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Despite the primary role of cell proliferation in tissue development
and homeostatic maintenance, the interplay between cell density, cell
mechanoresponse, and cell growth and division is not yet understood.
In this article we address this issue by reporting on an experimen-
tal investigation of cell proliferation on all time- and length-scales
of the development of a model tissue, grown on collagen-coated
glass or deformable substrates. Through extensive data analysis, we
demonstrate the relation between mechanoresponse and probability
for cell division, as a function of the local cell density. Motivated by
these results, we construct a minimal model of cell proliferation that
can recover the data. By parametrizing the growth and the dividing
phases of the cell cycle, and introducing such a proliferation model in
dissipative particle dynamics simulations, we recover the mechanore-
sponsive, time-dependent density profiles in 2D tissues growing to
macroscopic scales. The importance of separating the cell population
into growing and dividing cells, each characterized by a particular
time scale, is further emphasized by calculations of density profiles
based on adapted Fisher-Kolmogorov equations. Together, these
results show that the mechanoresponse on the level of a constitutive
cell and its proliferation results in a matrix-sensitive active pressure.
The latter evokes massive cooperative displacement of cells in the in-
vading tissue and is a key factor for developing large-scale structures
in the steady state.
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Cell proliferation is the process by which the number of1

cells in a tissue increases, and is thus implicated in tissue2

growth, regeneration and homeostasis. The proliferation pro-3

cess comprises the cell growth in size and the cell division4

into daughter cells, when the cell DNA is duplicated (1). The5

division itself is tightly controlled by biochemical signaling6

pathways (2, 3), and has not been found sensitive to details of7

the cellular environment (4, 5). The regulation of the growth8

phase has, however, proven to be more delicate and sensitive9

to mechanical stresses arising from cell-cell and cell-matrix10

interactions (6–8), quantified through measurements of cell11

size (9), traction forces, (10–12) and through response to ex-12

ternal stresses (9, 13, 14). The emergent conclusion is that13

increased proliferation depends on a shorter growing phase,14

while smaller cells experience stronger pressure, delaying their15

entrance into the division part of the cell cycle (7, 15).16

It remains, however, unclear whether in confluent tissues17

the stiffness of the matrix has a direct impact on the cell’s18

growth phase, or whether the effects of the matrix are in-19

tegrated into local stresses from neighboring cells, therefore20

indirectly affecting proliferation. A logical progression from21

this question is an inquiry on the contingency of cell pro-22

liferation on the developmental stage of the tissue and the 23

position of cells within the emergent tissue compartments, in- 24

cluding the homeostatic state. The latter were already found 25

responsive to the mechanical conditioning during the tissue 26

development (16, 17). However, the structuring of the tissue 27

has not yet been related to mechanosensitive properties of 28

single cells and cells in confluent environments, including cell 29

proliferation. Here we address these issues in a joint exper- 30

imental and theoretical study by investigating the relation 31

between cell proliferation and development of a simple model 32

epithelium, grown on gels and on glass. 33

Influence of the local environment on proliferation in MDCK-II 34

tissues. In order to characterize the probability for prolif- 35

eration in different mechanical environments, we grow un- 36

constrained epithelium from Madin-Darby Canine Kidney II 37

(MDCK-II) cells on collagen I coated glass or 11 kPa PA gel 38

(see SI section S1, and ref.(16) for details). Confluent circular 39

monolayers typically form 6 hours after seeding, when a char- 40

acteristic density profile forms at the moving edge of the tissue 41

that starts to radially invade the cell-free part of the substrate. 42

In the growing central compartment the tissue densifies until 43

the homeostatic state is reached typically 4 days after seed- 44

