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Critical Casimir forces emerge among particles or surfaces immersed in a near-

critical fluid, with the sign of the force determined by surface properties and with

its strength tunable by minute temperature changes. Here, we show how such forces

can be used to trap a colloidal particle and levitate it above a substrate with a

bull’s-eye pattern consisting of a ring with surface properties opposite to the rest

of the substrate. Using the Derjaguin approximation and mean-field calculations,

we find a rich behavior of spherical colloids at such a patterned surface, including

sedimentation towards the ring and levitation above the ring (ring levitation) or above

the bull’s-eye’s center (point levitation). Within the Derjaguin approximation, we

calculate a levitation diagram for point levitation showing the depth of the trapping

potential and the height at which the colloid levitates, both depending on the pattern

properties, the colloid size, and the solution temperature. Our calculations reveal that

the parameter space associated with point levitation shrinks if the system is driven

away from a critical point, while, surprisingly, the trapping force becomes stronger.

We discuss the application of critical Casimir levitation for sorting colloids by size

and for determining the thermodynamic distance to criticality. Our results show
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that critical Casimir forces provide rich opportunities for controlling the behavior of

colloidal particles at patterned surfaces.

I. INTRODUCTION

Critical Casimir forces act among objects immersed in near-critical fluids, such as binary

liquid mixtures near their consolute point [1–4]. Analogous to quantum Casimir forces [5],

which are due to quantum fluctuations [6, 7], these forces emerge due to fluctuations of

an order parameter characterizing a critical point. The strength of critical Casimir forces

depends on the thermodynamic proximity of the fluid to its criticality. Typically, two sur-

faces with similar properties, e.g., preferring the same component of a binary liquid mixture,

attract each other, while surfaces with opposite properties repel each other [1].

Critical Casimir forces were predicted by Fisher and de Gennes [8] in 1978, but directly

observed only in 2008 by Hertlein et al. [9]. Since then, they have attracted strong interest

from the perspective of basic research [10–15] and as a means of finely controlling interparticle

interactions by minute changes of temperature or of other thermodynamic parameters. For

instance, critical Casimir forces have been used to manipulate colloidal phase transitions [16]

as well as structural properties of colloidal suspensions [17] and of deposited nanoparticles

[18, 19]. One aims at controlling the localization, the orientation, and the movement of

microparticles on patterned substrates [20], as well as to counteract attractive Casimir–

Lifshitz forces [21], which can be significant in micro-electro-mechanical systems (MEMS)

[22].

The possibility to tune antagonistic boundary conditions at the surface of colloidal parti-

cles and at a substrate allows one to realize levitation of particles in terms of critical Casimir

forces. Particle levitation has garnered significant attention [23–28], especially given the

constraints imposed by Earnshaw’s theorem on systems capable of providing particle lev-

itation. Earnshaw’s theorem asserts that a system of particles cannot be stabilized using

electrostatic forces alone [29]. This theorem has been extended to encompass systems with

arbitrary power-law interactions [30], both mobile and immobile charges [31], and certain

cases involving quantum-electrodynamic Casimir interactions [31]. Recently, particle lev-

∗ These authors contributed equally to this work.



3

itation has been demonstrated experimentally using a direct-current electric field [25], an

oscillatory electric field [26], and catalytically active colloids [27]. However, such methods

either require the application of an external field, or they cannot conveniently switch on and

off particle levitation. An exciting application of critical Casimir forces is the possibility to

control trapping and levitation of colloids and nanoparticles by minute temperature changes.

Such a possibility has been demonstrated by Tröndle et al. [32–34], who showed theoretically,

by using mean field theory (MFT) [32, 33] and the Derjaguin approximation [34], as well as

experimentally for a water–lutidine critical mixture [34], that a colloid could levitate above

alternating stripes of opposite surface preferences (i.e., stripes preferring water or lutidine).

While the colloids levitated above the surface at a fixed normal distance from it, they could

still move freely along the stripes in the lateral direction.

In the present study, we use MFT and the Derjaguin approximation in order to demon-

strate fully localized (i.e., point-like) levitation of a colloidal particle above a substrate

endowed with a bull’s-eye pattern. It is interesting to note that such patterns are used

in so-called circular Bragg reflector cavities [35, 36], for example to produce polarized and

un-polarized light emission from a single emitter [37]. The bull’s-eye pattern consists of a

ring with the same surface preference as the colloid, whereas the rest of the substrate has

the opposite surface preference (Fig. 1). We focus exclusively on critical Casimir interac-

tions and do not consider other forces acting between the colloid and the substrate, such as

electrostatic or van der Waals interactions. In the vicinity of a critical point, these forces

can be tuned to be weak compared to critical Casimir forces [9]. We thus expect them to

shift the levitation position of the colloid only slightly.

