequently.
To test this hypothesis, we devised an AA auxotrophy index (AI, Equation (1)), defined as
1 minus the completeness score, and compared it against the opportunity cost [2], which es-
timates the energy expenditure associated with AA synthesis (see Section 4). We observed a
significant but moderate correlation between opportunity cost and auxotrophy index when
opportunity cost values for respiratory metabolism were applied (Figure 2a,b). However,
under fermentative conditions, this correlation was much weaker and not statistically sig-
nificant (Figure 2c). Together, these findings suggest that the evolution of AA auxotrophies
in bacteria, similar to that in animals, is primarily driven by selection favoring energy
savings during AA synthesis—a pattern most pronounced under respiratory conditions.

2.3. Energy Savings via AA Auxotrophies Enable Costlier Proteomes

However, the central question remains: how do reductions in AA biosynthetic path-
ways influence the overall cost of encoded proteomes? If energy-driven selection underpins
the evolution of AA auxotrophies in bacteria, one would expect auxotrophic species to
maintain more expensive proteomes than their prototrophic counterparts. This is because
AA auxotrophs expend considerably less energy on AA biosynthesis and acquire the miss-
ing AAs at a relatively low cost from the environment. In essence, this pattern suggests that
the energy saved on synthesizing costly AAs offsets part of the proteome’s energy expendi-
ture, enabling auxotrophs to incorporate more expensive proteins, potentially contributing
to novel functions [2].

To test this idea, we calculated the opportunity cost of each bacterial proteome
(OCproteome, Equation (2)) as well as the overall biosynthetic savings achieved through AA
auxotrophy (OCsavings, Equation (3)). These calculations were performed across three respi-
ratory modes: fermentation, low respiration, and high respiration [2]. We then assessed the
correlation between OCproteome and OCsaving (Figure 3). Regardless of the respiratory mode
used to estimate energy expenditure, our results showed that species achieving the greatest
energy savings in AA production also maintain the most expensive proteomes. Similar to
animals, bacterial auxotrophies appear to influence not only the immediate energy budget
related to AA production but also reduce selective pressure against the use of energetically
costly AAs in proteomes. Notably, we found that Mollicutes and Borreliaceae are almost
invariably highly auxotrophic and possess extremely expensive proteomes. On the other
hand, Lactobacillales exhibit a wide range of auxotrophy levels and have proteomes that
are slightly more expensive than average.
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Figure 1. Completeness of AA biosynthesis pathways in bacteria. We created a database of
980 bacterial species to obtain a comprehensive overview of AA dispensability in this group. Fully
resolved tree is shown in File S1. We retrieved data on enzymes involved in AA biosynthesis
pathways from the KEGG and MetaCyc databases and searched for their homologs within our
reference database using MMseqs2 clustering (see Section 4). For each AA, we showed a completeness
score (CS), which represents the percentage of enzymes within a pathway that returned significant
sequence similarity matches to our reference collection of AA biosynthesis enzymes. In the case of
AAs with multiple alternative pathways, we showed the results only for the most complete one.
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Figure 2. Correlation between AA biosynthesis cost and the average AA auxotrophy index.
We estimated the AA auxotrophy index (AI), defined as 1 minus the completeness score (CS), for
980 bacterial species and calculated the average AI value for each AA. This value was then correlated
with the opportunity cost of each AA, previously calculated for three different respiratory modes:
(a) high respiration, (b) low respiration, and (c) fermentation [2] (see Section 4). The Pearson
correlation coefficient and p-value are displayed on the graph. Amino acids are marked using three-
letter codes: Alanine (Ala), Arginine (Arg), Asparagine (Asn), Aspartic acid (Asp), Cysteine (Cys),
Glutamic acid (Glu), Glutamine (Gln), Glycine (Gly), Histidine (His), Isoleucine (Ile), Leucine (Leu),
Lysine (Lys), Methionine (Met), Phenylalanine (Phe), Proline (Pro), Serine (Ser), Threonine (Thr),
Tryptophan (Trp), Tyrosine (Tyr), and Valine (Val).
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Figure 3. Correlation between the average AA cost per proteome and the amount of outsourced
energy for AA biosynthesis. We estimated the completeness of AA biosynthesis pathways for 980 bac-
terial species. For each proteome, we calculated its opportunity cost (OCproteome) by multiplying the
opportunity cost of each AA by its frequency in the proteome and summing the resulting values (see
Section 4). For each species, we also estimated the energy saved by outsourcing AA biosynthesis
(OCsavings). This was calculated by multiplying the auxotrophy index (AI) by the opportunity cost
for each AA and summing the values across all 20 AAs (see Section 4). Opportunity costs for each
AA were previously estimated for three different respiratory modes: (a) high respiration, (b) low
respiration, and (c) fermentation [2]. The Pearson correlation coefficient (r) and p-value are displayed
on the graph.

