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Abstract: All animals have outsourced about half of the 20 proteinogenic amino acids (AAs).
We recently demonstrated that the loss of biosynthetic pathways for these outsourced AAs
is driven by energy-saving selection. Paradoxically, these metabolic simplifications enabled
animals to use costly AAs more frequently in their proteomes, allowing them to explore
sequence space more freely. Based on these findings, we proposed that environmental
AA availability and cellular respiration mode are the two primary factors determining the
evolution of AA auxotrophies in animals. Remarkably, our recent analysis showed that
bacterial AA auxotrophies are also governed by energy-related selection, thereby roughly
converging with animals. However, bacterial AA auxotrophies are highly heterogeneous
and scattered across the bacterial phylogeny, making direct ecological and physiological
comparisons with the animal AA outsourcing model challenging. To better test the uni-
versality of our model, we focused on Bdellovibrionota and Myxococcota—two closely
related bacterial phyla that, through aerobic respiration and a predatory lifestyle, best
parallel animals. Here, we show that Bdellovibrionota, driven by energy-related selection,
outsourced a highly similar set of AAs to those in animals. This sharply contrasts with
Myxococcota, which exhibit far fewer AA auxotrophies and rarely show signatures of
energy-driven selection. These differences are also reflected in Bdellovibrionota proteomes,
which are substantially more expensive than those of Myxococcota. Finally, we found evi-
dence that the expression of costly proteins plays a crucial role in the predatory phase of the
Bdellovibrio life cycle. Together, our findings suggest that Bdellovibrionota, through their
obligate predatory lifestyle, exhibit the closest analogy to the AA auxotrophy phenotype
observed in animals. In contrast, facultative predation, as seen in Myxococcota, appears to
substantially limit the evolution of AA auxotrophies. These cross-domain convergences
strongly support the general validity of our AA outsourcing model.
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1. Introduction
The biosynthesis of amino acids (AAs) is a fundamental biochemical process essential

for sustaining all life on Earth. However, despite the universal metabolic demand for all
20 proteinogenic AAs, some organisms have lost the ability to synthesize certain AAs
endogenously. The most well-known example is animals [1–3], which have lost the capacity
to produce approximately half of the complete AA set. A similar pattern of auxotrophies
has independently emerged in other eukaryotic groups, such as certain amoebae and
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euglenozoans [1,2]. While most bacteria remain fully prototrophic [4], many bacterial
lineages display varying degrees of AA auxotrophy [4–6].

It has long been speculated that the ability to acquire AAs from the environment
influences the evolution of AA auxotrophies [2]. For instance, experiments have shown that
bacteria auxotrophic for an externally supplemented AA can gain a selective advantage
over fully prototrophic counterparts [7]. However, a robust theoretical framework for this
phenomenon remained elusive. In our previous work, we addressed this gap by proposing
a model that explains the evolution of AA outsourcing through several key factors: an AA
is more likely to be lost if (i) its biosynthesis is highly energy-demanding, (ii) it has a low
pleiotropic effect, (iii) it is abundantly available in the environment, and (iv) the organism
relies on efficient aerobic respiration for energy production [1].

Most importantly, we demonstrated that there is a constant selective pressure to
outsource the synthesis of energetically costly AAs to the environment [1]. Surprisingly, this
leads to an increased usage of these expensive AAs in proteomes, allowing animal proteins
to explore sequence space more freely [1,8]. To determine whether these global patterns
are also valid in bacteria, we investigated AA auxotrophies across bacterial phylogeny and
found that energy-related selection also plays an important role in shaping AA outsourcing
in bacteria [5]. However, bacteria exhibit far greater metabolic and ecological diversity than
animals [4,9,10], which necessitates testing our AA outsourcing model in specific bacterial
groups whose lifestyles more closely parallel those of animals.

One such group is the phylum Bdellovibrionota, which includes several aerobic or
microaerophilic species with an obligate predatory lifestyle [11–13]. Within this phylum,
predation occurs via two distinct strategies: epibiotic predation, where the bacterium
attaches to the prey cell and leeches nutrients from its surface, and endobiotic predation,
where the bacterium enters the prey cell and forms a bdelloplast, within which it feeds,
grows, and divides [11–13]. The life cycle of Bdellovibrionota consists of two transcription-
ally distinct phases: the attack phase, during which the bacterium seeks and attaches to
prey, and the feeding phase, characterized by growth and replication [12,14].