Our article is organized as follows. In Sec. II we discuss the details of our set-up, and in

Sec. III the methods we use in order to study such systems. After presenting general consid-

erations about possible configurations of a colloid above the bull’s-eye pattern (Sec. IV A),

we compute a configuration diagram by using the Derjaguin approximation (Sec. IVB), and

demonstrate point levitation via mean-field calculations (Sec. IVC). In Sec. IVD we use the

Derjaguin approximation in order to calculate a levitation diagram, showing the trapping

potential and the levitation height of the colloid. We conclude in Sec. V.
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FIG. 1. Sketch of a colloid above a substrate with a bull’s-eye pattern. The colloid

and the substrate are immersed in a binary liquid mixture close to its critical demixing point. We

consider substrates and colloids with opposite boundary conditions denoted by orange and blue

colors in this cartoon. The bull’s-eye pattern consists of a circular patch encircled by a ring with

inner radius R1 and outer radius R2. The boundary conditions inside the circular patch and outside

the ring are the same (orange in the cartoon), but they are opposite to the boundary conditions

inside the ring, where the chemical properties of the surface are the same as at the surface of the

colloid (blue in the cartoon). The colloid is located at a surface-to-surface distance D from the

substrate and is shifted with respect to the center of the pattern by the distance ℓ. The greyish

circular patch to the right indicates the projection of the colloid onto the surface of the substrate.

II. MODEL

We consider a colloidal particle above a patterned surface, as shown in Fig. 1. The particle

and the surface are immersed in a binary liquid mixture. In Fig. 1, the preferences of the walls

for different components of the liquid mixture are marked with blue and orange, respectively;

for reasons of simplicity, we focus on the strong adsorption limit for the surfaces of both

the substrate and the particle. We assume that the binary liquid mixture is close to its

(lower) critical demixing point [9]: The composition is the critical one, and the temperature

T is close to its critical value Tc. The radius of the colloidal particle is denoted by R and

its surface-to-surface distance to the patterned surface is D. Accordingly, the center of the

colloidal particle is located at the distance D +R above the surface.
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We consider a pattern consisting of two concentric circles with radii R1 and R2 (bull’s-

eye), which separate regions with the same and the opposite surface preferences as that of

the colloid, aimed to provide a stable equilibrium trapping of the colloid in one or more

directions. The distance between the center of the orthogonal projection of the colloid onto

the surface and the center of the pattern is denoted by ℓ. Since the pattern exhibits rotational

symmetry, there is no need to consider separately two coordinates of the projection of the

center of the spherical particle.

Throughout the paper, we focus on the experimentally relevant case of temperatures

below the lower critical demixing temperature Tc, where the binary liquid mixture remains

homogeneous. These temperatures can be experimentally realized and maintained in a

stationary state. Moreover, increasing the temperature towards criticality is generally easier

to achieve compared to decreasing the temperature, as in the case of the upper critical point.

We use the temperature scaling variable Γ = R/ξ (T ) ∼= R tν/ξ+0 , where t = (Tc − T ) /Tc

is the reduced temperature for the lower critical demixing point (note that T < Tc corre-

sponds to t > 0 because the binary liquid mixture is homogeneous below Tc), and ξ (T )

is the bulk correlation length, which diverges upon approaching the critical point with the

non-universal amplitude ξ+0 and the universal critical bulk exponent ν.

In the scaling limit, i.e., t → 0 with Γ = R/ξ, ∆ = D/R, Λ = ℓ/R, ρ1 = R1/R, and

ρ2 = R2/R fixed, the potential Uc of the critical Casimir interaction between the colloid and

the substrate is

Uc (D, ℓ;R1, R2, R, T ) = kBTc U (∆,Λ; ρ1, ρ2,Γ) , (1)

where U is a universal scaling function, and kB denotes the Boltzmann constant. The po-

sition of the colloid is characterized by the coordinates (D, ℓ) or (∆,Λ) with three fixed,

dimensionless parameters (ρ1, ρ2,Γ). In an equilibrium configuration, the coordinates be-

come functions of these parameters. We note that in the limit ∆ = D/R → 0 the scaling

function U diverges as ∆−1 [38].

From the potential, we calculate the force acting on the colloidal particle. Due to the

symmetry of the system, the force has two independent components: Fc
⊥ = −∂Uc/∂D acting

in the direction perpendicular to the substrate, and Fc
∥ = −∂Uc/∂ℓ acting in the direction

parallel to the substrate, along the line perpendicular to the axis of symmetry of the pattern

on the substrate, running through the centers of the orange and greyish patches in Fig. 1.

In the scaling limit, the components of the force are given by the universal scaling functions
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Fc
⊥ (D, ℓ;R1, R2, R, T ) =

kBTc

R
F⊥ (∆,Λ; ρ1, ρ2,Γ) , (2a)

Fc
∥ (D, ℓ;R1, R2, R, T ) =

kBTc

R
F∥ (∆,Λ; ρ1, ρ2,Γ) . (2b)

We note that the scaling functions are related according to F⊥ = −∂U/∂∆ and F∥ =

−∂U/∂Λ. All three scaling functions (U , Fc
⊥, Fc

∥) are expected to be universal, i.e., they are

identical for all systems belonging to the same universality class.

III. METHODS

There are no exact methods available to calculate the scaling functions U , F⊥, and F∥

systematically for the experimentally relevant universality class. Therefore, in order to study

the levitation of the colloid, we resort to two approximate approaches, viz., the Derjaguin

approximation and MFT. The advantages of the Derjaguin approximation are that it is

computationally fast and the results are free of finite-size corrections to scaling. The main

disadvantage is that the accuracy of this approximation is hardly controllable. In general,

one expects this method to give reliable results if a colloid is close to a substrate and far

from any abrupt changes in the lateral boundary conditions [15]. Another inaccuracy stems

from the scaling functions for the slab geometry φs. Their error has been estimated to be

about 20% [39]. However, they agree quite well with experimental results [9, 13, 20, 40].