ing (ρh = 6860 cells/mm2 for glass (resp. 7280 cells/mm2 for 45

11 kPa gels)) (16, 18). To determine the fraction of dividing 46

cells in maturing tissues, colonies were stained with EdU to 47

highlight the S-phase of the cell cycle (fig. 1a) on day 2, 3, 48

4 and 6 after seeding. The same colonies are then fixed and 49

stained with Hoechst dye to determine the average cell den- 50

sity profiles as well as local cell densities with high accuracy 51

following previously established protocols (16, 19). The entire 52

fixed tissues are imaged in epifluorescence using 5× and 20× 53

objectives on a Zeiss Cell Observer Z1 microscope. 54

We determine the proliferation probability as the ratio R
of dividing cells relative to the total number of cells within
a region of interest. The size of the region of interest is
chosen to be 271 × 241 µm2, which accounts for the geometry
of the sampled microscopy image and is of the order of the
density-density correlation length for MDCK cells (20). The
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Fig. 1. Division of MDCK-II cells in confluent tissues. (a) Images of cells grown
on 11 kPa gels stained with Hoechst (i) and with EdU (ii) after 4 days of unperturbed
development. A home-made MATLAB post-treatment software highlights the dividing
cells based on their EdU-intensity relative to the background (iii, SI section S1). Scale
bar = 200 µm (b) Fraction of dividing cells R as a function of the cell density for
tissues grown on glass (orange) and 11 kPa gels (purple) Different sampling time
points are presented by different symbols. The solid lines are fits of the microscopic
model, with the explicit fitting parameters summarized in table S1.

proliferation probability is mathematically defined as

R =
〈

Nd

Nt

〉
where Nd refers to the number of cells with a positive EdU55

staining, while Nt is the total number of cells as determined56

from Hoechst staining (fig. 1a). The brackets ⟨·⟩ denote the57

ensemble average performed over the bin. In total, we sample58

104 regions of interest (see fig. S1), which were consequently59

binned in cell density windows of 250 cells/mm2 (fig. 1b).60

Inspection of fig. 1b shows that the fraction of dividing61

cells decreases in a non-linear fashion as the local cell density62

increases. Ultimately, R goes down to almost zero when the63

homeostatic density is reached on days 4 and 6, as found64

previously (9, 15). On gels, there are basically no proliferating65

cells in the homeostasis, while on glass, some residual divisions66

occur, due to the larger amount of extrusions (16).67

Another important finding in fig. 1b is that at fixed sub-68

strate stiffness, data for all days overlap (see also fig. S2). This69

suggests that R is only a function of the density in the imme-70

diate environment of the dividing cell, and is not sensitive to71

the history and spatial positioning of the cell within the tissue.72

The time merely sets the accessible density range (fig. S2).73

The origin of this behavior is likely related to YAP signaling74

(8), which was recently found to be more localized in the nu-75

clei under lower confinement, whereas at high confinement, it76

moves to the cytoplasm (21).77

The data also clearly shows that cell proliferation explicitly78

depends on the stiffness of the underlying substrate. Notably,79

the probability of cell division in tissues grown on glass displays80

a curve with a positive (convex) curvature, while in tissues81

grown on gels, R has a negative (concave) curvature (fig. 1b),82

which indicates more probable cell proliferation on gels than83

on glass at all densities. These mechanosensitive features84
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Fig. 2. Microscopic model for cell proliferation (a) The different stages of the
cell life cycle in our models. The cell grows in size while in the growing stage and
transitions stochastically towards the division stage. It then remains at constant
size for a deterministic amount of time before producing two daughter cells. The
graph shows the cell size over time, the duration of each phase and the probability
to transition between the growth an division. (b) Impact of changing the the ratio of
tr/τd, which controls the absolute amplitude R. (c) Modulation of σr on R shows
that this parameter mainly controls the curvature of R through the point of inflection
of τg (see fig. S3).