Another bacterial group exhibiting animal-like behaviors is the phylum Myxococ-
cota, a close relative of Bdellovibrionota [15,16]. Myxococcota are aerobes known for their
complex multicellular behaviors, including social movement in coordinated “wolf packs”,
fruiting body formation, and predation [17]. However, unlike Bdellovibrionota, Myxococ-
cota are not obligate predators—they can scavenge nutrients from dead organic matter and
survive periods of starvation through sporulation [18–20].

The predatory lifestyle evolved independently in Bdellovibrionota and Myxococ-
cota [16], leading to vastly different phenotypic outcomes [11–13,18–20]. Thus, these two
bacterial groups provide an ideal system to test the predictive power of our AA outsourcing
model, as they allow us to directly link the evolution of AA auxotrophies in bacteria to
distinct ecological and physiological traits [1,5,8].

Here, we demonstrate that Bdellovibrionota evolved a remarkably animal-like set of
AA auxotrophies, accompanied by an increase in relative proteome costs. Our findings
indicate that energy-related selection played a key role in shaping these auxotrophies and
that the attack and feeding phases of their life cycle exhibit distinct energy dynamics at the
transcriptomic level. Surprisingly, this pattern does not hold for Myxococcota, which exhibit
fewer auxotrophies and lower proteome costs. This suggests a fundamental difference in
how diverse predatory lifestyles shape metabolic evolution in these two groups.
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2. Results
2.1. AA Auxotrophies in Bdellovibrionota and Myxococcota

We suspected that the animal-like ecophysiology of Bdellovibrionota and Myxococcota
imposes energy-related selection on their AA metabolism, leading to reductions in AA
biosynthetic pathways similar to those observed in animals. To test this hypothesis, we
first estimated the completeness of AA biosynthesis pathways in 89 Bdellovibrionota and
203 Myxococcota high-quality proteomes, which we retrieved from the NCBI database
(Table S1). To assess AA biosynthesis pathway completeness, which represents the likeli-
hood of a given pathway being present, we used the MMseqs2 clustering approach [5,21].
Heatmap representations clearly revealed significantly lower AA completeness scores (CS)
in Bdellovibrionota compared to Myxococcota (Figure 1, File S1).

Most Bdellovibrionota showed reductions in pathway completeness scores for nine amino
acids (AAs) that fall on the expensive end of the biosynthesis cost distribution (Figure 1,
File S1). This set of AAs with low completeness scores largely overlaps with those that are
auxotrophic in animals [1], with one notable exception—lysine, which appears to be prototrophic
in Bdellovibrionota (Figure 1, File S1). In contrast, the pattern of AA biosynthesis pathway
reduction in Myxococcota is markedly different. Most Myxococcota remain prototrophic
for the majority of AAs, with only valine, leucine, and isoleucine biosynthesis pathways
consistently exhibiting reductions (Figure 1, File S1). An exception to this trend is observed in
two Myxococcota species—Vulgatibacter incomptus and Pajaroellobacter abortibovis—which display
a substantial number of AA auxotrophies (File S1). Taken together, these findings suggest that
while Myxococcota abolish the production of some expensive AAs, specific ecological factors
likely prevent them from outsourcing most of their costly AA biosynthesis pathways.

2.2. Expensive AAs Are Commonly Outsourced in Bdellovibrionota

To globally test whether energy-related selection influences the observed reductions in
AA biosynthesis pathways of Bdellovibrionota and Myxococcota, we correlated the average
AA auxotrophy index (AI) with opportunity cost (OC) calculated under high respiration
mode [5], a metric that estimates the impact of AA biosynthesis on the cell’s energy budget.
To obtain the average AA auxotrophy index for a given AA, for each species we first
subtracted the completeness score (CS) from 1 and then averaged the auxotrophy index
values across all considered proteomes (Section 4, Equation (1)). We detected a significant
correlation between higher biosynthesis costs and the loss of AA biosynthetic ability in
Bdellovibrionota (Figure 2a). This suggests that selection driven by energy management
shaped the global pattern of auxotrophies in Bdellovibrionota. As might be expected
considering heatmap pattern (Figure 1), this broad-scale analysis did not detect a positive
correlation in Myxococcota, which are prototrophic for most AAs (Figure 2b).

