
Global machine learning potentials for molecular crystals
Ivan Žugec,1 R. Matthias Geilhufe,2 and Ivor Lončarić3, a)
1)Centro de Física de Materiales CFM/MPC (CSIC-UPV/EHU), Donostia-San Sebastián,
Spain
2)Department of Physics, Chalmers University of Technology, Gothenburg, Sweden
3)Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia

Molecular crystals are difficult to model with accurate first principles methods due to the large unit cells.
On the other hand, accurate modeling is required as polymorphs often differ by only 1 kJ/mol. Machine
learning interatomic potentials promise to provide accuracy of baseline first principles methods with orders of
magnitude lower cost. Using existing databases of density functional theory calculations for molecular crystals
and molecules, we train global machine learning interatomic potentials, usable for any molecular crystal. We
test the performance of the potentials on experimental benchmarks and show that they perform better than
classical force fields and in some cases comparable to density functional theory calculations.

I. INTRODUCTION

Molecular crystals are ubiquitous materials that find
many uses, from electronics1,2,to the pharmaceutical
industry3,4. Atomistic modeling of molecular crystals re-
lies either on (tailor-made) classical interatomic poten-
tials (force fields) or density functional theory (DFT).
Force fields are orders of magnitude faster than DFT, but
often not sufficiently accurate. In contrast, DFT offers
the best accuracy and computational complexity ratio
for most materials’ (ground state) properties. However,
due to the large average unit cell of molecular crystals,
DFT is computationally expensive. Furthermore, molec-
ular crystals show strong electronic correlations, due to
weak intermolecular electron hopping, resulting in a sup-
pressed kinetic energy. While this gives rise to interest-
ing many-body instabilities5–8, it often requires computa-
tionally expensive approaches such as hybrid functionals.

In recent years, machine learning interatomic poten-
tials (MLIPs) have promised to provide the best of both
worlds, speed comparable to force fields, and accuracy
similar to the baseline DFT data. MLIPs have been suc-
cessfully used to model many different materials and their
properties, see reviews9–13. Even better, based on very
large databases with millions of entries, such as Materi-
als Project14, recent MLIPs15–17 cover the whole periodic
table and, in principle, can be used for any material.
However, current large DFT databases, such as Mate-
rials Project14, AFLOW18, OQMD19, and NOMAD20,
are concentrated on inorganic materials due to their rel-
atively small average unit cell. For example, the average
unit cell in the Materials Project of ∼ 28 atoms is much
smaller than the average unit cell of molecular crystal
in the Cambridge Structural Database (CSD)21 of >200.
Therefore, current global MLIPs do not cover the config-
urational space of molecular crystals.

Present DFT databases for molecular crystals are
relatively small. To the best of our knowledge, the
largest database is the Organic Materials Database
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(OMDB)22–25 which contains electronic structure calcu-
lations (bandstructure and density of states) of 40,948
organic molecular crystals and metalorganic framework
materials. Several thousand structures are also calcu-
lated in ShiftML databases focusing on NMR chemical
shifts26. On the other hand, extensive databases exist
for DFT calculations of molecules. The largest example
is ANI-127,28 database with over 20 million conforma-
tions of small molecules. While crystal databases are
calculated with semilocal DFT, molecular databases are
often calculated with more accurate hybrid functionals.

The main idea of this work is to explore the possibility
of creating a global MLIP - valid for any molecular crystal
- trained on the existing databases, such as OMDB and
ANI-1x29, and test it on predicting properties of molec-
ular crystals. This is challenging as OMBD is likely too
small to generalize over the whole configurational space of
molecular crystals, and molecular datasets are not made
to sample intermolecular interactions existing in molecu-
lar crystals.