clearly implicate integrin-mediated adhesions in the regulation 85

of proliferation, which likely emerges from the smaller tension 86

that integrin adhesion generates on soft substrate than on 87

hard substrates. This is in turn compensated by E-cadherin 88

intracellular binding and the formation of apical actin struc- 89

tures, which are more intensive on soft substrates than on 90

hard ones (13, 22). This obviously affects the homeostatic 91

state of the tissue (16, 23), and as seen here, the growth phase 92

of cells. 93

Microscopic model for cell proliferation. To rationalize these 94

experimental findings, we devise a minimal cell-level model for 95

proliferation. Following previously suggested strategies (24), 96

we divide the cell cycle into a growth phase and a division 97

phase, each having a characteristic duration, denoted respec- 98

tively by τg and τd. These time scales need to be determined 99

to estimate the observable R 100

R =
〈

Nd

Nd + Ng

〉
= ⟨τd⟩

⟨τd⟩ + ⟨τg⟩ . [1] 101

within a region of constant local cell density consisting of Ng 102

growing and Nd dividing cells (Nt = Ng + Nd). 103

We first realize that the time dependent size of a cell in a 104

tissue σ(t) can only evolve in a range σ0 ≤ σ(t) ≤ σρ, where σ0 105

is the size of a daughter cell and σρ is the maximum size that 106

reflects the local density ρ of cells applying an isotropic pressure 107

on the proliferating cell (fig. 2a). As the tissue matures ρ 108

increases until the homeostasis is achieved, characterized by 109

the density ρh > ρ and cell size σh (fig. 2b). 110

We first account for the time scale characterizing the divi- 111

sion phase ⟨τd⟩. Following reports in the literature about its 112
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robustness in different environments (4, 5, 21), we set ⟨τd⟩ to113

be constant. Furthermore, we assume that a cell’s transition114

to the growth phase takes place in a deterministic manner115

after ⟨τd⟩ in all density backgrounds.116

To model the mechanosensitive growth phase we assume a117

linear growth law for the time evolution of the cell size σ(t)118

σ(t) =
{

σ0 + cgt if t ≤ tρ,

σρ if t > tρ.
[2]119

Here, cg is a constant and defines the speed at which the cell120

grows and tρ is the time at which the cell attains σρ. In calcu-121

lations, the local density background ρ is kept homogeneous122

such that only the cell of interest is able to grow as a function123

of the time t. This is justified both at low and high densities.124

For ρ ≪ ρh, one has τd ∼ τg and there are only a few cells125

actively growing. For ρ ≃ ρh, τd ≪ τg, and most cells are in126

their growth phase, but their total change in size is actually127

small.128

To model the transition from the growth to the division129

phase, we first discuss the rate rd(σ) at which cells stop growing130

and enter the division phase in a stochastic manner (25). To131

capture the effect of pressure induced by neighbors in the132

confluent tissue, we model rd(σ) as a simple function of the133

cell size:134

rd(σ) =
{

cd(σ − σh) if σ > σh.

0 if σ < σh,
[3]135

The constant cd defines the rate with which rd increases with136

σ(t). If the cell is much larger than a cell in the homeostatic137

state (σ − σh) ≫ 0, the rate of division is high. On the other138

hand, if σ(t) → σh, then rd → 0. As such, a vast majority of139

cells starts to divide before attaining their maximum possible140

size. To calculate the average time that the cell spends in the141

growth phase ⟨τg⟩, we determine the change in the probability142

pg for a cell to still be in the growing phase at time t > 0.143

This change is simply a product of the probability that the144

cell is still growing (pg) and the rate of division associated145

with the attained size:146

dpg(t)
dt

= −rd (σ(t)) pg(t). [4]147

The average time ⟨τg⟩ spent growing can thus be calculated148

by combining eq. (4) with eqs. (2) and (3), which yields149

⟨τg⟩(ρ) =
∫ ∞

0
pg(t) dt =

∫ ∞

0
exp

(
−

∫ t

0
r(σ(t′)) dt′

)
dt.