2.4. Expensive Proteins Have Ecologically Relevant Functions

To investigate the functional background of the most expensive proteins in Mollicutes,
Borreliaceae, and Lactobacillales, we conducted an enrichment analysis of COG functions.
Within each of these three clades, we separately calculated the opportunity cost of every
protein (Equation (4)) and used MMseqs2 clustering [17] to group them into homologous
clusters [1,2]. Next, we determined the opportunity cost of each cluster by averaging the
opportunity costs of its members (Equation (5)). Finally, we performed an enrichment
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analysis of COG functions for the top 10%, 20%, 30%, 40%, and 50% most expensive clusters
within each clade (Figure 4).
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Figure 4. COG Enrichment analysis of the most expensive protein clusters in highly auxotrophic
bacterial groups. We analyzed the proteomes of (a) Borreliaceae (50 species), (b) Mollicutes
(31 species), and (c) Lactobacillales (74 species) from our full database of 980 bacterial species.
Each dataset was clustered separately using the MMseqs2 algorithm to identify clusters of homolo-
gous proteins. COG functions were assigned to each cluster using EggNOG-mapper (see Section 4).
Clusters without functional annotations were labeled as NA (i.e., no annotation). We performed
an overrepresentation analysis for the top k% of clusters ranked by OCcluster (Equation (5)), with
k = 10, 20, 30, 40, and 50, using a one-tailed hypergeometric test. The resulting p-values were cor-
rected for multiple testing using the Benjamini–Hochberg method. Only enrichment signals with
p-values < 0.05 are shown (Table S4).

All three bacterial clades show enrichment in a similar set of COG functions; however,
the statistical significance of these enrichments varies between the clades. For instance,
proteins with unknown functions are among the top two functional categories with the
most significant enrichments (i.e., the lowest p-values). However, the second most sig-
nificantly enriched category differs across clades: defense mechanisms in Borreliaceae
(Figure 4a), inorganic ion transport in Mollicutes (Figure 4b), and intracellular trafficking in
Lactobacillales (Figure 4c). This suggests that many of the most expensive proteins in these
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bacterial clades remain severely understudied, while those that have been characterized
are involved in different aspects of cellular processes.

3. Discussion
In our previous work, we applied the concept of functional outsourcing [1] to amino

acid (AA) biosynthesis in animals and developed a model describing the conditions re-
quired for the evolution of AA auxotrophies [2]. This model predicts that the loss of AA
production capabilities is not random because energy-optimizing selection favors the loss
of pathways for energetically costly AAs. As a result, AA auxotrophs are able to more freely
explore protein sequence space by reducing selective constraints on the use of expensive
AAs in their proteomes [2]. To test the broader applicability of this model across major
clades, we investigated the patterns of AA auxotrophies in bacteria.

While animals exhibit nearly identical sets of auxotrophies among each other, bacterial
metabolisms are far more diverse, making bacterial auxotrophies more challenging to detect
and interpret [4,7,9]. Although it is known that bacterial AA auxotrophies can confer a
fitness advantage in competition with prototrophic strains [7,10], it remains unclear which
adaptive benefits are gained through AA auxotrophy and whether they are linked to energy
management [2].