While MFT calculations lift the simplifications of the Derjaguin approximation (such as

ignoring the free energy associated with the gradient of the order parameter in the directions

parallel to the wall), they are computationally challenging, particularly in the close vicinity

of the critical point, requiring large computational boxes and preventing us from performing

calculations within a wide temperature window. In addition, MFT neglects fluctuations.

We note that, in this respect, MFT yields the lowest order of a systematic expansion in

terms of ϵ = 4 − d of universal quantities such as critical exponents and scaling functions.

Therefore, our mean-field analysis is an essential first step within a general scheme.
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A. Derjaguin approximation

The Derjaguin approximation [41] estimates the interaction potential U of a spherical

colloid above a flat surface by an integral:

U =

∫
S

dx dy u (l (x, y)) , (3)

where the integration is carried out over the circular disc S of radius R, which is the or-

thogonal projection of the colloid onto the surface, dx dy is the area element, and l (x, y) is

the spatially varying local separation between the substrate surface and the surface of the

sphere (measured in the direction perpendicular to the planar surface). The function u (l) is

the energy of interaction per area calculated for the corresponding slit system with parallel

homogeneous walls separated by a distance l. (The slit walls have the same properties as

the local properties of the substrate surface and as the colloid surface at the point (x, y).)

In the case of critical Casimir interactions and in the scaling limit, within the slit system

the free energy of interaction per area of the slit wall depends only on the separation l of

the walls and on the reduced temperature t:

u (l, t) =
kBTc

l2
φs (ω) , (4)

where ω = l/ξ ∼= l |t|ν /ξ+0 is a scaling variable, φs is a scaling function, and ξ+0 is a non-

universal amplitude. For the Ising universality class, the bulk critical exponent ν is ν ≈ 0.63

[42] in d = 3 (and ν = 1/2 within MFT, i.e., d = 4). The index ‘s’ in Eq. (4) denotes

the so-called film universality class and, in our case, it is either ‘sm’ for “same” boundary

conditions (i.e., both walls prefer the same component of the binary liquid mixture) or ‘op’

for “opposite” boundary conditions (i.e., the two walls prefer different components of the

binary liquid mixture).

Using Eqs. (3) and (4) in Eq. (1), we derive the expression for the scaling function for

the free energy of interaction of the colloid with the patterned surface:

U (∆,Λ; ρ1, ρ2,Γ) =

∫
S

dX dY

(
∆+ 1−

√
1− (X − Λ)2 − Y 2

)−2

φs (Ω) , (5)

with Ω = Γ

(
∆+ 1−

√
1− (X − Λ)2 − Y 2

)
, S =

{
(X, Y ) ∈ R2

∣∣∣ (X − Λ)2 + Y 2 ⩽ 1
}

,

and the film universality class ‘s’ is ‘sm’ for ρ21 < X2 + Y 2 < ρ22 and ‘op’ otherwise. In

this way, ρ1 and ρ2 enter into the scaling function U .
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We calculated the scaling function U within the Derjaguin approximation by carrying out

the integration in Eq. (5) numerically. To this end, we wrote a computer program in C++

using the GSL library [43] for numerical integration. Since the exact and explicit formulae

for the scaling functions for the slab geometry, φsm (ω) and φop (ω), are unknown, instead

we have used their approximation based on Monte Carlo simulations for the slab system

[10, 15, 44]. The scaling functions for the force, F⊥ and F∥, can be obtained by numerically

differentiating the interaction potentials. Alternatively, the function F⊥ can be obtained by

using the Derjaguin approximation for the forces [15].

B. Mean field theory

We describe a critical fluid in spatial dimension d by the standard dimensionless Landau–

Ginsburg–Wilson (LGW) Hamiltonian:

H[φ] =

∫
V

ddr

{
1

2
(∇φ)2 +

τ

2
φ2 +

g

4!
φ4

}
, (6)

where ddr =
∏d

i=1 dxi is the d-dimensional volume element, V is the volume accessible to

the fluid, and the coupling constant g > 0 stabilizes H below the (upper) critical point Tc.

The order parameter φ(r) is the difference between the local concentration of one of the

components of the mixture and its concentration at the critical demixing point. Within

MFT one has τ = t/(ξ+0 )
2 where, as before, t is the reduced temperature and ξ+0 the non-

universal amplitude of the bulk correlation length ξ (T ) = ξ+0 |t|−ν in the disordered phase.

We also assume that the system is translationally invariant in d−3 dimensions, which implies

that the order parameter varies only in three spatial dimensions. The profile of the order

parameter φ (r) is calculated by numerically minimizing the LGW Hamiltonian in Eq. (6).