2.3. Energy-Optimizing Selection Drives AA Auxotrophies in Bdellovibrionota

To further evaluate whether the observed reductions in AA biosynthesis pathways in
Bdellovibrionota and Myxococcota result from energy-optimizing selection, we analyzed
AA auxotrophy patterns at the species level. To achieve this, we first explicitly determined
the AA auxotrophy status of each species by transforming the completeness score (CS) to
binary values (auxotrophic/prototrophic) (see Section 4, Table S2). Although this procedure
reduces the information contained in the completeness scores, it allowed us to test the
impact of energy-related selection more directly by explicitly defining auxotrophic and
prototrophic AAs. In principle, the loss of even a single enzyme within a biochemical
pathway could render that pathway nonfunctional. Thus, we assigned auxotrophy status
to any AA whose biosynthesis pathway was incomplete. Using this transformed dataset,
we statistically compared opportunity costs between auxotrophic and prototrophic AAs
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within each species [1]. In addition, we applied a permutation-based selection test to
assess the probability that the observed constellation of auxotrophic AAs evolved under
energy-related selection [1].
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Figure 1. Completeness score of AA biosynthesis pathways in Bdellovibrionota and Myxococcota.
We created a database of 89 Bdellovibrionota and 203 Myxococcota proteomes to get a comprehensive
overview of AA dispensability in these groups. The full figure is shown in File S1. We retrieved all
enzymes involved in AA biosynthesis from the KEGG and MetaCyc databases (reference collection)
and searched for their homologs within our Bdellovibrionota/Myxococcota database using MMseqs2
(Section 4, see Methods). For each AA, we show a completeness score (CS), which represents the
percentage of enzymes within a pathway that returned significant sequence similarity matches to
our reference collection of AA biosynthesis enzymes. In the case of AAs with multiple alternative
pathways, we show the results only for the most complete one.
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Figure 2. Correlation between AA biosynthesis cost and AA auxotrophy index. We estimated
the average AA auxotrophy index (see Section 4, Equation (1)), for 89 Bdellovibrionota (a) and
203 Myxococcota (b) proteomes. We correlated this value with the opportunity cost (OC) of AAs
(high respiration mode). Pearson correlation coefficient and p-value are shown on the graph.

On average, Bdellovibrionota species exhibited 7.89 auxotrophic AAs per species
(Table S2). The comparison between auxotrophic and prototrophic AA sets using the
Mann–Whitney non-parametric test shows that auxotrophic AAs have significantly higher
opportunity costs in 92% of the 89 tested Bdellovibrionota species (Table S2; File S2). For
illustration, we singled out the results of this comparison for the type strains of Bdellovibrio
bacteriovorus and Pseudobdellovibrio exovorus, representing endobiotic and epibiotic lifestyles,
respectively (Figure 3). It is evident that, regardless of feeding ecology, auxotrophic AAs
are significantly more expensive than prototrophic ones (Figure 3a,b). The permutation-
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based selection test revealed similar global trends, detecting that energy-related selection
impacted the observed distribution of auxotrophic AAs in 61% of Bdellovibrionota species
(Table S2; File S2). For instance, the average opportunity cost of the auxotrophic AA sets
observed in Bdellovibrio bacteriovorus and Pseudobdellovibrio exovorus falls at the right end
of the distribution of all possible permutations (Figure 3c,d). This indicates, just like in
animals [1], that energy-optimizing selection governed the outsourcing of auxotrophic AAs
in these bacteria.
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Figure 3. Comparisons of auxotrophic and prototrophic AA sets in Bdellovibrio bacteriovorus (a,c) and
Pseudobdellovibrio exovorus (b,d). (a,b) The comparison of opportunity costs (OC) in high respiration
mode between auxotrophic and prototrophic AA groups was tested by the Mann–Whitney U test
with continuity correction. The corresponding W-value, p-value, and effect size (r) are depicted in
each panel. The X symbol represents the mean. Individual AAs are shown by one-letter symbols.
(c,d) Permutation analyses of opportunity costs (selection tests) [1] were conducted by calculating
the average opportunity cost for every possible permutation within the number of auxotrophic AAs
identified in each species (n = 8 for B. bacteriovorus, n = 9 for P. exovorus). The proportions of these
averages are shown in histograms. The obtained distribution represents the empirical probability
mass function (PMF). The value in red denotes the average opportunity cost (OC) value of the
auxotrophic AA sets observed in nature. The p-value was calculated by summing the proportions
of permutations with average opportunity cost values equal to or more extreme than the observed
opportunity cost value. Low p-values indicate a high probability that energy-related selection drove
the loss of auxotrophic AA biosynthesis capability.