Our results reveal a significant positive correlation between the AA auxotrophy index
averaged across tested bacteria and the AA opportunity cost, as predicted by the AA
outsourcing model [2]. This finding aligns with earlier observations that costlier AAs
promote stronger microbial cross-feeding interactions [11] and that AA auxotrophies confer
a fitness advantage [7,10]. Beyond our study, only one prior investigation has explicitly
examined bacterial AA auxotrophies from an energy-usage perspective, reporting no sig-
nificant correlation between the frequency of an AA being auxotrophic and its biosynthetic
cost [4]. The reasons for this discrepancy remain unclear and may stem from differences in
bacterial genome datasets, auxotrophy detection pipelines, biosynthetic cost estimates, or
uneven sampling of bacterial groups. Nonetheless, other trends observed in that study [4]
closely resemble our findings—tryptophan, leucine, histidine, valine, and serine are com-
monly auxotrophic.

To further test the robustness of our results, we analyzed data from another comparable
study that estimated AA auxotrophies in the gut microbiome using metabolic modeling,
though it did not include energy calculations [14]. Similar to our study, this dataset also
showed a significant correlation between the frequency of an AA being auxotrophic and its
biosynthetic cost, with an even higher correlation coefficient than in our results (Figure S1).
Consistent with our findings, they reported that tryptophan, the most expensive AA, is the
most commonly auxotrophic. Moreover, their auxotrophy profiles closely resemble ours,
despite being derived from a niche-derived community—gut microbiome bacteria [14].
Interestingly, they also found that host–microbiome and microbe–microbe interactions can
play a crucial role in the maintenance and spread of AA auxotrophy [14], aligning with our
concept of functional outsourcing [1]. Collectively, these findings suggest that, in at least
some bacterial groups, AA auxotrophies are influenced by energy savings at the level of
AA biosynthesis.

The second prediction of our model is that bacterial species with more auxotrophies
should have more expensive proteomes. Our results confirm this prediction, showing that
auxotrophic species indeed maintain genes that encode more expensive proteomes. This
finding suggests that AA auxotrophy fundamentally influences protein evolution. The
energy savings achieved through outsourcing AA biosynthesis relax the constraints on
incorporating costly AAs into proteins, thereby enabling auxotrophic organisms to explore
protein sequence space more freely [1,2,18–20].
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This is best illustrated by Borreliaceae and Mollicutes, which exhibit extreme levels
of both proteome expensiveness and auxotrophy. They have outsourced most of their
metabolic processes to their hosts [21–23], making their AAs relatively inexpensive, which
likely facilitated pathogen–host coevolution. In contrast, some Lactobacillales species
exhibit only a few auxotrophies while others display many, yet this variation does not
impact proteome costs, which remain relatively constant. This pattern most likely arises
because Lactobacillales predominantly rely on fermentative metabolism [24]. As predicted
by our model [2], fermentation lowers AA synthesis costs, thereby relaxing the selective
pressures that drive the outsourcing of expensive AA production. This suggests that
auxotrophies in Lactobacillales are more strongly determined by the availability of specific
AAs in the environment rather than by the energy burden of AA biosynthesis [2].

Based on these findings, we hypothesize that the increase in the frequencies of
costly AAs in auxotrophic species could result in the evolution of proteins with novel
functions [1,2,18–20]. Interestingly, the most auxotrophic groups with the most expensive
proteomes in our analysis are Borreliaceae and Mollicutes, the members of which are
notorious for causing severe infections that are difficult to manage [25–27]. It is also known
that Borreliella (syn. Borrelia) burgdorferi (Spirochaetales) harbors many Borreliaceae-specific
genes with unknown functions, which may be implicated in the development of Lyme
disease [28].

Our enrichment analysis further supports the idea that auxotrophies facilitate the
evolution of proteins with novel functions. In all three tested groups, many of the most
expensive protein clusters have unknown functions, suggesting that the energy saved
through outsourcing is invested in lineage-specific proteins. In Borreliaceae, the enrich-
ment of defense-related functions among expensive proteins may be associated with their
complex immune evasion strategies [29,30]. Similarly, inorganic ion transport functions
are the most expensive category in Mollicutes, whose pathogenicity is closely linked to
alterations in the ion transport of host cells [31]. Finally, the enrichment of expensive
intracellular trafficking functions in Lactobacillales likely reflects their ability to acquire
nutrients through symbiotic interactions [24]. Taken together, our results suggest that
auxotrophy-related energy shifts may drive the evolution and function of lineage-specific
genes, a topic that warrants further in-depth investigation.

