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Abstract 

 

ZnO films were fabricated by pulsed laser deposition using two different background atmospheres 

(argon/vacuum). The gas sensing properties of these materials against reducing and oxidizing 

gases were examined. The microstructure and crystal symmetry of the deposited films were studied 

with X-ray diffraction (XRD), Scanning electron microscopy (SEM), X-ray photoelectron 

spectroscopy (XPS), Raman, and Photoluminescence (PL) spectroscopy. The XRD studies 

revealed that the ZnO films grown in an argon environment are highly textured in the c-axis with 

a hexagonal crystalline structure. The c-axis is perpendicular to the substrate plane orientation 

(002) compared to (100) plane orientation, which is developed in a vacuum environment. Usually, 

this orientation (100) is difficult to obtain. Raman scattering spectra for both types of ZnO films 

revealed the characteristic E2 (high) mode that is related to the vibration of oxygen atoms in 

wurtzite ZnO. Moreover, PL spectra showed that a high number of defects appear in both the 

vacuum and argon-grown ZnO films. XPS data indicated that the O1s peak consists of several 

components identified as lattice oxygen, oxygen close to defects, and chemisorbed species. 

Furthermore, gas sensing properties were investigated for nitrogen dioxide (NO2) at different 
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operating temperatures and concentrations. Although both types of ZnO films have shown a good 

response towards NO2 at ppb levels, the films prepared under vacuum conditions showed higher 

responses. This was attributed to differences in crystallinity, microstructure, and the type of defects 

present in these materials.  

 

Keywords: ZnO, PLD technique, sensors, photoluminescence, surface defects, enhanced 

recovery, NO2 

 

1. Introduction 

 

The World Health Organization (WHO) has warned that air pollution levels are often above the 

maximum safe levels (threshold limit values TLV) for key pollutants as such nitrogen dioxide 

(NO2)
1. It leads to climate change and its exposure can cause a variety of adverse health outcomes 

on humans, animals, and plants. The immense increase in air pollution is associated with seven 

million deaths yearly2. NO2 exposure is linked to conditions such as heart disease and strokes3. In 

children, it can reduce lung growth, cause aggravated asthma, and damage buildings4. Several 

steps are being taken to help reduce air pollution levels across the globe. Governments are 

enforcing stringent pollution norms to move from coal and gas power stations and diesel generators 

to solar, wind, and hydropower and shift to electric cars technology5. Prioritizing walking, cycling, 

and public transport over cars in urban areas, deterring polluting vehicles from city and town 

centers is the quickest, most cost-effective way to cut nitrogen dioxide pollution levels, which are 

illegal in most urban areas6. The taking over of fossil fuel energy sources for renewable ones is 

progressive, however real-time detection and monitoring of the concentration of harmful and 

poisonous pollutants are required7.  

Gas mixture instrumental analysis such as (GC-MS), ion mobility spectrometry (IMS), and proton-

transfer-reaction mass spectrometry (PTR-MS) show significant drawbacks8. These techniques 

require high operational costs, complicated miniaturization, and time-consuming sample 

preparation and analysis. Other approaches, like electrochemical sensors, have confined 

temperature ranges and shorter life span9. This has motivated significant efforts for the 

development of sensors in the area of research to improve the levels of gas detection10. For that 

reason, chemoresistive sensors have emerged as a promising candidate, as they offer a more rapid, 
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user-friendly, miniaturized, non-destructive, and affordable detection of several toxic gases both 

with high sensitivity and fair selectivity11. 

Chemoresistive sensors based on metal oxide (MOX) have been studied in the research area of 

environmental monitoring, automotive, biomedical, food quality control, etc12. These devices 

usually show simple measuring electronics, high sensitivity to gases, fast response, recovery 

dynamics, and sensor-to-sensor reproducibility 12,13. 

Among metal oxides ZnO is broad band gap (near 3.4 eV) semiconductor at room temperature14. 

Also ZnO II−VI is an n-type semiconductor with high exciton binding energy (∼60 meV), non-

toxicity, high surface-to-volume ratio, low cost, suitability to doping, and considerable 

sensitivity15,16,17. Due to these distinctive properties, it has been considered one of the most 

favorable materials for gas sensing, solar cells18,19, lasers20, thin film transistors21, light emitting 

diode22, nanophotonic and piezoelectric devices23,24. Different nanostructure of ZnO including 

nanorods25, nanowires26, nanoflowers27 can be deposited on various substrates using variety of 

methodologies, such as magnetron sputtering28, thermal evaporation29, and atomic layer 

deposition30.  