The trends are quite different in Myxococcota, where an average of 2.79 AAs are
auxotrophic (Table S2). The Mann–Whitney non-parametric test shows that auxotrophic
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AAs have significantly higher opportunity costs in only 9% of the 203 tested species
(Table S2; File S2). In comparison, the permutation-based selection test revealed similar
results, indicating that energy-related selection impacted AA auxotrophies in only 7% of
Myxococcota species (Table S2). A prominent representative of Myxococcota that shows
the impact of energy-related selection on AA auxotrophies is Pajaroellobacter abortibovis, a
species whose pathogenic ecology differs from the facultative predatory lifestyle of most
other Myxococcota (Table S2, Files S1 and S2). Taken together, these findings suggest that
energy-optimizing selection related to AA auxotrophies is rather rare among Myxococcota
compared to Bdellovibrionota.

2.4. Bdellovibrionota Encode Expensive Proteomes

The fact that Bdellovibrionota converge to an animal-like set of amino acid (AA)
auxotrophies, while closely related Myxococcota remain mainly prototrophic, allows us to
further test the predictions of our model [1]. In our previous work, we demonstrated that
animals encode significantly more expensive proteomes compared to choanoflagellates,
their sister group, which is primarily prototrophic [1]. Based on this finding, we proposed
that animals have costlier proteomes than choanoflagellates, likely because they expend
less energy on amino acid biosynthesis, allowing them to maintain a larger number of
expensive auxotrophic AAs in their proteomes [1]. Using a non-parametric test to compare
the opportunity costs of an average AA in bacterial proteomes (OCproteome, Table A1,
Equation (2)), we recovered an analogous result: the proteomes of the more auxotrophic
Bdellovibrionota are significantly more expensive than those of the more prototrophic
Myxococcota (Figure 4), underscoring the universality of energy-related selection on AA
composition in proteomes.
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frequencies of twenty AAs in the proteome act as weights. The differences in energy costs between
the two groups were shown by boxplots and the significance of these differences was tested by the
Mann–Whitney U test with continuity correction. We depicted the corresponding W-value, p-value,
and effect size (r) in each panel. The X symbol represents the mean. The list of Bdellovibrionota (89)
and Myxococcota (203) proteomes used in the calculations is available in File S1.

2.5. Expensive Proteins in Bdellovibrio Drive Active Predation

We used the published transcriptome data to examine the energetics of the two dis-
tinct phases in the life cycle of Bdellovibrio bacteriovorus: the attack phase and the growth
phase [14]. For each transcript, we calculated its frequency in the transcriptome at a given
life cycle phase [22]. We then multiplied this transcript frequency by the opportunity cost of
an average amino acid (AA) encoded by that transcript (OCprotein) (Equations (3) and (4)).
This measure, which we named the transcript energy score (TES, Table A1), couples tran-
script levels in the cell with the encoded protein costs (see Section 4, Equation (3)). Higher
TES values reflect greater impact, while lower TES values indicate a smaller impact of
a given transcript on the total energy budget of the cell. We performed the TES-based
analysis in two ways: by including all genes expressed per phase and by considering only
those which were exclusively expressed in one phase (Figure 5).
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Figure 5. The comparison of transcriptome energy scores (TES) between two phases in the life cycles
of B. bacteriovorus. Calculations were performed (a) for all genes that are expressed per phase and
(b) only for phase-specific genes. The TES value represents the average opportunity cost of a gene
product multiplied by its frequency in the transcriptome at a given life cycle phase (Equation (3),
Table A1). The significance of the difference between the two phases was tested by the Mann–Whitney
U test with continuity correction. We depicted the corresponding W-value, p-value, and effect size
(r). Outliers were removed from the graph for the clarity of presentation, but were included in the
calculation of statistics. The X symbol represents the mean, and the horizontal line within a violin-plot
represents the median. Transcription data were retrieved from Karunker et al. (2013) [14].

The attack phase is generally characterized by a much smaller number of expressed
genes, which are more evenly distributed across the narrower range of TES values (Figure 5).
In contrast, the TES values of the growth phase are predominantly grouped at the lower
end of the TES range. This suggests that the attack phase of predatory B. bacteriovorus is
underpinned by high transcription of a relatively small number of genes many of which
encode expensive proteins. In contrast, the growth phase is characterized by relatively low
transcription of many genes that encode cheaper proteins. These differences are even more
apparent in the analysis of phase-specific genes (Figure 5b). Together, this suggests that the
active predation in B. bacteriovorus requires proteins which are composed of expensive AAs.
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As an analogy, we previously speculated that similar phenotypes might exist in the context
of animal predation [1].