[5]150

Following the calculation shown in SI section S2, we find151

⟨τg⟩(ρ) = tr

[
σh

2σr
+

√
π

8 erf
(

∆σ√
2σr

)
+ σr

∆σ
exp

(
− (∆σ)2

2σ2
r

)]
[6]152

with ∆σ = σρ − σh bringing the explicit tissue-density depen-153

dence of ⟨τg⟩ through σρ (see SI section S2 for details).154

The parameters tr = 1/
√

cdcg and σr =
√

cg/cd, are the155

characteristic time and length scales for the mechanoresponse156

of the growth phase and in essence encode the mechanosensitiv-157

ity of individual cells. They also determine the degree to which158

variations in tissue pressure constrain the cell growth, thereby159

linking single cell properties to properties of cells in a tissue160

environment, as suggested in earlier works (26). Consequently,161

larger σr comes with larger cell sizes at time of division and162

can also be linked to larger cell sizes in homeostasis in our 163

experiments. More specifically, it also controls the predicted 164

excess size of an isolated cell at time of division relative to the 165

cell size in homeostasis σh (see SI section S3). 166

The determined ⟨τg⟩ is found to increase monotonously 167

with tissue density (see fig. S3)in a non-linear fashion. This 168

behavior is consistent with our experiments and recent density 169

dependent measurements of τg (9, 21). Close to ρh, ⟨τg⟩ 170

rises dramatically, corresponding to the contact inhibition of 171

proliferation in homeostasis (8). 172

Comparison with experiments: With our model for ⟨τg⟩ 173

and the considerations for ⟨τd⟩, we can now derive the fraction 174

of dividing cells R using eq. (1) (fig. 2b and fig. 2c). The 175

scale σr controls the curvature through the point of inflection 176

of R(ρ) (fig. 2c), while the amplitude of the curve towards 177

lower densities is mainly tied to tr (fig. 2b; see section S2 for 178

details). 179

Our calculated R only relies on the relative scale of the 180

duration of the two phases and not on the respective absolute 181

time, hence the precise shape of R(ρ) only depends on the pa- 182

rameters tr/⟨τd⟩, σr and ρh. Therefore, fitting of experiments 183

(fig. 1(b)) with eq. (1) requires only two parameters along with 184

the homeostatic density. The latter, ρh, can be extracted from 185

the fit (which yields 6800 cells/mm2 to 7400 cells/mm2), or it 186

can be fixed to the values that have been measured with high 187

precision (6860(360) and 7280(260) cells/mm2 for glass and 188

11 kPa gels, see fig. S4) (16). 189

The fit results (see SI table S1 and section S4) provide a 190

prediction for the area of the lone cell at time of division ⟨σ⟩ 191

of 780.1 µm2 on glass and 374.0 µm2 on gels. This is in very 192

good agreement with measured 2000(900) µm2 on glass (27) 193

and a 30 % to 40 % decrease for cells on gels (28). 194

It is natural to expect that cells in the tissue on gels are 195

generally smaller than those on glass based on the smaller 196

value of σr obtained from our fit, which is indeed the case, 197

both in the homeostatic state and in the edge compartments 198

(16). This result is further corroborated by the analysis of 199

rapidly spreading MCF-7 at the single cell level when grown 200

on PAAm gels for a fixed duration of 12 h (29). 201

The fit furthermore concludes that the ratio tr/⟨τd⟩ on glass 202

takes the value of 0.91 and 0.90 on gel. The appropriateness of 203

the first result can be validated through the use of experimental 204

results on glass substrates of a full cell cycle time τg + τd of 205

15 h (see SI fig. S5) and the recently reported duration of 206

cell division (S, G2 and M phase) in similar conditions of 207

about 10 hours (21). As detailed in SI section S4, this yields 208

an experimental estimate of tr/τd = 0.83 which is in very 209

reasonable agreement with the fit itself. 210

By assuming that only the growing phase is mechanorespon- 211

sive, and that τd is insensitive to the mechanical environment 212

(21), our model predicts a longer growth time τg on glass 213

than on gels (see SI section S4). In experiments, despite the 214

fact that the cells within a tissue are indeed smaller on gel 215

substrates than on glass, we also observe that the colonies 216

on gels are larger. Consequently the total number of cells on 217

gels after 6 days is larger even though the seeding conditions 218

are identical. This implies an actually shorter cell cycle, as 219

predicted by our model. 220

Notably, simpler division protocols, such as a deterministic 221

cell division above a given threshold (30–35) or a constant 222

probability to start division above a given threshold (36), do 223
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Fig. 3. Quantification of proliferation in numerical simulations of expanding
epithelia. (a) Schematics illustrating the inner forces within cells in the DPD simula-
tions depending on their state, i.e. growing or dividing. (b) Snapshot illustrating the
dividing cells within the expanding tissue. Growing cells are represented with shades
of green while dividing cells are represented with shades of purple. (c) Fraction
of dividing cells in the tissue as a function of the local density for two simulations
with different values of Rc2 and τd as indicated in the legend. Different instants
are considered as highlighted by the different shades of green and pink. All other
parameters used in the simulations are indicated in Ref. (16). (d) Dependence of
R(ρ) on the choice of c in the DFK formalism. As desired, c changes the curvature
of the graph towards the homeostatic density ρh. We also observe slight changes in
the observed convergence density, which deviates slightly from ρh consistent with
our experimental observations of density bumps on soft substrates.