A recent report indicated that the use of gas sensing properties of pulsed laser deposition (PLD) of  

ZnO films are strongly dependent on the nature of the crystal surface exposed to the gas species 

for H2
31,32. The reports on EtOH and CO2 sensing properties of ZnO fabricated by PLD in the air 

atmospheric pressure revealed the highest response attributed to adsorbed oxygen species33. Also, 

the photoluminescence (PL) of the PLD ZnO films annealed in the vacuum has shown in spectral 

features compared to argon atmosphere annealed films. It has been proposed that the broad 

luminescence is due to oxygen vacancies, a zinc vacancy acceptor, and a complex defect involving 

zinc interstitials, zinc–oxygen, anti-site defects, and oxygen vacancies34. Additionally, The 

detection of NO2 and NH3 at 10 ppm deposited onto polycor substrates under oxygen conditions 

was reported35. The sensing properties were attributed to the dependence of the grain size on target 

to substrate distance35. Despite the effort made in recent years to apply different background 

atmospheres to PLD ZnO films29,30,31. Most works have been examined to improve gas sensing 

limited to oxygen pressure or mixture of oxygen and argon background conditions of PLD ZnO 

films36,37,38. In addition, the available knowledge is still limited to only ZnO structure and optical 

quality using PLD argon-vacuum background conditions39,40,41,42.  
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To the best of our knowledge, the role of argon and vacuum background atmosphere (without 

metal catalyst) on the gas sensing properties of NO2 has not been reported yet. In this regard, we 

propose for the first time, the successful synthesis of ZnO films by PLD (without metal catalysts) 

using two different background atmospheres (argon/vacuum) for the fabrication of NO2 gas 

sensors.  The structure, crystallinity, optical properties, and chemical composition of the ZnO films 

are characterized by FESEM, XRD, Raman, PL and X-ray photoelectron spectroscopy (XPS). 

Moreover, the gas sensing properties towards the detection of NO2 of vacuum and argon-grown 

ZnO films are investigated and compared. The link between point defects, gas sensing behavior, 

XPS and PL results is discussed. 

 

2. Experimental Section 

2.1. Synthesis of ZnO films  

 

The PLD films were obtained by laser ablation of a solid ZnO target onto silicon and alumina 

substrates, using the wavelength (1064 nm) of an Nd: YAG laser operating at 5 Hz with a pulse 

duration of 5 ns, and output energy of 340 mJ. Laser pulse energy in front of the target was 150 

mJ. The Schematic view of pulsed laser deposition setup is presented in Fig.1. At a laser power 

density of 40 J/cm2, ZnO films were obtained after 5000 shots onto p-type Si (100) substrates, 

either under an Argon operating pressure of 30 Pa (>99.99% purity) or under a vacuum pressure 

< 10−3 mbar. The distance between the target and substrate was 3 cm. The ZnO target surface was 

kept parallel to the substrate and inclined by 45 degrees with respect to the impinging laser pulses. 

Both the target holder and the substrate were kept on floating potential, at room temperature and 

were rotated during deposition to avoid the drilling of the target and to increase the homogeneity 

of the deposited films. After deposition, annealing was done for the both type of films under 

vacuum at 500 ◦C for 2h in the quartz furnace tube to obtain crystallinity.  
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Fig. 1. (a) Actual PLD setup used in this work (b) Schematic view of pulsed laser deposition setup. 

 

2.2. Characterization of the Gas-Sensitive Materials. 

 

The crystalline structure of the ZnO films was studied by XRD using the Siemens D5000 

diffractometer equipped with Cu anode, Goebel mirror, and graphite monochromator in front of 

the point detector. The experiments were performed in the grazing incidence geometry using λ = 

1.5406 Å ranging from 20º to 80º (2θ) with a scanning step size of 0.020º. Field Emission Scanning 

Electron Microscope (JSM-7500F) was used to examine the surface morphology of the samples. 