In general, MLIPs have not been widely applied to
molecular crystals. This has to do with the fact that
MLIPs are often short-ranged and long-range interac-
tions such as dispersion and electrostatics are essential in
molecular crystals. Some of the existing MLIP applica-
tions on molecular crystals did not correct for the long-
range interactions. Still, it was shown that pentacene
and azapentacene potential can be machine-learned to
sub-kJ·mol−1 accuracy30. MLIPs were also used to cal-
culate Gibbs free energies for several molecular crystals
and predict thermodynamic stability in agreement with
experiments31,32. Even these few studies show that some
properties of particular molecular crystals can be ac-
curately modeled with short-ranged MLIPs. The only
study of molecular crystals incorporating long-range in-
teractions was the delta machine learning method for
short-range interactions on top of density functional tight
binding baseline providing long-range electrostatics33,34.

The inception of Machine Learning Interatomic Po-
tentials (MLIPs) can be traced back to the pioneering
work of Behler and Parrinello, who employed simple feed-
forward neural networks and Gaussian symmetry func-
tions as descriptors35. Another influential early contri-
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bution utilized more sophisticated descriptors and Gaus-
sian process regression36. Subsequent advancements in
the field have largely followed either the neural net-
work or kernel-based approach9–13. To achieve the over-
arching goal of constructing a global MLIP applicable
to any molecular crystal, neural network methodolo-
gies are preferred due to their evaluation cost indepen-
dence from the quantity of training data—a necessity
when covering the vast configurational space of molec-
ular crystals. While initial neural network architectures,
like Behler-Parrinello, relied on manually crafted descrip-
tors, contemporary top-performing networks adopt end-
to-end architectures that eliminate the need for prede-
fined descriptors37. These models typically represent the
atomic structure as a graph, where edges connect two
atoms (nodes) within a specified cutoff distance. Subse-
quent convolution or message-passing operations on this
graph are employed to glean the atomic environment’s
representation for each atom.

In the present contribution, we show that our end-to-
end MLIPs when benchmarked with experimentally de-
termined structures and formation energies, show accu-
racy better than force fields and, in some cases, com-
parable to DFT. In particular, we show that molecular
datasets with few molecular dimers already allow for rea-
sonable global MLIP for molecular crystals. While our
open and ready-to-use models can be already used for
different applications, we propose how to further improve
the accuracy of our models.

II. METHODS

In this section, we present details about datasets and
models used in this work.

A. Datasets

We used two datasets for training MLIPs, the ANI-
1x29 and the OMDB23. Both datasets contain informa-
tion about the energy of the system and forces on all
atoms. As a preprocessing step, we subtracted the atomic
self-energies for each dataset, which established a consis-
tent energy baseline. This step aids in isolating bonding
energies from the inherent atomic energies, ensuring com-
parability across diverse training sets. For benchmarking
prediction accuracy of trained models on molecular crys-
tals we used the CSD-2k26 and X23b datasets38.

1. ANI-1x

ANI-1x29 is a subset of a larger ANI-127 dataset ob-
tained by means of active learning via query by commit-
tee. It contains a variety of different structures including
off-equilibrium organic molecules, dimers, and structures
obtained by ab initio molecular dynamics. All structures

within the ANI-1x are composed of C, H, N, and O atoms.
The DFT calculations were performed with the hybrid
ωB97X exchange-correlation functional39 and the 6–31
G(d) basis set40. For training MLIPs, we have randomly
split the ANI-1x dataset into 4,567,229 training configu-
rations and 50,000 validation configurations.

2. OMDB

OMDB22 provides single-point DFT calculations for
experimental structures of molecular crystals. In this
work, we use a subset of 10 788 crystals that contain only
C, H, N, and O atoms with an average number of atoms
in the unit cell being 82. All calculations in OMDB were
performed with PBE exchange-correlation functional41.
For training MLIPs, we have randomly split the dataset
to 9298 training configurations and 490 validation con-
figurations.

3. X23b

The X23b dataset38,42 is a standard benchmarking
dataset for molecular crystals and has established it-
self as an important benchmark for evaluating the ac-
curacy of dispersion interactions. It includes accurate
experimental lattice energies and volumes for 23 small
to medium-sized molecular crystals with 12−72 atoms in
the unit cell. The dataset covers van der Waals-bonded,
hydrogen-bonded, and mixed molecular crystals. For all
comparisons, we use the revised X23b dataset38 that ac-
counts for the effect of thermal expansion.