not reproduce the features of the experiments in fig. 1b (see224

SI section S5, figs. S6 and S7). The here proposed model has,225

however, the capacity to fit the data and recover reasonable226

values for both σr and tr/τd. The model also shows that the227

mechanoresponse of cells in a tissue may be directly related to228

the mechanosensitivity of a single cell captured in σr and tr.229

Capturing the mechanoresponse of proliferation in DPD simu-230

lations. As an additional means of verification of our micro-231

scopic model, we use Dissipative Particle Dynamics (DPD)232

simulations (see SI section S6 for details) (30, 31, 33–35, 37–233

40). This method, with an instantaneous division phase and a234

stochastic growth phase duration (30–33), successfully demon-235

strated the effect of isotropic pressure on spheroids. These236

simulations showed that externally applied pressure limits cell237

proliferation, by restraining and even preventing cell growth238

(30, 31). In order to capture mechanoresponsive properties239

presented in (fig. 1), the proliferation rule must be modi-240

fied. Consistently with our minimal model we introduce the241

two phases of the cell cycle (for formal mapping see SI sec- 242

tion S7). For the growth phase, we keep the usual approach 243

for DPD simulations of tissues. Specifically, an inner cell force 244

Fg = B/(l + r⋆)2 is defined to model the cell growth by in- 245

creasing the distance l between the particles representing the 246

cell (fig. 3a). Here, B is the force intensity and r⋆ an offset 247

to avoid numerical divergence. We, furthermore, introduce a 248

division phase, where we cancel Fg and instead introduce a 249

force Fd = Kd(l − l⋆) to fix the size of the cell during division 250

(fig. 3a). Here, Kd is the cell stiffness and l⋆ is the cell size 251

when entering the division phase. The cell remains in the 252

division phase for a constant duration τd. After this time 253

expires, two daughter cells are produced with an initial parti- 254

cles distance l = l0, re-initiating the growth phase. Following 255

the ingredients used in the microscopic model, we define the 256

probability to enter the division phase as 257

Pdiv = (l − Rc1)/(Rc2 − Rc1), [7] 258

where Rc1 and Rc2 are two size thresholds, and changing their 259

Rc2 − Rc1 corresponding to changes in σr. This probability is 260

evaluated at each time step of the simulation for each cell in 261

the growth phase. 262

Mimicking the previously-described experiments, we per- 263

form simulations of freely expanding monolayers in two di- 264

mensions. Thereby, a small patch of a tissue is placed in the 265

center of the simulation box, with cells being at low density. 266

With time, the tissue increases its density and expands, devel- 267

oping a density profile. Ultimately, the central compartment 268

reaches homeostasis. Furthermore, to affect the ratio tr/τd, 269

we vary τd, instead of tr, as the former is explicitly defined 270

in DPD, whereas the latter is only implicit. To be consistent 271

with experiments, we periodically measure R, and sample the 272

fraction of dividing cells within regions of constant cell density, 273

throughout the tissue and at various time steps. We fit eq. (1) 274