XPS measurements have been performed in a PHI 5500 Multitechnique System equipped with a 

monochromatic X-ray radiation source of Al Kα (1486.6 eV) at 350 W. The sample was placed 

perpendicular to the analyzer axis and calibrated using the 3d5/2 line of Ag with a full width at half 

maximum (FWHM) of 0.8 eV. The diameter circle of the analyzed area was 0.8 mm. The 

resolution for the general and depth profile spectra were 187.5 eV of pass energy at 0.8 eV/step, 

and 23.5 eV of pass energy at 0.1 eV/step, respectively. All measurements were made in an ultra-

high vacuum (UHV) chamber pressure (5·10-9 and 2·10-8 torr). The binding energies (BE) values 

were referred to the 1s BE at 284.8 eV. Component analysis has been performed by constructive 
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curve joint Shirley and Tougaard functions to determine the peak background, and the line shape 

of the curves was fitted with mixed Lorentzian-Gaussian at 10-30% ratio. Optical characterization 

was carried out by the Raman spectroscopy by a Renishaw In Via Reflex Raman spectrometer 

with a 442 nm excitation, and room-temperature PL measurements were made using a chopped 

Kimmon IK Series He-Cd laser (325 nm and 40 mW). Fluorescence was dispersed with an Oriel 

Corner Stone 1/8 74000 monochromator, detected using a Hamamatsu H8259-02 with a socket 

assembly E717-500 photomultiplier, and amplified through a Stanford Research Systems SR830 

DSP. A filter in 360 nm was used to stray light. All spectra were corrected for the response function 

of the setups. 

 

2.3.Device Fabrication and Gas-Sensing Measurements. 

 

In this paper, alumina substrates (with platinum screen-printed electrodes) were coated with ZnO 

films by the PLD technique to achieve chemoresistive gas sensors. The response towards nitrogen 

dioxide at 200, 400, 600, 800, and 1000 ppb was studied. The gas sensing measurements were 

performed inside the 35 cm3 airtight Teflon chamber. The change in the electrical resistance of 

ZnO films were monitored by multimeter (HP 34972A, Agilent) data acquisition system. The 

sensors were kept under dry air for 30 min before being exposed in repeated cycles to a given 

concentration of nitrogen dioxide species for 5 min.  The total flow rate of gas was adjusted to 100 

mL/min using a (Bronkhorst High-Tech B.V.) mass-flow gas control system that delivers 

reproducible concentrations of the gas tested. Gas sensing measurements were carried out in 

repeated cycles that consist of 30 min of exposure to a given gas concentration, followed by 30 

min under dry air for cleaning and baseline recovery. 

 

3. Results and discussion 

3.1. Structural and Morphological Studies 

 

The crystal structures and phase of the PLD grown ZnO films in vacuum and argon atmosphere 

were analyzed by XRD, as shown in Fig 2.  
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Fig. 2. XRD diffractograms of ZnO films fabricated by Pulse laser deposition on silicon substrate 

using two different background atmospheres (Argon/Vacuum). 

 

The diffraction patterns for both types of films are indexed to the hexagonal wurtzite phase of ZnO 

in accordance with JCPDS card no. 00-36-1451. The strong and sharp peaks show the good 

crystallinity of the synthesized materials. Further, the average crystallite sizes of prepared samples 

were calculated using the Scherer’s formula from the XRD patterns and found to be about 51 nm 

and 29 nm for vacuum and argon-grown ZnO films, respectively. The ZnO thin films grown by 

PLD in an argon environment are highly textured in the c-axis of the hexagonal ZnO wurtzite 

structure, which is aligned with the normal of the film surface. This is in line with the 

characteristics of the hexagonal ZnO wurtzite where the c-axis is perpendicular to the substrate 

plane43,44. In contrast, in the diffractogram associated to ZnO grown under vacuum conditions, a 
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significantly higher number of reflecting planes are visible indicating the polycrystalline nature of 

these samples. 

Surface morphology studies of ZnO films have been conducted using FESEM. Fig. 3 shows the 

FESEM images of ZnO films at a high resolution. ZnO films grown under a vacuum atmosphere 

present clusters composed of multiple grains with sharp edges, suggesting a polycrystalline growth 

with different crystallites showing up on the surface. In ZnO films grown under argon the clusters 

tend to merge, forming a more compact and uniform structure composed of small grains with well-

rounded shapes. Grain size of ZnO films is higher when grown in a vacuum atmosphere than when 

grown under argon atmosphere.  