In conclusion, our results suggest a global macroevolutionary trend in bacteria where
AA biosynthesis capability is shaped by energy-saving selection, ultimately leading to
the evolution of more expensive proteomes. However, bacteria exhibit remarkable eco-
logical and metabolic diversity, thriving in a variety of physically and chemically unique
habitats [9,32,33]. This diversity raises the possibility that factors beyond energy costs influ-
ence reductions in AA biosynthetic pathways. Future studies focusing on specific bacterial
lineages and ecologies will be crucial for uncovering the role of such factors in shaping the
evolution of AA biosynthetic capabilities.

4. Materials and Methods
4.1. Databases, Completeness Score and Auxotrophy Index

To create the database of bacterial proteomes (Table S1), we combined datasets pre-
viously assembled for the phylostratigraphic analyses of Bacillus subtilis [34] and Borrelia
burgdorferi [28], along with a resolved phylogeny of Escherichia coli. This resulted in a
database of 980 bacterial proteomes, predicted from their corresponding genomes, repre-
senting most major bacterial lineages. The proteomes, primarily retrieved from the NCBI
database and supplemented by the Ensembl database, were evaluated for contamination
using BUSCO [35], and all were confirmed to be free of contamination [1].
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In our previous study, we retrieved pathways and enzyme codes involved in AA
biosynthesis from the KEGG and MetaCyc databases [2,36]. For AAs that can be synthe-
sized via multiple alternative pathways, we treated each pathway separately, even when
they shared some enzymes. Using this collection of enzyme codes associated with AA
biosynthesis, we retrieved bacterial protein sequences from the KEGG database [37,38].
For each genus with representatives annotated in KEGG, we selected the species with the
largest number of enzymes catalyzing reactions in AA biosynthesis pathways. This process
resulted in a protein sequence reference database comprising 387,892 AA biosynthesis
enzymes across 2095 species (Table S2).

In the next step, we combined the downloaded enzyme sequences known to be
involved in AA biosynthesis pathways with all sequences from our bacterial proteomes
(4,230,625 sequences across 980 species) into a single database. We then clustered this
combined database using MMseqs2 [17] with the following parameters: -cluster-mode
0, -cov-mode 0, -c 0.8, and -e 0.001. Clustering with these parameters generated clusters
whose members exhibit highly similar architectures, as the alignment between query and
target sequences covered at least 80% of their length [1].

Using the presence of enzymes involved in AA synthesis, we functionally annotated
the remaining members of each cluster by transferring functional information from known
AA synthesis enzymes. For each AA biosynthesis pathway and species in the database, we
calculated a pathway completeness score (CS) by dividing the number of detected enzymes
by the total number of enzymes in that pathway, resulting in values ranging from 0 to 1.
If a species contained alternative biosynthetic pathways for an AA, the pathway with the
highest completeness score was selected. We then calculated the AA auxotrophy index
(AIi) using the following equation:

AIi = 1 − CSi (1)

In this equation, CS is the completeness score, and i denotes one of 20 AAs
(i = 1, . . ., 20).

To evaluate the performance of our method, we utilized a previously established test-
ing set of experimentally identified prototrophies and auxotrophies [4,14] to estimate path-
way completeness scores (CSs). The first tested dataset comprised 160 fully prototrophic
species [4]. Our approach exhibited an error rate of 0.012, indicating that approximately
1.2% of amino acids were incorrectly identified as auxotrophic (Data S1). The second
dataset included 15 species with at least one known auxotrophy [14]. In this case, we
detected an error rate of 0.188 for false prototrophs, meaning that around 19% of amino
acids were incorrectly classified as prototrophic (Data S2). Taken together, these error rates
suggest that our approach to auxotrophy detection is conservative and aligns with error
rates reported for similar methods [4,14].