to the simulation results (SI table S2), and similarly as in 275

the experiments we see that the microscopic model of cell 276

proliferation captures precisely the DPD results (fig. 3c). We 277

find that changing Rc2 − Rc1 and τd (to effectively modify tr), 278

as in experiments, leads to an overall curvature change of R, 279

the latter decreasing monotonously from a constant value at 280

low densities towards zero in the homeostatic state (fig. 3c). 281

As expected we find that increasing Rc2 increases σr, which in 282

conjunction with tr larger than τd provides dynamics like in 283

tissues grown on glass, and larger cells in homeostasis. Smaller 284

Rc2, with tg comparable to τd, provides results comparable 285

to tissues on gels and smaller cells in the homeostatic state. 286

Finally, the resulting R(ρ) is independent of both the sampling 287

time and the position within the tissue, as demonstrated by 288

the fact that all curves taken at different snapshots fall onto 289

a common master curve, consistent with the experimental 290

findings (fig. 1). Such results align with our initial assumption 291

about the nature of the transitions between the growth and 292

division phases, which is the key ingredient for the observed 293

behavior. 294

Mechanoresponse of the tissue proliferation in the delayed 295

Fisher-Kolmogorov formalism. To verify the robustness of 296

these results, and the role of the non-linearity of prolifera- 297

tion probability, we furthermore develop a theoretical model 298

for tissue growth that incorporates the key ingredients identi- 299

fied here-above. We start from the Fisher-Kolmogorov (FK) 300
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theory (41). The evolution of the density profile is captured301

by an (active) diffusion-like process with efficiency D. The302

cell proliferation is described through a logistic-like growth303

process with efficiency β (41). This model, however, provides304

only a linear dependence of the fraction of dividing cells on305

the density. One way to incorporate the nonlinear effects is by306

introducing complex empirically fitted functions as suggested307

by Metzner et al. (42) for HT1080 fibrosarcoma cells and308

MCF7 mammary gland adeno-scarcinoma cells. We choose309

a different strategy to capture mechanosensitivity of prolif-310

eration. Instead of modeling the evolution of the total cell311

density, we first distinguish populations of cells in the growth312

and division phase (ρg and ρd respectively).313

We, furthermore, introduce a non-linearity through an
exponent c in the logistic term (see SI section S8 for motivation
of this form). This parameter is used to control the curvature
of R(ρ) through a single parameter and thus provides the
simplest inclusion of the mechanoresponsiveness (see fig. 3d,
SI section S8). We, furthermore, introduce a delay τ = t − τd,
to account for the time that cells deterministically spend in
the division phase. With these considerations we arrive at

∂ρg

∂t
= D∆ρg − β

(
1 − ρ

ρh

)c

ρg + 2β

(
1 − ρ(τ)

ρh

)c

ρg(τ),

[8]
∂ρd

∂t
= β

(
1 − ρ

ρh

)c

ρg − β

(
1 − ρ(τ)

ρh

)c

ρg(τ). [9]

Here, the total density ρ = ρg + ρd is given by the sum of the314

two above equations leading to315

∂tρ = D∆ρg + β

(
1 − ρ(τ)