 

                     

 

 

 

 

 

 

 

 

 

Fig. 3. The SEM morphology after annealing of ZnO thin films deposited in different growth 

atmospheres (a) vacuum and (b) argon 

 

3.2. Chemical Analysis by XPS 

 

Fig. 4 shows the results obtained by XPS analysis. The full spectra in Fig 4(a) shows the main 

peaks according to the expected atoms. Interestingly, just a low-intensity signal of Si is observed 

on both samples, which reflects a complete surface coating with the ZnO films over the Si 

substrates. Fig. 4(b) shows the spectra corresponding to the Zn 2p3 core level, and its 

deconvolution in two components at around 1021.9 and 1023.8 eV corresponding to the lattice 

zinc (Zn-O) in the wurtzite structure and zinc interstitials (Zni) or chemisorbed species, 

https://www.sciencedirect.com/topics/materials-science/crystallite
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respectively.  Fig. 4 (c) shows the spectra corresponding to the O 1s core level, which can be 

deconvoluted into four components. The bands centered at around 530.2 and 531.3 eV binding 

energies are related to lattice oxygen (O-Zn) in the wurtzite structure and oxygen vacancies (VO), 

respectively. The broad band centered at around 532.0 eV binding energy indicates the presence 

of hydroxyl groups (OH), and the band centered at around 533.3 eV is related to oxygen interstitials 

(Oi) or chemisorbed species45,32. The vacuum-grown sample has a higher contribution of VO 

compared to the argon sample. 

 

 

Fig. 4. Overview XPS spectra (a), and high-resolution XPS spectra for (b) Zn 2p3 core level and 

(c) O 1s core level. 

 

3.3. Optical studies 

 

Raman spectra excited by laser lines at 442 and 325 nm are illustrated in Figs. 5 (a) and (b), 

respectively. The formation of the hexagonal wurtzite phase was confirmed by Raman 

spectroscopy.  One sharp peak at 520 cm-1 and two weak peaks at 300 cm-1 and 615 cm-1 in Fig. 5 

(a) can be conferred to the transversal optical (TO) phonon mode originating from the Si 

substrate46,47.The peak at 438 cm-1 is a typical characteristic of hexagonal wurtzite ZnO, and is 

assigned to the E2 (high) phonon mode; whereas the peak at 579 cm-1 is assigned to the E1(LO), 

which is associated with the presence of VO, interstitial zinc (Zni) and their complexes48,49,50,51. 
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Fig. 5. Typical Raman spectra of the ZnO thin films (argon and vacuum) excited 

by laser lines at: (a) 442 nm and (b) 325 nm. 

 

Fig. 5 (b) shows the measured resonant Raman scattering spectra of ZnO thin films argon and 

vacuum atmosphere, respectively. A number of longitudinal optical (LO) multiphonon peaks are 
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observed in both resonant Raman spectra. The frequency of the 1LO phonon peak located at 580 

cm-1 corresponds to E1(LO), which can appear only when the c-axis of wurtzite ZnO is 

perpendicular to the sample surface52,53,54. 

The PL spectra measured at room temperature are presented in Fig. 6. For both ZnO samples, we 

observed two emission bands at room temperature, a strong and narrow UV emission band 

centered at 380 nm originated from the direct recombination of free exciton-related near-band-

edge emission (NBE) in ZnO55,56; and a weak and broad deep level emission (DLE) band in the 

visible range from 440 to 720 nm. The intensity of each spectrum was normalized to the intensity 

of the NBE emission for relative comparison. The FWHM of the NBE emission peaks are around 

140 and 190 meV for the vacuum and argon samples, respectively. This broadening observed on 

the FWHM indicates that the quantity of intrinsic defects is higher for the argon sample57. 
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Fig. 6. PL spectra of ZnO films (Argon/Vacuum) at room temperature. 

The broad emission band observed in the visible range is generally attributed to defects, and has 

the maximum emission intensity at around 520 nm “green luminescent band (GL)” and 590 nm 
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“yellow luminescent band (YL)” for the vacuum and argon samples, respectively58. The origin of 

the DLE broadband is somewhat controversial, though there have been many reports on this 

emission. The commonly accepted explanation is that the GL is usually believed to be associated 

with VO related to structural defects, trap-states or impurity-related radiative recombination 

processes; and the YL band could be associated to Oi. These PL results are in agreement with the 

previously presented XPS results.  