We consider the substrate and the colloid surface to belong to the so-called extraordinary

(or normal) surface universality class, which corresponds to the limit of infinitely strong

surface fields. (We recall that we also consider the strong adsorption limit in the calculations

based on the Derjaguin approximation.) This implies that the equilibrium concentration

profile diverges upon approaching the surfaces (see, e.g., Refs. [12, 45, 46]). In order to

deal with this numerical challenge, we used a short-distance expansion (see Refs. [11, 47])

for calculating the value of the order parameter at a small distance δ from the surface (we

took δ/R = 0.05 in all calculations), and we kept these values fixed during the course of
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FIG. 2. Four (meta)stable configurations of a colloid near a substrate with a bull’s-eye

pattern. This schematic drawing (compare Fig. 1) shows that a colloid can (a) stay macroscopically

far away from the substrate, (b) stick to the ring of the bull’s-eye pattern, (c) levitate above the

ring, and (d) levitate above the substrate at the center of the bull’s-eye pattern. We note that the

opposite boundary conditions prevent the colloid from sticking to the center of the bull’s-eye pattern.

In configuration (a), the colloid is not confined in the lateral directions, while in configurations (b)

and (c), it is free to diffuse along the ring.

minimization. This approach has proven to be successful in several previous studies [11,

14, 32, 33, 48–52]. We used the three-dimensional finite element library F3DM [53] for

minimizing numerically the LGW Hamiltonian (Eq. (6)). In order to calculate the force

acting between the colloid and the substrate, we enclosed the colloid by an ellipsoidal surface

and computed the force by integrating the stress tensor over this surface [11].

IV. RESULTS AND DISCUSSION

A. General considerations

Typically, if two surfaces confining a critical fluid have similar boundary conditions, they

attract each other, whereas two surfaces with opposing boundary conditions repel each other.

Therefore, varying the bull’s-eye radii R1 and R2, as defined in Fig. 1, may allow one to

control the sign and the strength of colloid–wall interactions. This results in distinct stable

or metastable positions of a colloid above the surface. Before discussing how these positions

depend on Ri (i = 1, 2) and temperature, we present general considerations concerning
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the behavior one can expect as a function of the bull’s-eye parameters. There are four

possible types of configurations (we note that some of them may coexist under specific

thermodynamic conditions, as will be discussed below). These configurations are illustrated

in Fig. 2 and described as follows:

(a) For sufficiently narrow rings, we expect the wall to repeal the colloid for all lateral

shifts at distances larger than the distance at which, for the colloid above the ring, the

attraction from the ring counter-balances the repulsion from the rest of the surface.

This implies that D → ∞ corresponds to a local minimum of the colloid–wall potential.

In the absence of other interactions, this local minimum does not correspond to the

global one. The corresponding configuration is shown schematically in Fig. 2(a). In

this configuration, the colloid is not confined in the lateral directions.

(b) The colloid may stick to the ring part of the surface pattern (Fig. 2(b)). In the

limit of strong adsorption, as considered here, this configuration represents the global

minimum with an unlimited depth of the interaction potential (cut off by a hard-core

repulsion), independently of other parameters. We note that electrostatic interactions,

which are almost always present in such systems, may experimentally prevent sticking

to the ring or lead to ring levitation (see Fig. 2(c)).

(c) If the attraction to the ring balances the repulsion from the rest of the wall, the colloid

may levitate above the ring (Fig. 2(c)). We note that the colloid can move freely along

the ring. For large radii (Ri ≫ R), this configuration is similar to levitation above a

stripe, studied by Tröndle et al. [32–34].

(d) Similarly, if the combined repulsion from the bull’s-eye center and the rest of the

surface (i.e., from the orange region on the surface) balances the attraction to the

ring, the colloid can levitate above the center of the pattern (Fig. 2(d)). We are

primarily interested in this ‘point-like’ levitation of the colloid.

While configuration (b) (Fig. 2(b)) is always present and corresponds to the global min-

imum, the configurations (a), (c), and (d) (Figs. 2 (a),(c), and (d)) may or may not exist,

depending on the bull’s-eye radii and temperature. We note that the characterization of

configuration (a) requires the potential to be repulsive at large separations from the sub-

strate. However, in practice, far away from the substrate the critical Casimir interaction is
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FIG. 3. Configuration diagram within the Derjaguin approximation. (a) Configuration

space for a spherical colloid above a surface with a bull’s-eye pattern, calculated within the Derjaguin

approximation. The letters ‘a’, ‘b’, ‘c’, and ‘d’ in the plot correspond to the types of (meta)stable

configurations presented in Fig. 2. The green colors of different shades denote the regions of

particle levitation (configurations ‘c’ and ‘d’). The symbols × and + indicate the values of the

radii R1/R and R2/R used for the panels (b) and (c), respectively. The inset details the region

indicated by the rectangular box. The red color denotes the region with two coexisting minima

(see panel (d)), and the horizontal black line indicates the value of R1/R used in panel (d). (b,c)

Heatmaps of the interaction potential between the colloid and the surface in the plane spanned

by the reduced surface-to-surface distance D/R and the reduced shift ℓ/R relative to center of

the bull’s-eye pattern. The filled squares show the locations of the minima corresponding to point

levitation (ℓ = 0, D > 0) and ring levitation (ℓ > 0, D > 0), respectively. The greenish contour lines

show the values of ℓ/R and D/R at which the potential is kBTc higher than at the corresponding

minima. The blue rectangular bars beneath the horizontal axes mark the location of the ring with

the same boundary condition as the colloid (see Figs. 1 and 2). (d) Interaction potential between

the colloid and the surface as a function of the distance from the surface for R1/R = 0.055 and for

three values of R2/R. The temperature scaling variable is Γ = R/ξ = 10 in all panels.

negligible compared to kBT so that the particle can stay out there regardless of the sign of

the potential.
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B. Configuration diagram within the Derjaguin approximation

We used the Derjaguin approximation in order to investigate under which conditions

these four configurations are (meta)stable. For simplicity, and because we are primarily

interested in center levitation, which allows one to localize colloids both in the vertical and

lateral directions (i.e., at ℓ = 0, so far not investigated in the literature), we studied the

occurrence of local minima far away from the substrate (configuration (a) in Fig. 2) only for

ℓ = 0.