2.6. Expensive Proteins Are Functionally Understudied

To investigate how Bdellovibrionota and Myxococcota differ in terms of the functions
of their most expensive proteins, we conducted an enrichment analysis of COG functions
(Figure 6). For each group, we separately calculated the opportunity cost (high respiration)
of each protein (Equation (4)) and used the MMseqs2 clustering approach [21] to group them
into homologous clusters [5,8]. The opportunity cost of each cluster was then determined
by averaging the opportunity costs of its members (Equation (5)). Finally, we performed
an enrichment analysis of COG functions for the top 10%, 20%, 30%, 40%, and 50% most
expensive clusters within each clade (Figure 6).

Int. J. Mol. Sci. 2025, 26, x FOR PEER REVIEW 11 of 17 
 

 

proteins encoded by Myxococcota are involved in a broader range of cellular functions 
compared to those of Bdellovibrionota. 

 

Figure 6. COG enrichment analysis of expensive protein clusters in Bdellovibrionota and Myxococ-
cota. We analyzed the proteomes of (a) Bdellovibrionota (89 species), and (b) Myxococcota (203 spe-
cies). Each dataset was clustered separately using the MMseqs2 algorithm to identify clusters of 
homologous proteins. COG functions were assigned to each cluster using EggNOG-mapper (see 
Section 4). We performed an overrepresentation analysis for the top k% of clusters ranked by 𝑂𝐶௨௦௧ (Equation (5), Table A1), with k = 10, 20, 30, 40, and 50, using a one-tailed hypergeometric 
test. The resulting p-values were corrected for multiple testing using the Benjamini–Hochberg 
method. Only enrichment signals with p-values < 0.05 are shown (Table S4). 

3. Discussion 
Functional outsourcing assumes that genes supporting essential functions can be lost 

from the genome if their activity can be substituted through environmental interactions 
[8]. We have successfully applied this concept to the evolution of AA auxotrophies in an-
imals and bacteria [1,5]. We found that all animals and some bacterial groups which are 
capable of harvesting a sufficient amount of AAs from their ecosystem lost the ability to 
produce expensive AAs on their own [1,5,8]. This AA outsourcing is at least partially 
driven by energy-optimizing selection, which not only favors the loss of the ability to syn-
thesize expensive AAs, but also allows for more frequent usage of expensive AAs in the 
proteome [1,5]. We proposed that in animals these phenotypes could have been triggered 
by predation and aerobic respiration [1]. If these processes are indeed selection-driven, it 
would be expected that they occur convergently under similar ecological pressures across 
the tree of life. 

Unlike most other bacteria, Bdellovibrionota and Myxococcota are aerobic predators; 
they hunt and consume their bacterial prey under aerobic or microaerobic conditions [11–
13,23]. As an independent evolutionary event, predation was likely crucial for the out-
sourcing of AA production in animals [1]. We have shown here that obligate aerobic pre-
dation left an astonishingly similar metabolic impact on Bdellovibrionota, resulting in the 
largely overlapping set of AA auxotrophies compared to animals. In contrast, very few 
auxotrophies can be observed in Myxococcota, which are facultative predators [18,20]. 

Figure 6. COG enrichment analysis of expensive protein clusters in Bdellovibrionota and Myx-
ococcota. We analyzed the proteomes of (a) Bdellovibrionota (89 species), and (b) Myxococcota
(203 species). Each dataset was clustered separately using the MMseqs2 algorithm to identify clusters
of homologous proteins. COG functions were assigned to each cluster using EggNOG-mapper (see
Section 4). We performed an overrepresentation analysis for the top k% of clusters ranked by OCcluster
(Equation (5), Table A1), with k = 10, 20, 30, 40, and 50, using a one-tailed hypergeometric test. The
resulting p-values were corrected for multiple testing using the Benjamini–Hochberg method. Only
enrichment signals with p-values < 0.05 are shown (Table S4).

The two groups show enrichment in a set of COG functions related to defense mecha-
nisms, transport, and proteins of unknown function. These are the only functions enriched
in Bdellovibrionota (Figure 6a), while in Myxococcota, we observe the enrichment of
additional functions related to chromatin structure, translation, secondary metabolites,
and energy production (Figure 6b). This suggests two key points: (i) a large number of
expensive proteins in bacteria remain understudied, and (ii) the energetically demanding
proteins encoded by Myxococcota are involved in a broader range of cellular functions
compared to those of Bdellovibrionota.