4. CSD-2k

CSD-61k dataset26 comprises all crystals from the CSD
containing C, H, N, and O atoms and having less than 200
atoms. CSD-2k dataset is then additionally filtered from
the original CSD-61k by means of a farthest point sam-
pling algorithm43,44 to 2 000 structures, ensuring near-
uniform sampling of conformational space.

5. ICE10

The ICE10 benchmark set45 is a set of ten experi-
mentally studied ice polymorphs useful for benchmarking
first-principles methods. We use experimentally deter-
mined lattice energies of the seven polymorphs extrapo-
lated to 0 K.



3

B. MLIP architectures and models

1. NequIP

NequIP architecture, based on E(3)-Equivariant Neu-
ral Networks46, is designed to efficiently learn the inter-
atomic potential of molecules and materials. The im-
portant hyperparameters that were chosen for NequIP
trained on ANI-1x and OMDB were identical unless
stated otherwise (further details, including model con-
figurations, are available in supporting data). The cutoff
radius was set to 5 Å ensuring that the first neighbor
shell is included. The number of interaction and radial
layers were set to 4 and 2 respectively, while the max-
imum rotation order was set to 2. The batch size was
equal to 128 for ANI1-x and 8 for OMDB. The loss func-
tion was a mean square error function of both energy and
force normalized by the total number of atoms. Weight
coefficients for both energy and force loss functions were
chosen to be equal to unity. The learning rate was regu-
lated by Pytorch’s implementation of the ReduceLROn-
Plateau scheduler with patience being equal to 6 and a
decay factor of 0.5. Validation energy MAEs per atom
are 2.8 meV and 6.3 meV while validation forces MAEs
are 47 meV/Å and 48 meV/Å on ANI-1x and OMDB,
respectively.

2. ANI-2x

ANI-2x model is an ensemble of 8 pre-trained neural
networks trained on a ANI-2x dataset47 which extends
ANI-1x with structures containing F, Cl and S. The set
of these 7 elements (C, H, N, O, F, Cl, S) make up ∼ 90%
of drug-like molecules. Additionally, ANI-2x underwent
torsional refinement training to better predict molecular
torsion profile.

C. Calculation details

All calculations have been performed in the Atomic
Simulation Environment (ASE)48. Positions of atoms
and unit cells of each crystal were relaxed until forces
on each atom was smaller than 5 × 10−4 eV/Å keeping
the symmetry of the experimental structure.

Since MLIPs were trained on datasets calculated with
either ωB97X or PBE exchange-correlation functional,
all predictions can be afterwards corrected for van der
Waals interactions. We have used D4 correction49,50 that
is convinient as it does not depend on DFT charge densi-
ties. We have used D4 parameters corresponding to the
respective baseline exchange-correlation functional.

III. RESULTS

As a first benchmark of global MLIPs for molecular
crystals we test them on lattice energies from revisited
X2338 dataset. Fig. 1 shows a comparison of predictions
of selected MLIPs and corrected experimental values.

FIG. 1. X23b lattice energies compared to MLIPs predictions.

All studied MLIPs show reasonable predictions for
most if not all of the crystals in the X23b dataset.
The least consistent predictions are obtained by the
ANI2x+D4 model which shows a very high overesti-
mation of lattice energy for CO2 and s-Triazine while
models using Nequip architecture perform better. In
Table I we show a statistical comparison of the per-
formance of different MLIPs as well as various force
fields and DFT approximations. The best-performing
global MLIP is the Nequip model trained on the ANI-
1x dataset (Nequip@ANI1x), followed by the Nequip
model trained on OMDB supplemented with D4 correc-
tion (Nequip@OMDB+D4). D4 correction is essential
for the PBE-based OMDB model, which significantly
underestimated lattice energy and performed the poor-
est among models when used without the D4 correction.
ANI2x on average slightly underestimates lattice energy
and ANI2x+D4 slightly overestimates lattice energy, but
both have significant deviations. Interestingly, D4 correc-
tion worsens results when used on the Nequip@ANI1x
model by consistently making predicted lattice energy
too negative.