Figure 3(a) shows our results in terms of a configuration diagram in the plane spanned

by the two bull’s-eye radii R1 and R2 > R1, and for the temperature scaling variable Γ =

R/ξ = 10. The various regions in this diagram are denoted by configurations (a, b, c, and d,

see Fig. 2) which are (meta)stable in the corresponding regions. We first consider the blue

region below the line R1 = R2 in Fig. 3(a). In this case, for R1 ≲ R2, the ring is so thin

that it cannot attract a particle from large distances in spite of equal boundary conditions.

Therefore, only two configurations are possible: The particle is far away from the surface or

the particle is stuck to the ring (configurations (a) and (b) in Fig. 2).

If we take R1 ≳ 0.325R and increase R2 (i.e., the outer radius), we enter the dark

green region in Fig. 3(a) (denoted as “a,b,c”), which is characterized by a minimum in the

interaction potential at D = Dmin < ∞ and nonzero ℓmin. This amounts to ring levitation

(configuration (c) in Fig. 2). At the left boundary of this region, this minimum is shallow and

located far away from the substrate. With increasing R2, Dmin decreases and the minimum

gets deeper. Upon increasing R2 further, the barrier between ring levitation and sticking to

the substrate decreases and eventually vanishes; hence, there is no levitation configuration

in the blue region on the right-hand side of the dark green area in Fig. 3(a), similarly as in

the blue region on the left-hand side of this area (i.e., for R2 ≳ R1).

We now choose the values of R1 and R2 such that they correspond to ring levitation, and

we increase both R1 and R2 simultaneously, i.e., we move along the dark green stripe denoted

as “a,b,c” in Fig. 3(a). In doing so, we asymptotically approach the case of levitation above a

straight stripe studied by Tröndle et al. [32–34]. If, instead, we decrease R1 and R2 (around

R1 ≈ 0.325R), the circle in the middle of the pattern becomes too small to induce repulsion

at large distances and, for sufficiently large R2, the minimum far away (configuration (a) in

Fig. 2) vanishes. We thus enter the medium-dark green region denoted as “b,c” in Fig. 3(a).
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Upon reducing R1 and R2 further, the shift ℓmin of the potential minimum decreases, and

the ring levitation transforms into a point levitation (see configuration (d) in Fig. 2 and the

light green region denoted as “b,d” in Fig. 3(a)) in a manner which resembles a continuous

morphological transition. Examples of the potential energy surface for point (ℓmin = 0,

Dmin > 0) and ring (ℓmin > 0, Dmin > 0) levitations are shown in Figs. 3(b) and (c).

There are three scenarios for which point levitation can disappear upon varying the

bull’s-eye radii:

(i) Keeping R1 ≳ 0.06R fixed and increasing R2 leads to spontaneous symmetry breaking

which changes point levitation to ring levitation, as described above.

(ii) By keeping R1 ≳ 0.06R fixed and decreasing R2, the minimum at ℓ = 0 becomes less

deep, moves away from the substrate, and eventually disappears at far distances D.

(iii) With reducing R1 for R2 ≳ 0.43R, the free energy barrier between point levitation and

sticking to the substrate decreases, and the minimum eventually turns into a saddle

point.

If R1 is reduced for R2 ≲ 0.43R, we enter the region in which the potential for ℓ = 0

has two local minima at different colloid–wall separations, which correspond to two distinct

point levitation configurations (see the narrow red region in the inset of Fig. 3(a)).

In the middle of this region is a line along which these two configurations co-exist. (We

could not precisely locate it because this region is very narrow.) This line corresponds to

a first-order morphological transition between the two configurations and ends at a critical

point, at which the difference between them vanishes (i.e., the two distances from the wall,

at which we observe the two minima, merge); we estimate that this morphological critical

point occurs at R∗
1 ≈ 0.06R and R∗

2 ≈ 0.43R. Thus, the red region in Fig. 3(a) is a spinodal

region like any spinodal close to a critical point, as in the case of liquid–gas phase transitions

or phase segregations in binary-liquid mixtures [54]. Consistently, the shape of the potential

around the morphological critical point indeed resembles the one of the Landau free energy

[55, 56].