 

3.4. Gas sensing results 

 

The gas sensing properties of the PLD ZnO films towards NO2 were studied at different operating 

temperatures i.e., 100, 150 and 200ºC. To test repeatability, five consecutive replicate 

measurements and recovery sequences were performed. Fig. 7 shows the typical behavior of an n-

type semiconductor exposed to repeated response and recovery cycles of increasingly concentrated 

oxidizing (NO2) species. Exposures to NO2 in an (an electron acceptor) increase sensor resistance 

of the n-type material. Baseline recovery is performed under pure dry air. Furthermore, during the 

recovery cycle, when the target gas is removed and the sensors are only exposed to dry air, they 

return completely to their baseline resistance, which is shown in Fig 7. The two types of sensors 

showed consistent and repeatable responses to various gas concentrations. The response of both 

films (vacuum, argon) is significantly stable because these sensors completely regain their initial 

baseline resistance after each cycle of measurement shown in Fig 7. The results show an increase 

in sensing response with each increment in analyte concentration. It has been found that recovery 

time was slightly longer for argon-grown films as compared to vacuum grown films. The 

recommended safe exposure limits to NO2 is 1 ppm which is well above the lowest concentration 

tested in this paper59. 
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Fig. 7. Sensor resistance changes using the PLD ZnO films grown under vacuum (a) and argon (b) 

exposed to repeated exposure and recovery cycles to five increasing concentrations of NO2. 

Sensors are operated at their optimal working temperatures (200ºC). 

 

The (vacuum and argon) sensors were exposed to NO2 at concentrations of 200, 400, 600, 800, 

and 1000 ppb at different working temperatures. The results are summarized in Fig. 8. When a 

vacuum sensor is operated at the lower temperatures tested of 100 and 150ºC, it shows moderate 

responsiveness. When the operating temperature is raised to 200ºC, a nearly 25-fold increase in 

NO2 responsiveness is observed. The behavior of argon-grown films is very similar to the one 

displayed by vacuum films at 100ºC. When operated at 150 and 200ºC argon grown films show 

nearly a 10-fold enhancement in NO2 responsiveness. Unlike vacuum-grown ZnO films, the 

responsiveness to nitrogen dioxide of argon-grown films is very similar when operated at 150 or 

200ºC. 
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Fig. 8. (a) NO2 sensing results obtained for vacuum grown ZnO (a) and argon grown ZnO (b) at 

three different working temperatures. 

 

The responsiveness for the two types of films towards NO2 as a function of the operating 

temperature are summarized in Fig. 9. The responsiveness of vacuum or argon grown films is very 

similar when operated at 100 or 150ºC. In contrast, vacuum-grown ZnO films clearly outperform 

argon-grown films when operated at 200ºC. Not only the response of vacuum-grown ZnO films is 

about 2.5 times higher than that of argon-grown films, but also the slope of the calibration curve 

is higher in vacuum-grown films, indicating that these show higher sensitivity to NO2. 
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Fig.  9. Comparison of NO2 sensor responsiveness for each of the 3 working temperature tested. 

 

3.5. PLD Growth mechanism 

 

In the PLD deposition process, the high-energy laser pulses interact with the target material, fixed 

in place by a substrate holder resulting in the evaporation of the surface layers. The evaporated 

material is vaporized from the target causing the formation of an expanding plasma. The plume of 

the ablated material gets deposited onto the substrate surface60. Plasma plumes consist of electrons, 

ions, atoms or molecules. After ions reach the substrate, they settle on its surface in an atomic 
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layer-by-layer growth process, called thin-film deposition. The different gas atmospheres and 

background pressures in the PLD process influence the film growth rate, stoichiometry, and 

crystallinity of the resulting film61.  In this particular study, film growth in vacuum or in argon 

were implemented. 

In the case of a vacuum-grown film, the plume angular distribution is formed by the collisions of 

the plume particles among themselves in the initial stage. The re-sputtering of ZnO from the film 

surface is also possible because there is no partial pressure of the gas inside chamber45. These 

effects favor the loss of oxygen and the growth of sub-stoichiometric oxides. 

The plume expansion behavior is even more complex often in the presence of environmental gas 

pressure 62.  In the presence of an argon atmosphere, the ablated species encounter a large number 

of collisions with argon gas molecules, which decreases the energy of the particles reaching at the 

substrate and decreases the size of the ablated plume. In addition, only ZnO clusters are deposited 

on the substrate and Zn2+ or Zn+ ions are not reaching the substrate. In such a case, secondary 

physical processes affect the plume expansion behavior, such as plume deceleration and splitting, 

shock-wave formation, thermalization, etc., as a consequence of plasma–background gas 

interaction62. 