4.2. Opportunity Cost Measures

In our earlier study, we calculated the opportunity cost of biosynthesis for each AA
depending on the three respiration modes: high respiration, low respiration, and fermenta-
tion [2]. The opportunity cost is calculated as the sum of the energy lost in the synthesis of
AAs and the energy that would have been produced if a cell catabolized precursors instead
of making AAs [2,39,40]. This measure reflects the overall impact of AA synthesis on the
cell’s energy budget and is rather consistent regardless of the carbon source used by the
bacteria [41]. To approximate how much ATP is generated from the reducing equivalents
in different respiratory conditions, we converted the reducing equivalents to ATP in the fol-
lowing way: (i) ‘high respiration’, representing fully functional oxidative phosphorylation:
1 NAD(P)H = 2 FADH2 = 2 ATP [12]; (ii) ‘low respiration’, representing oxidative phos-
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phorylation without proton pumping at complex I: 1 NAD(P)H = 2 FADH2 = 1 ATP, which
corresponds, for instance, to the metabolism of S. cerevisiae and some E. coli strains [42,43];
(iii) ‘fermentation’, representing anaerobic metabolism without the conversion of reducing
equivalents to ATP [2]. All of these values for each AA are available in Table S3.

Using the AA opportunity cost, we also calculated the opportunity cost of each
proteome (OCproteome) using the following equation:

OCproteome =
∑n=20

i=1 OCi × Ni

∑n=20
i=1 Ni

= ∑n=20
i=1 OCi × Fi (2)

In this equation, OCproteome is a weighted mean where OCi represents the opportunity
cost of the i-th AA, Ni denotes the total number of occurrences of this AA in the entire
proteome, and Fi represents the frequency of the AA in the proteome (calculated as the
number of occurrences of the AA divided by the total number of AAs in the proteome).

We also introduced a new measure (OCsavings) to quantify the energy savings of a
species by linking the AA auxotrophy index (AIi) to the opportunity cost. This measure es-
timates the energy saved by outsourcing AA production to the environment. It is calculated
as follows:

OCsavings = ∑n=20
i=1 OCi × AIi (3)

In this equation, OCi denotes the opportunity cost of a given AA, while AIi denotes
the AA auxotrophy index.

4.3. COG Functions Enrichment Analyses

For functional analyses, we analyzed the proteomes of Borreliaceae (50), Mollicutes
(31), and Lactobacillales (74) separately, taken from our full database of 980 bacterial species.
We clustered the three datasets separately using the MMseqs2 cluster algorithm (the 14-
7e284 version) with the following parameters: -e 0.001 -c 0.8 --max-seqs 400 --cluster-mode
1 [1,17]. For each protein in the datasets, we obtained its COG annotations using the
EggNOG-mapper (version 2.1.12) [44] with the diamond (version 2.1.8) searching tool [45].
We also computed for each protein its opportunity cost (OCprotein) for high respiration
mode [2] as:

OCprotein =
∑n=20

i=1 OCi × ni

∑n=20
i=1 ni

= ∑n=20
i=1 OCi × fi (4)

In this equation, OCprotein is a weighted mean where OCi denotes the opportunity cost
of the i-th amino acid, ni is the number of occurrences of the i-th of amino acid in a protein,
and fi is the frequency of the i-th amino acid in a protein.

Finally, we performed the functional enrichment analysis of the three datasets inde-
pendently. For each dataset, a cluster was assigned a COG function if at least one of its
members was annotated with that function. The clusters whose proteins had no annota-
tions were assigned with NA. The enrichment analysis was performed for clusters with at
least 10 members. For each cluster, we calculated the average opportunity cost of a cluster
(OCcluster) as follows:

OCcluster =
∑N

i=1 OCprotein(i)

Ncluster
(5)

In this equation, OCprotein(i) is the opportunity cost of the i-th protein in a cluster (see
Equation (4)) and Ncluster is the number of proteins in the cluster.

We performed an overrepresentation analysis for the top k% of clusters ranked by
OCcluster, with k = 10, 20, 30, 40, 50, using a one-tailed hypergeometric test as implemented
in the Python (version 3.2) scipy.stats module. The obtained p-values were corrected for
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multiple testing and adjusted using the Benjamini–Hochberg method as implemented in
the Python statsmodels library [46]. All results of enrichment analysis are shown in Table S4.

To calculate correlations, we used the cor.test() function in the R stats (v. 3.6.2) package.
The heatmap was visualized using the ggtree R package [47].
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