The two minima, present in the red (spinodal) region in Fig. 3(a), persist outside of this

region. One minimum extends to smaller values of R2 for a very narrow range of R1. It is

beyond the resolution of Fig. 3(a), but part of it is visible in its inset—see the narrow green
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FIG. 4. Mean-field results for colloid levitation. (a) Scaling function F⊥ of the force acting

on the colloid in the direction perpendicular to the substrate versus surface-to-surface distance

D/R for zero shift (ℓ = 0). (b) Scaling function F∥ of the force acting on the colloid in the plane

D = Dmin parallel to the substrate versus the shift ℓ/R; the case D = Dmin corresponds to zero

force at zero shift. The forces are expressed in terms of the critical amplitude A+,+ of the plate–

plate force scaling function for equal boundary conditions. The radii R1 and R2 of the inner and

outer rings, respectively, are indicated in the plot (panel (a)). Positive values of F⊥ mean that

the colloid is repelled from the wall, and F∥ > 0 denotes repulsion from the center of the pattern.

The red lines and triangles belong to a saddle point, while the black lines and squares provide an

example of a local minimum, corresponding to a colloid levitating above the bull’s-eye center. The

temperature scaling variable is Γ = R/ξ = 10 for both plots.

stripe in the blue (“a,b”) region on the left side of the inset. This stripe becomes narrower

with decreasing R1 and R2 and likely approaches the point R1 = R2 = 0 (the extreme

narrowness of this region prevented us from investigating its behavior in more detail). The

second minimum extends to smaller values of R1 (the light green region below the red

stripe, see the inset in Fig. 3(a)). Both minima exhibit very small potential barriers which

separate them from other configurations (viz., the configuration of the particle sticking to

the substrate and of the particle being far away from the substrate). Therefore, we refrain

from discussing this case further.
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C. Point levitation obtained from mean-field calculations

Since numerical mean-field calculations are computationally expensive and the stripe

levitation—a limiting case of the ring levitation—has already been studied within MFT by

Tröndle et al. [32, 33], here we only explore the possibility of point-like levitation above the

bull’s-eye center. In Fig. 4, we present mean-field results for two examples of distinct inner

and outer radii. Instead of plotting the interaction potentials, as in Figs. 3(b)–(c), we show

the scaling functions F⊥ and F∥ for the forces acting on the colloid perpendicularly to the

surface (Fig. 4(a)) and in the lateral direction away from the bull’s-eye center (Fig. 4(b)),

respectively.

We first computed the scaling function F⊥ of the perpendicular force for zero shift (ℓ = 0).

In both cases presented in Fig. 4(a), one has F⊥ > 0 at small distances D, i.e., the force

is repulsive due to the repulsion exerted by the bull’s-eye center. However, since the rings

are sufficiently wide, they induce an attraction towards the substrate at large distances.

Thus, F⊥ vanishes at a certain intermediate distance D = Dmin, which corresponds to the

minimum of the potential, indicating the possibility of point-like levitation.

For a colloid to levitate above the bull’s-eye center, its configuration must be stable also

with respect to lateral shifts ℓ. Figure 4(b) shows the ℓ-dependence of the scaling function

F∥ of the lateral force for the two patterns presented in Fig. 4(a) at the surface-to-surface

distances Dmin, which correspond to F⊥ = 0 at ℓ = 0. For the wider circles (red symbols

in Fig. 4(b)), the lateral force is positive for small non-zero shifts. This implies that the

colloid is repelled from the bull’s-eye center, i.e., this case corresponds to a saddle point in

the interaction potential at D = Dmin and ℓ = 0. For the narrower circles (black symbols in

Fig. 4), one has F∥ < 0 for small non-zero ℓ, which means that the position of the colloid is

stabilized at zero shift. In this case, the colloid levitates above the center of the bull’s-eye

pattern (Fig. 2(d)). Accordingly, the condition for point levitation is F⊥ = 0 for ℓ = 0 and

F∥ > 0 for small non-zero ℓ. We used this condition in order to determine the levitation

diagram within MFT (see the next section).
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FIG. 5. Levitation diagram. Heatmap plots of the free energy barriers for point levitation (top

row, ℓ = 0) and surface-to-surface distance between the substrate and the levitating colloid (bottom

row) for four values of the temperature scaling variable R/ξ ≈ R |t|ν /ξ+0 , where t = (Tc − T ) /Tc > 0

is the reduced temperature, as indicated in the plot. The data have been calculated within the

Derjaguin approximation. The solid lines in the panels (b) and (c) enclose the regions of point

levitation as obtained within MFT. The shape of the plots of the free energy barriers and of the

colloid positions correspond to the shape of the b,d region in Fig. 3(a) where the potential has at

least one minimum. In all panels, we keep the same scale for the outer radius R1 and for the inner

radius R2 in order to emphasize the shrinking region of point levitation as the temperature scaling

variable R/ξ increases, i.e., as the system is taken away from criticality.

D. Levitation diagram

For levitation to be possible, the corresponding configuration must be stable against

the thermal fluctuations present in the system. In order to address this issue, at least

partially, we used the Derjaguin approximation to calculate the potential barriers separating

the minimum corresponding to the point levitation from the minima of other configurations

(Figs. 2 and 3):

• In order to calculate the free energy barrier between the point levitation and a colloid
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far away (i.e., between the configurations (d) and (a) in Fig. 2), it turned out to be

sufficient to consider the potential for ℓ = 0. Therefore, we determined the maximal

value of the potential as a function of D for D ⩾ Dmin, and computed the free energy

barrier as the difference between this maximal value of the potential and the value of

the potential corresponding to the point levitation (i.e., at D = Dmin).