3. Discussion
Functional outsourcing assumes that genes supporting essential functions can be lost

from the genome if their activity can be substituted through environmental interactions [8].
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We have successfully applied this concept to the evolution of AA auxotrophies in animals
and bacteria [1,5]. We found that all animals and some bacterial groups which are capable
of harvesting a sufficient amount of AAs from their ecosystem lost the ability to produce
expensive AAs on their own [1,5,8]. This AA outsourcing is at least partially driven by
energy-optimizing selection, which not only favors the loss of the ability to synthesize
expensive AAs, but also allows for more frequent usage of expensive AAs in the pro-
teome [1,5]. We proposed that in animals these phenotypes could have been triggered
by predation and aerobic respiration [1]. If these processes are indeed selection-driven, it
would be expected that they occur convergently under similar ecological pressures across
the tree of life.

Unlike most other bacteria, Bdellovibrionota and Myxococcota are aerobic preda-
tors; they hunt and consume their bacterial prey under aerobic or microaerobic condi-
tions [11–13,23]. As an independent evolutionary event, predation was likely crucial for
the outsourcing of AA production in animals [1]. We have shown here that obligate aerobic
predation left an astonishingly similar metabolic impact on Bdellovibrionota, resulting in
the largely overlapping set of AA auxotrophies compared to animals. In contrast, very few
auxotrophies can be observed in Myxococcota, which are facultative predators [18,20].

There are likely multiple factors that influenced the vast differences in AA biosynthesis
capabilities between Bdellovibrionota and Myxococcota. However, the most apparent
and potentially crucial factor is that Myxococcota are only facultatively predatory [18],
preventing them from consistently obtaining AAs from the environment in sufficient
quantities. This is supported by the observation that Bdellovibrionota grow and assimilate
carbon at higher rates than Myxococcota [18]. Furthermore, it has been observed that
Bdellovibrionota are significantly more abundant in aerobic environments than in anaerobic
ones, in contrast to Myxococcota, which show no apparent preference [23]. This might
indicate that the metabolism of Bdellovibrionota is more dependent on efficient respiration,
which could also drive them toward increased AA auxotrophy levels [1]. Another important
factor might be feeding efficiency—Bdellovibrionota are always physically connected to
their prey, while Myxococcota secrete hydrolytic enzymes around their prey, which carries
the risk of diffusion, leading to a lower return of the energy expended on predation [24].

The reduction in the ability to synthesize expensive AAs is directly correlated with the
increased usage of expensive AAs in the proteomes [1,5]. Animals use more frequently expensive
AAs in their proteomes than their sister group, choanoflagellates, and here we showed that
the same is true for Bdellovibrionota when compared to their related group, Myxococcota [15].
Although Myxococcota have larger proteomes than Bdellovibrionota [11,24], their encoded
AAs are on average cheaper by a large margin, which suggests that their complex lifestyle
requires a wide range of functions that do not require proteins with very expensive AAs.
This is supported by the results of our functional analysis, which showed that the top
50% most expensive proteins in Myxococcota are involved in a broader range of functions
compared to the corresponding fraction of Bdellovibrionota proteins.

On the other hand, the ecology of Bdellovibrionota is relatively simple, consisting of
two distinct phases: the attack phase, during which cells actively hunt, and the growth
phase, during which cells consume their prey and subsequently divide [11,12,14]. A
previous study produced transcriptome data for these two phases in B. bacteriovorus [14],
providing a unique opportunity to examine the effects of energy-related selection on the B.
bacteriovorus life cycle. We used a novel measure, the transcript energy score (TES), which
combines the energy cost of a coding gene with its level of transcription, producing higher
scores for more expensive and highly expressed transcripts. Using this metric, we found
that the growth phase is underlined by a much broader set of transcripts with relatively
similar expression levels that encode for cheaper AAs, while the attack phase consists of a



Int. J. Mol. Sci. 2025, 26, 3024 11 of 15

relatively narrow subset of transcripts with a wide range of expression levels that encode
for more expensive AAs. This supports the possibility that the energy saved through the
outsourcing of AAs was invested in the attack phase, enabling more efficient predatory
behavior and thus ensuring a more consistent influx of AAs from the environment, creating
a positive feedback loop.