 

3.6. Gas sensing mechanism 

 

The gas-sensing mechanism in ZnO films is based mainly either by the adsorption of atmospheric 

oxygen on to the surface or by direct reaction of lattice oxygen or interstitial oxygen with the test 

gases.63 The type of adsorbed oxygen species depends on temperature as described in the four steps 

below64. 

 

O2 + (g) → O2        (Physical absorption)                         (1) 

 

At low temperatures, when ZnO is exposed to atmospheric oxygen, this oxygen is physically 

adsorbed to its surface in different molecular or atomic states without forming any ionic bond.  

 

e¯+ O−  →  O2
−

             (Ionic adsorption; <100°C)         (2)   
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 2𝑒− + O2
− →  2O−  (Ionic adsorption; 100 to 300°C)  (3)     

 

𝑒− + O− → O2−      (Ionic adsorption; > 300°C)              (4)     

  

As the temperature increases from 100 to 150ºC the dominating adsorbed oxygen species are O2
-, 

when the temperature is raised from 150 up to 200ºC the dominant species are atomic O-. a further 

increase in the temperature would lead to the formation of O2−. Physically adsorbed oxygen will 

capture electrons from the surface of the ZnO and form a charged oxygen surface species (steps 2-

4) resulting in the development of a depletion region at the surface of the grains of the gas sensitive 

material. Consequently, since different working temperatures of 100, 150 and 200ºC have been 

used, different oxygen species would be found at such temperatures as well as co-exist in the 

transition temperatures.   

For the NO2 detection, the resistance of the ZnO sensor increases when exposed to such an 

oxidizing gas. The NO2 molecules reach the metal oxide surface and are directly chemisorbed on 

the surface of ZnO films. These oxidizing molecules take more electrons from the conduction band 

of ZnO and thus, the width of the depletion region is further extended, which increases the 

resistance of ZnO films63,71,72.  According to the results presented in Fig. 8, clear differences arise 

between the intensity of response and sensitivity of argon and vacuum-grown films when these are 

operated at 200ºC. When operated at 200ºC, vacuum-grown films clearly outperform argon-grown 

films for detecting NO2.  

It has been found that gas sensitivity linearly increased with the PL intensity of VO-related defects 

in both as-fabricated and defect-controlled ZnO nanowire gas sensors73. If we consider our PL 

analysis results, vacuum deposited films show the most intense visible emission band in their PL 

spectrum centered at 520 nm, which corresponds to the GL band. This means that the material 

with the higher number of VO is the most sensitive to NO2. This is further supported by the XPS 

analysis in which the amount of VO is found to be higher in vacuum-grown films. Besides VO, 

other factors may influence gas sensitivity. In particular, the higher polycrystallinity (revealed by 

XRD) and higher surface texture (as revealed by SEM) found in vacuum-grown ZnO samples may 

also contribute to their higher response toward NO2. 
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Finally, when the gas sensors are exposed to clean air again, adsorbed NO2 is released and 

previously trapped electrons are injected into the conduction band, reducing the width of the 

depletion regions at grain boundaries. This translates into a decrease in sensor resistance (the 

original baseline resistance is regained). 

 

4. Conclusions 

 

To sum up, two different kinds of ZnO films were fabricated by PLD in different background 

atmospheres (i.e., vacuum or argon). The gas sensing properties towards NO2 have been studied. 

By implementing room-temperature PL studies, it has been possible to establish that the PLD 

background atmosphere has an impact in the number of defects and in the nature of these. PL and 

XPS studies indicate that vacuum-grown ZnO films show a higher number of VO than argon-grown 

films and this may explain the significantly higher response of the former in the detection of NO2 

at ppb levels, as oxygen vacancies can act as adsorption sites for the nitrogen dioxide molecule. 

The significant differences in the nature of defects in PLD ZnO films revealed by this study suggest 

that the use of different backgrounds during the growth process can be used as a suitable 

methodology for the engineering of defects in PLD grown nanomaterials, thus achieving functional 

materials with controlled properties. This approach is not only suitable for tailoring gas sensing 

properties but could also in photovoltaics, electronic devices or light emitting diodes.  
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