• In order to estimate the free energy barrier between point levitation and sticking to

the substrate (i.e., between the configurations (d) and (b) in Fig. 2), we constructed

a family of parabolic curves in the (D, ℓ) plane, connecting the point levitation con-

figuration (D = Dmin, ℓ = 0) with the point which represents sticking to the ring (i.e.,

D = 0, ℓ = (R1 +R2) /2), parameterized by a certain parameter α. For each value of

α, we obtained the maximal value of the potential along the curve and then minimized

these maximal values with respect to α. This procedure allowed us to locate a saddle

point separating the two minima corresponding to point levitation and sticking to the

ring. The free energy barrier equals the difference between the value of the potential

at the saddle point and the point levitation minimum.

• In all cases considered, we have not found system parameters which simultaneously

provide point and ring levitation (configurations (d) and (c) in Fig. 2). Therefore,

there was no need to calculate a barrier between these two configurations.

The free energy barriers plotted in Fig. 5 as heatmaps correspond to the smallest free

energy barriers as determined above. In the case of having two minima, which both corre-

spond to point levitation (red region in Fig. 3), we present the data for the minimum with the

highest barriers. On the bottom panels, we also show the corresponding surface-to-surface

distances between the substrate and the levitating colloid. These ‘levitation diagrams’, as

we call them, are drawn in the plane of the bull’s-eye radii R1/R and R2/R. The shapes of

the heatmaps, characterized by zero free energy barriers, correspond to the region of point

levitation shown in Fig. 3(a). This region decreases as one moves away from critical point,

i.e., upon increasing Γ = R/ξ. However, simultaneously, the maximum observed height of

the potential barrier increases (reddish areas in Fig. 5), i.e., with increasing R/ξ the particle

becomes confined more strongly. This increase in the free energy barrier is accompanied by

the decrease of the levitation distance Dmin/R, which occurs because the correlation length

decreases with increasing Γ = R/ξ. For small R/ξ (i.e., closer to Tc), the repulsion from the
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bull’s-eye center is much stronger than the attraction to the ring, which pushes the colloid

away from the center, rendering the point levitation unstable at small distances. Increasing

R/ξ allows one to counterbalance the repulsion while simultaneously the difference between

the strengths of the repulsion and of the attraction increases. Accordingly, the confining

potential is strengthened, which facilitates point levitation at small distances.

By applying mean-field calculations we validated the levitation diagrams (top panels in

Fig. 5) obtained by using the Derjaguin approximation. The mean-field results are shown

as solid lines in Figs. 5(b) and (c) for two temperatures (Γ = 10 and Γ = 15). For smaller

ratios R/ξ, the numerical MFT calculations become challenging due to the large correlation

length and hence due to the associated large size of the computational boxes. At large R/ξ,

the point levitation region is small, making it challenging to locate it. The boundary of

the region of point levitation is determined by (i) the vanishing of the force in the direction

perpendicular to the substrate and (ii) by a negative (i.e., attractive) lateral force pointing

into the direction of the bull’s-eye center (see Sec. IV C). The regions determined this way

are smaller than computed within the Derjaguin approximation. However, the MFT results

confirm the occurrence of point levitation and show that the region of point levitation

decreases as R/ξ increases, in line with the behavior of the Derjaguin approximation.

E. Two possible applications of critical Casimir levitation

We now discuss two potential applications of point levitation: (i) sorting colloids by size

and (ii) measuring temperature near criticality.

1. Sorting colloids by size

Figure 5 illustrates that the region of point levitation depends sensitively on the value of

the temperature scaling variable Γ = R/ξ. Since Γ can be changed by altering the particle

size or the correlation length (via temperature T ), this figure suggests that, at a given T ,

only particles of certain sizes can be trapped above the bull’s-eye pattern. This selective

trapping can be utilized for sorting particles by their size.

In order to demonstrate it, we computed a levitation diagram within the Derjaguin ap-

proximation similar to that in Fig. 5. Now, however, we set the outer radius R2 of the
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FIG. 6. Applications of critical Casimir levitation. (a) Sorting particles by size: The

heatmap shows the free energy barriers for point levitation with the temperature scaling variable

R2/ξ ≈ R2 |t|ν /ξ+0 = 10, where t = (Tc − T ) /Tc > 0 is the reduced temperature. The heatmap is

plotted in the plane of the ratio R1/R2 of the inner and outer radii of the bull’s-eye pattern and of

the colloid radius R expressed in terms of the outer radius R2. For a given ratio R1/R2, only colloids

of limited sizes can levitate above the bull’s-eye pattern. (b) Critical Casimir thermometer: The

heatmap shows the free energy barriers for point levitation in the plane spanned by the temperature

scaling variable R/ξ and the pattern size R2/R for a fixed ratio R1/R2 of the bull’s-eye radii. The

thermodynamic distance to criticality can be measured by mapping the correlation length ξ onto

the range of bull’s-eye sizes R2 providing point levitation for a test particle of radius R. The data

in both panels have been calculated within the Derjaguin approximation.

bull’s-eye pattern as a length scale and chose R2/ξ as the temperature scaling variable. We

then plot a diagram in the plane spanned by R1/R2 and R/R2 for a fixed value of R2/ξ.