In conclusion, it is evident that every level of biological organization—from metabolism
and proteome composition to the regulation of gene transcription—is intimately tied to
the organism’s energy budget. Of course, other factors such as nutrient availability [5],
ecological interactions [25], and horizontal gene transfer [26] can influence the pattern of
AA auxotrophies, contributing to the complexity of metabolic evolution. However, the
repeated convergent evolution of similar sets of AA auxotrophies across eukaryotes and
prokaryotes, driven by obligate predation under aerobic conditions, suggests the impact of
energy-related selection. This, in turn, appears to be linked with the evolution of novel and
energy-expensive functions related to predation. Deeper understanding of the evolution-
ary pressures leading to predatory behavior in bacteria is especially important, as it has
implications not only for understanding the regulation of ecological networks [18] but also
for potential medical applications [27].

4. Materials and Methods
4.1. Databases, Completeness Score, and Auxotrophy Index

All proteomes used in this study were retrieved from the NCBI GenBank. We acquired
the highest-quality Bdellovibrionota (89) and Myxococcota (203) proteomes by using the
NCBI filter to exclude atypical genomes, metagenome-assembled genomes, and genomes
from large multi-isolate projects.

We conducted the detection of amino acid biosynthesis pathway completeness using
the protocol described in our earlier publication [5]. We assessed the sensitivity of our
method by comparing it to the results of in-vitro experiments. The error rate of our
approach was comparable to other available in silico methods [5]. Briefly, we compiled
a reference database of 387,892 enzyme sequences from 2095 bacterial species, with each
enzyme annotated according to the biosynthetic pathway it is involved in [5]. We combined
the reference database with our proteomes and clustered the sequences using MMseqs2 [21]
with the following parameters: -cluster-mode 0, -cov-mode 0, -c 0.8, and -e 0.001. We then
functionally annotated all members of a cluster based on the presence of enzymes from the
reference database in that cluster.

For each AA biosynthesis pathway and species in the database, we calculated a
pathway completeness score (CS, Table A1) by dividing the number of detected enzymes
by the total number of enzymes in that pathway, resulting in values ranging from 0 to 1.
If a species contained alternative biosynthetic pathways for an AA, the pathway with the
highest completeness score was selected.

We computed the average auxotrophy index for each dataset separately (Bdellovibri-
onota and Myxococcota). For each species in a dataset (j = 1, . . ., Nspecies) we calculated the
AA auxotrophy index of amino acid i (AIi,j), where i denotes one of 20 AAs, by subtracting
the completeness score (CSi,j) from 1 [5]. Nspecies denotes the total number of species in the
dataset (Nspecies = 89 for Bdellovibrionota; Nspecies = 203 for Myxococcota). For each dataset
we then computed the average auxotrophy index of amino acid i (AIavg(i)) as follows:

AIavg(i) =
∑

Nspecies
j=1 AIi,j

Nspecies
=

∑
Nspecies
j=1 1 − CSi,j

Nspecies
(1)
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4.2. Opportunity Cost Measures, Permutation and Transcriptome Analyses

We used the energy costs of AA biosynthesis as described in our earlier publications [1,5],
details available in Table S3. The opportunity cost reflects the impact of AA synthesis on the
cell’s energy budget and is calculated as the sum of the energy lost in the synthesis of AAs
(direct cost) and the energy that would have been produced if a cell catabolized precursors
instead of making AAs. Using the AA opportunity cost, we also calculated the opportunity
cost of an average AA in each proteome (OCproteome) using the following equation:

OCproteome =
∑n=20

i=1 OCi × Ni

∑n=20
i=1 Ni

= ∑n=20
i=1 OCi × Fi (2)

In this equation, OCi represents the opportunity cost of amino acid i, Ni denotes
the total number of occurrences of this AA in the entire proteome, and Fi represents the
frequency of the AA in the proteome.

The permutation analyses were performed separately for each species by first deter-
mining the number of auxotrophic AAs and then generating all possible permutations
for that number of auxotrophic AAs. For each permutation, we then calculated the aver-
age opportunity cost of the auxotrophic AAs. For example, if a species was found to be
auxotrophic for 10 AAs, we found all possible combinations of 10 AAs and calculated the
average opportunity cost of each. Since there is a limited number of possible average values,
each value was treated as a bin. We calculated the proportion of permutations within a bin
by dividing the number of elements in that bin by the total number of permutations. The
obtained distribution represents empirical probability mass function (PMF) which was then
used to calculate the probability that the observed set of auxotrophies in a given species
is a result of a random process. We calculated p-values by summing the proportions of
permutation in the range from the actual value observed in nature to the most extreme
value at the closest distribution tail [1].