The MLIPs’ performance can be compared to the per-
formance of force fields and DFT. For force fields, we
have selected two different classes, tailor-made force fields
for each molecule in the dataset (FIT and W99) and
general force fields (GFN-FF). We have also selected
different exchange-correlation approximations in DFT,
ranging from semi-local to hybrid functionals supple-
mented with different van der Waals corrections. Best-
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Model MA%D MAD ME SD

Nequip@ANI1x 9.90 8.68 -2.89 11.58
Nequip@ANI1x+D4 29.19 23.15 -23.15 10.61
ANI2x 37.31 22.19 5.79 32.81
ANI2x+D4 33.65 18.33 -4.82 31.85
Nequip@OMDB 66.36 54.97 54.97 19.30
Nequip@OMDB+D4 15.41 12.54 10.61 9.65

FIT51 10.27 9.65 -7.72 8.68
W99rev6311P551 15.72 14.48 -14.48 9.65
W99rev6311P351 16.79 15.44 -15.44 10.61
W99_DMA51 17.47 15.44 -15.44 11.58
W99rev631151 18.28 16.40 -16.40 10.61
W99_ESP51 25.27 22.19 -21.23 13.51

GFN-FF-Orig.52 38.95 28.95 27.02 16.40
GFN-FF-W52 37.03 27.98 25.06 18.33
GFN-FF-dATM52 30.60 23.15 19.30 17.37
GFN-FF-W+dATM52 28.34 21.23 17.37 17.37

TPSS-D353 4.64 3.86 -0.00 3.86
PBE-D353 4.42 3.86 -0.97 4.82
HSE06-D353 5.18 3.86 -1.93 3.86
PBE-XDM54 a 8.09 6.75 2.89 7.72
PBE-MBD42 6.89 5.79 -3.86 4.82

a Evaluated on C21 dataset

TABLE I. Comparative analysis of Mean Absolute Rela-
tive Deviation (MA%D), Mean Absolute Deviation (MAD,
kJ/mol), Mean Error (ME, kJ/mol), and Standard Deviation
(SD, kJ/mol) of revised X23b38 lattice energy for MLIPs,
force fields, and multiple dispersion-corrected DFT calcula-
tions.

performing global MLIPs are performing much better
than general force fields and on par or better than tailor-
made force fields in predicting lattice energies. Van der
Waals corrected DFT is superior showing around twice
as good performance. During the revision, we became
aware of the very recent global MLIP, MACE-OFF55,
with mean absolute error on X23b lattice energies of 7.1
kJ/mol, confirming our conclusions.

Next, we benchmark MLIPs on volume predictions
from the X23b dataset as shown in Fig. 2 and Ta-
ble II. Again, MLIPs predict volumes well in most
cases, except for CO2 which is not modelled well with
ANI2x+D4 and Nequip@OMDB+D4. Best performing
model for volumes is Nequip@ANI1x+D4 followed by
Nequip@OMDB+D4 and Nequip@ANI1x. D4 correc-
tion is essential for OMDB-based models also for predict-
ing volumes. Compared to force fields, global MLIPs
perform better than tailor-made force fields and signif-
icantly better than general force fields. Global MLIPs
are also competitive with DFT for volume predictions as
best global MLIPs show slightly smaller deviations and
smaller mean errors.