In other words, we fix the temperature and the pattern size through R2/ξ and seek pattern

configurations (i.e., R1/R2), which provide trapping for a particle of size R/R2.

The results of our calculations are plotted in Fig. 6(a). This figure demonstrates that,

for a given ratio R1/R2, only particles of specific sizes can levitate above the center of the

bull’s-eye pattern. By judiciously choosing the values of ξ, R2, and R1, the range of particle

sizes can be adjusted to desired values, thus providing a means to sort particles by size. As

an example, referring to Fig. 6(a), we choose R2 = 1 µm and ξ = 100 nm (so that R2/ξ = 10)

and take R1/R2 = 0.05. This choice leads to the trapping of colloids of sizes from ca. 5 µm

to 6 µm.
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2. Critical Casimir thermometer

The temperature sensitivity of particle trapping can also be utilized to measure tempera-

tures close to criticality. To demonstrate this possibility, we computed the levitation diagram

in the plane (R/R2, R/ξ) for a fixed ratio of the bull’s-eye radii R2/R1. The results, plotted

in Fig. 6(b), show that only patterns of specific sizes provide point levitation for colloids of

size R at a given temperature (i.e., for a fixed R/ξ). One can now create a surface pattern

containing many widely separated bull’s-eyes structures of various sizes (i.e., of different R2)

but with the same ratio R1/R2. This arrangement can be used to measure the temperature

by mapping the correlation lengths ξ to the range of bull’s-eye patterns (i.e., to R2) which

allow point levitation for particles of radius R. Such a “critical Casimir thermometer” would

be useful if direct measurements of the thermodynamic distance to criticality (i.e., the cor-

relation length) are challenging. Notably, the pattern sizes (R2) providing point levitation

exhibit a steep increase as R/ξ decreases (Fig. 6(b)). This indicates the potential use of

the critical Casimir thermometer near criticality (i.e., for R/ξ → 0), at which conventional

temperature measurements often lack accuracy.

As an example, we consider a test particle of radius R = 1 µm. At a temperature

corresponding to a correlation length of ξ = 10 nm (R/ξ = 100), the test particles will

be trapped above bull’s-eye patterns with sizes ranging from ca. 125 nm to 200 nm. For

ξ = 100 nm, i.e., closer to the critical point (R/ξ = 10), the same test particles will be

trapped above patterns with sizes ranging from ca. 380 nm to 600 nm.

V. CONCLUSIONS

We have considered a bull’s-eye chemical pattern on a planar substrate, which is composed

of circular regions with antagonistic surface properties (e.g., opposite preferences for the two

components of a binary liquid mixture; see Fig. 1). We studied how to use critical Casimir

forces to make colloidal particles levitate above this pattern. To this end, we employed the

Derjaguin approximation and validated some results via full-fledged, numerical mean-field

calculations.

We identified four configurations of a colloid above such a patterned surface, viz., (a) if

the colloid is far away from the surface, (b) if it sticks to the bull’s-eye ring, (c) if it levitates
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above the ring, and (d) if it levitates above the bull’s-eye center, which we call point levitation

(Fig. 2). Within the Derjaguin approximation, we calculated a morphological phase diagram

in the plane spanned by the two bull’s-eye radii. It reveals a rich behavior with two or three

coexisting configurations (Fig. 3). Within our model, sticking to the ring corresponds to

the global free energy minimum, independently of the model parameters, while the other

configurations are at most metastable. We note, however, that electrostatic interactions,

which virtually always are present in the corresponding experimental systems (see, e.g.,

Refs. [20, 57]), may impede sticking to the ring. (The same boundary conditions would also

mean the same surface charges, which in turn would lead to repulsion.)

For ring levitation, colloidal particles stay some distance above the surface but preserve

their ability for lateral diffusion along the ring—akin to levitation above surfaces with peri-

odic stripe patterns, previously explored theoretically [32–34] and experimentally [34]. We

therefore focused on point levitation, which provides the confinement of colloids in perpen-

dicular and lateral directions relative to the surface. We found a sensitive dependence of

the confining potential on temperature. The domain of stability of point levitation shrinks

as temperature increases (i.e., as the system is taken away from the bulk critical point).

Surprisingly, however, the confining potential for levitation becomes deeper upon taking the

system away from criticality, while the distance between the substrate and the levitating

colloid decreases (Fig. 5). This sensitive dependence of the confining potential on temper-

ature might be utilized to sort colloids of different sizes or to construct a “critical Casimir

thermometer” for measuring the thermodynamic distance to criticality (i.e., the correlation

length).

Our theoretical predictions are within the range of current experimental possibilities [20].

The substrates can be realized with relatively standard microfabrication techniques such as

e-beam lithography, while the particle motion can be measured by microscopy techniques,

such as dark-field or holographic microscopy. Both point and ring levitation, as described in

the present study, can potentially be achieved by using techniques similar to those employed

in Ref. [20]. In fact, the manipulation of colloidal particles above patterned surfaces shares

conceptual similarity with the control of microdisk alignment and positioning discussed in

Ref. [20]. By adapting the nanopatterning strategies and the temperature-dependent control

developed in that study, one could enhance the capabilities of the bull’s-eye patterns to

control the vertical and lateral positioning of colloidal particles in an experimental setting.
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