For transcriptome analysis, we obtained data on differential gene expression in the two
distinct life cycle phases of Bdellovibrio bacteriovorus from an earlier study [14]. For each gene
(v), we calculated its proportion in a given transcriptome phase by dividing its transcription
value (tv) by the sum of all transcription values in that phase. This proportion in essence
represents the frequency of each transcript in the transcriptome phase ( ftranscript(v)). We
then multiplied this number by the opportunity cost (high respiration mode) of the protein
encoded by that gene (OCprotein(v), Equation (4)) to obtain a transcript energy score (TES).
This score is meant to represent the energy impact of each transcript on the total energy
budget of a transcriptome phase. TES of gene v (denoted as TESv) was calculated using
the following equation:

TESv =
tv

∑m
w tw

× OCprotein(v) = ftranscript(v) × OCprotein(v) (3)

In this equation, tw denotes the transcription value of gene w in the transcriptome,
w = 1 to m, where m is the total number of transcribed genes.

The opportunity cost of the protein encoded by gene v (OCprotein(v)) was calculated
using the following equation for protein opportunity cost:

OCprotein =
∑n=20

i=1 OCi × ni

∑n=20
i=1 ni

= ∑n=20
i=1 OCi × fi (4)

In this equation, OCprotein is a weighted mean where OCi denotes the opportunity cost
of amino acid i, ni is the number of occurrences of amino acid i in the protein, and fi is the
frequency of amino acid i in the protein.
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We used the Mann–Whitney U test with continuity correction to compare the opportu-
nity costs of an average AA in proteomes (OCproteome) of Bdellovibrionota and Myxococcota
using the package rcompanion (version 2.4.36). We used the same test to compare transcript
energy scores (TES) of different life cycle phases in B. bacteriovorus. To calculate correlations,
we used the cor.test() function in the R stats (version 3.6.2) package. The heatmap was
visualized using the ComplexHeatmap package [28].

4.3. COG Functions Enrichment Analyses

We functionally analyzed the full proteomes of Bdellovibrionota (89) and Myxococcota
(203). The two datasets were clustered separately using the MMseqs2 clustering algorithm
(version 14-7e284) with the following parameters: -e 0.001 -c 0.8 --max-seqs 400 --cluster-
mode 1 [8,21]. For each protein in the datasets, we obtained COG annotations using
EggNOG-mapper (version 2.1.12) [29] with the DIAMOND (version 2.1.8) search tool [30].
We also calculated the opportunity cost (OCprotein) for each protein under high respiration
mode [1] (see Equation (4)).

Finally, we performed the functional enrichment analysis on the two datasets inde-
pendently. For each dataset, a cluster was assigned a COG function if at least one of its
members was annotated with that function. The enrichment analysis was conducted for
clusters with at least 10 members. For each cluster, we calculated the average opportunity
cost (OCcluster) as follows:

OCcluster =
∑Ncluster

i=1 OCprotein(i)

Ncluster
(5)

In this equation, OCprotein(i) is the opportunity cost of the i-th protein in a cluster (see
Equation (4)) and Ncluster is the number of proteins in the cluster.

We performed an overrepresentation analysis for the top k% of clusters ranked by
OCcluster, with k = 10, 20, 30, 40, 50, using a one-tailed hypergeometric test as implemented
in the Python (version 3.12.6) scipy.stats module. The obtained p-values were corrected for
multiple testing and adjusted using the Benjamini–Hochberg method as implemented in
the Python statsmodels library [31]. All results of enrichment analysis are shown in Table S4.
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Appendix A

Table A1. Notations and acronyms.

Notations and
Acronyms Meaning Equation

AA Amino acid -
AAs Amino acids -
AI Auxotrophy index -

AIi,j Auxotrophy index of amino acid i in species j Equation (1)
CS Completeness score -

CSi,j Completeness score of amino acid i in species j Equation (1)
AIavg(i) Average auxotrophy index of amino acid i Equation (1)

OC Opportunity cost -
OCi Opportunity cost of amino acid i Equations (2) and (4)

OCprotein Protein opportunity cost Equations (3)–(5)
ni Number of occurrences of amino acid i in a protein Equation (4)
fi Frequency of amino acid i in a protein Equation (4)

OCproteome Proteome opportunity cost Equation (2)
Ni Number of occurrences of amino acid i in a proteome Equation (2)
Fi Frequency of amino acid i in a proteome Equation (2)

TES Transcript energy score -
TESv Transcript energy score of gene v Equation (3)

tv Transcription value of gene v Equation (3)
ftranscript(v) Transcription frequency of gene v in a transcriptome Equation (3)
OCcluster Cluster opportunity cost Equation (5)
Ncluster Number of proteins in a cluster Equation (5)
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