Small X23b dataset is suitable for benchmarking com-
putationally heavy DFT calculations or laborious tailor-
made force fields, but general MLIPs are both fast and
easy to use and can be also efficiently used on larger

Model MAD ME SD

Nequip@ANI1x 5.05 2.81 5.09
Nequip@ANI1x+D4 4.13 1.05 4.83
ANI2x 8.59 5.44 10.33
ANI2x+D4 8.07 4.67 10.19
Nequip@OMDB 31.6 31.6 35.56
Nequip@OMDB+D4 6.14 2.9 11.09

FIT51 a 6.22 3.94 7.08
W99rev6311P551 a 8.03 7.54 4.94

GFN-FF-Orig.52 11.39 -10.3 7.84
GFN-FF-W52 12.15 -11.04 7.71
GFN-FF-dATM52 11.37 -10.24 7.73
GFN-FF-W+dATM52 12.02 -10.89 7.69

TPSS-D353 6.37 2.11 11.44
PBE-D353 6.99 2.84 11.02
PBE-XDM54 b 14.3 13.1 7.84
PBE-MBD42 5.07 5.07 2.71

a Urea excluded from analysis.
b Evaluated on C21 dataset

TABLE II. Comparative analysis Boise, Idahoof Mean Abso-
lute Deviation (MAD, %), Mean Error (ME, %), and Stan-
dard Deviation (SD, %) of relative error of unit cell volumes
on X23b dataset38 for MLIPs, force fields, and dispersion-
corrected DFT calculations.

benchmarking datasets. We used the CSD-2k dataset
of the most diverse crystals with unit cells containing
less than 200 atoms to benchmark MLIP predictions for
structures. Fig. 3 shows histograms of relative vol-
ume differences between MLIPs predictions and exper-
imental values. Statistical analysis is given in Table
III. For CSD-2k, thermal expansion correction was not
applied so a few percent difference is possible even for

FIG. 2. Relative difference of MLIP predictions and X23b
volumes.



5

FIG. 3. Histogram of relative difference between MLIP pre-
dictions and volumes extracted from CSD-2k dataset26.

Model MAD ME SD RE ≥ 20 %

Nequip@ANI1x 4.44 -1.44 6.57 1.39
Nequip@ANI1x+D4 5.2 -3.64 5.57 1.37
ANI2x 6.36 1.86 9.64 4.22
ANI2x+D4 6.15 0.95 9.34 3.83
Nequip@OMDB 19.66 19.51 14.58 34.65
Nequip@OMDB+D4 5.7 -4.16 5.51 1.37

TABLE III. Comparative analysis of Mean Absolute Devia-
tion (MAD, %), Mean Error (ME, %), Standard Deviation
(SD, %), and portion of crystals with difference in volume
larger than 20% (RE ≥ 20 %, %) for machine learning po-
tentials with respect to the volumes extracted from CSD-2k
dataset26.

the perfect model. A recent survey of thermal expan-
sion data in CSD calculated the mean expansion coef-
ficient to be 168 × 10−6 K−156, so the expected aver-
age difference between volume predictions at T = 0 and
T = 300 K, would be −5%. Best performing models
on X23b volumes, Nequip@ANI1x, Nequip@ANI1x+D4,
and Nequip@OMDB+D4 are also performing well on a
CSD-2k dataset. As one would expect, they show a few
percent negative mean and small deviations, similar to
deviations in X23b. ANI-2x and ANI-2x+D4 predict
positive mean while Nequip@OMDB again gives worst
results with large mean error.

Table III also includes information on the percentage
of volume predictions that are more than 20% differ-
ent than experiments. We use this as a measure of the
portion of structures for which MLIPs completely failed.
Good-performing models have only ∼ 1% of such struc-
tures, while it is more than 30% in the case of the worst-
performing model.

ANI-2x model uses a fixed cutoff radius of 5.1 Å while
our Nequip models use a cutoff radius of 5 Å that is ef-
fectively much longer due to the message passing. How-
ever, long-range interactions are essential for molecular
crystals and their lattice energy, and it is important
to understand how our MLIPs would work for systems
with pronounced long-range interactions. For this rea-

MA%D MAD ME SD

Nequip@ANI1x 12.99 8.58 -8.58 0.75
Nequip@ANI1x+D4 17.41 12.12 -12.12 1.26
ANI2x 34.34 30.08 -30.08 1.45
ANI2x+D4 35.96 32.29 -32.29 1.48
Nequip@OMDB 39.51 15.45 15.45 5.02
Nequip@OMDB+D4 9.6 4.74 4.71 3.29

TPSS-D345 7.64 4.96 -4.96 3.0
PBE-D345 13.47 9.15 -9.15 3.07

TABLE IV. Comparative analysis of Mean Absolute Rela-
tive Deviation (MA%D), Mean Absolute Deviation (MAD,
kJ/mol), Mean Error (ME, kJ/mol), and Standard Deviation
(SD, kJ/mol) of the ICE1045 benchmark set calculated for
MLIPs and selected dispersion-corrected DFT calculations.

Model E(α-Gly) - E(γ-Gly)

Nequip@ANI1x -1.16
Nequip@ANI1x+D4 -1.20
ANI2x -12.66
ANI2x+D4 -12.65
Nequip@OMDB -0.68
Nequip@OMDB+D4 2.61

PBE + TS57 -3.18
PBE + MBD57 0.13

TABLE V. Comparative analysis of relative energies of the
glycine polymorphs in kJ/mol, obtained by MLIPs and
dispersion-corrected DFT calculations.

son, we have evaluated the MLIPs performance on the
ICE1045 benchmark of ice polymorphs as shown in Table
IV. Even though ANI2x is explicitly trained on bulk wa-
ter, it is the worst-performing MLIP due to its relatively
short-range cutoff. On the other hand, as for previous
benchmarks, our Nequip models perform well and simi-
larly to dispersion-corrected DFT showing that the effec-
tive range of interactions present in the message-passing
MLIP can capture most of the interactions.

As a final case of predicting relative lattice energies
of polymorphs, we consider the sensitive case of α and
γ glycine (Gly)57 that is hard to correctly order with
many DFT approximations. Experimentally, γ glycine is
the most stable polymorph with an enthalpy difference
of 1-2 kJ/mol compared to α glycine58. Again, short-
ranged ANI-2x-based models make poor predictions of α
being significantly more stable than γ polymorph. Our
Nequip-based models are all within the errors that are
obtained by DFT approximations such as PBE + TS.
Nequip@OMDB+D4 predicts γ polymorph to be more
stable.

IV. DISCUSSION AND CONCLUSIONS

We have explored the possibility of creating global
MLIPs for molecular crystals that would provide accu-
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rate, fast, and effortless substitution for expensive DFT-
based approaches or laborious and inaccurate (tailor-
made) force fields. Available datasets for training such
MLIPs are not ideal as current databases of molecu-
lar crystals are small compared to the configurational
space, and large databases exist only for molecular sys-
tems which do not cover all intramolecular interactions
existing in crystals.

We show that modern end-to-end MLIP architectures
such as Nequip, even when trained on nonideal databases
perform better than (tailor-made) force fields both for en-
ergy and structure predictions. Since the evaluation cost
of MLIP is higher than force fields the current improve-
ment might not justify the complete switch to MLIPs.
DFT is superior for energy predictions showing perfor-
mance that is two times better on X23b metrics, but per-
formance on volume predictions is similar. As our models
work reasonably well with far-from-ideal databases, our
work demonstrates that as the training databases im-
prove, including more configurations relevant to molecu-
lar crystals, global MLIPs will become even more accu-
rate.

The good performance of MLIPs is rather surprising as
it is well known that long-range interactions, such as elec-
trostatics and dispersion, are essential for molecular crys-
tals, and the interaction range to reach convergence can
extend to tens of angstroms59, while our MLIPs are rela-
tively short-ranged. Still, it seems that message-passing
MLIPs are able to capture most of the interaction, unlike
MLIPs with fixed cutoff radius.60 Machine learning mod-
els can also uncontrollably fail. We show that in ∼ 1% of
relaxations, predicted volumes are off by more than 20%,
showing that improvements in global MLIPs for molecu-
lar crystals are not only possible but also needed. Never-
theless, our ready-to-use models can be already used for
different tasks such as structural relaxations, free energy
corrections, or crystal structure prediction60, by partially
or fully replacing expensive DFT calculations.
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