ρh

)c

ρg(τ), [10]316

which we term the Delayed Fisher-Kolmogorov (DFK) equa-317

tion. For the case c = 1 and τd = 0, eq. (10) amounts to the318

usual FK model (37).319

The parameters of the microscopic model (i.e. tr, σr, τd320

and σh) are captured by (β ∝ 1/tr, c, τd and ρh = 1/σh) (see321

figs. S8 and S9 for detailed discussion). The set of eqs. (8)322

to (10) is then solved using a home-made delayed differential323

equation solver described in the SI section S9.324

We first explore the dependence of the fraction of the325

dividing cells R(ρ) = ρd/(ρd +ρg) on the parameter c. We find326

R independent of the position and the age of the colony, and327

the proliferation probability is again only a function of density.328

For c = 2 we find R similar to the one observed on glass, while329

for c = 0.5 we obtain a dependence resembling the behavior of330

cells on gels (fig. 3d). Obviously, this one-parameter approach331

is sufficient to capture the non-linearity (and the curvature)332

as main feature of R(ρ) observed in experiments. Its power-333

law behavior close to the homeostatic density, controlled by334

c, can therefore be seen as a first-order approximation of335

our microscopic model that suggests a polynomial (see SI336

section S10).337

Mecanosensitivity of proliferation and the macroscopic or-338

ganisation of the tissue. We now look at the consequences339

of nonlinearities in the density dependent proliferation rates,340

such as shown in fig. 1b, fig. 3c, or fig. 3d, and hypothesize that341

different mechanosensitivity of proliferation will yield different342

macroscopic tissue organisation (43). Indeed, the expansion343

and maturation of tissues on glass and on gels over 6 days 344

show distinctly different outcomes (fig. 4(a,b)), a result that 345

is captured both in simulations (fig. 4(c,d)) and by the DFK 346

formalism (fig. 4(e,f)). 347

In early stages of development, our model tissues are way 348

below the homeostatic density, and a large concentration of 349

proliferating cells is found throughout the colony. With time, 350

the proliferation becomes less probable in the center where 351

the density of cells increases. Simultaneously, the EdU profile 352

develops a peak which is shifted into the moving edge of the 353

tissue. The peak is the simple consequence of the fact that 354

cells at high density proliferate less than larger cells in low 355

density regions where only few cells contribute to the EdU 356

intensity. The peak therefore denotes the density at which the 357

cell number and their probability to divide is optimal. 358

Due to the concave shape of R, this peak is more pro- 359

nounced on gels than on glass, where R is convex, a fact 360

particularly well highlighted in the DFK, due to the lack of 361

statistical fluctuations. Six days after seeding, the homeostatic 362

state appears in the central compartment, which is evident 363

from a strong drop in the EdU signal, but also by the inhibition 364

of locomotion, also observed in DPD and in DFK calculations. 365

The most notable feature in the tissues growing on gels 366

(but not on glass) is the appearance of an overshoot in the 367

density profile, found in experiments and spontaneously ap- 368

pearing in DPD and DFK models. It appears at the edge of 369

the central homeostatic compartment, and is characterized 370

by a cell density larger than ρh. Within the overshoot, prolif- 371

eration is basically inhibited, however, cells are still moving. 372

The robustness of this result suggest that the overshoot is 373

a direct consequence of the finite, deterministic time of cell 374

division, supported by slow density equilibration enabled by 375

active transport. Simply said, cells will begin dividing when 376

they are near the homeostatic state, and they will continue 377

the process even if their doubling causes the density to exceed 378

the homeostatic level. If motility is low, as the measurements 379

suggest, the build-up of cells transiently appears. Due to 380

the shape of R(ρ), close to the homeostatic more cells will 381

enter the division state on gels than on glass, leading to the 382

difference in the density profiles, as evidenced by experiments, 383

simulations and our theoretical modeling. These results clearly 384

demonstrate that appropriate modeling of proliferation is cru- 385

cial for the correct recovery of macroscopic structures during 386

development. 387

Discussion and conclusions. From a theoretical point of view, 388

our cell-level model aligns with the description of Smith and 389

Martin of single cell proliferation (25, 44), which is used in 390

the case of immune cells (45), but here our contribution gives 391

a mechanoresponsive twist. Indeed, using eq. (6), one can 392

derive the statistics of time spent in the growth phase (see SI 393

section S2.section C for details), the so-called α-curve (44), 394

using Equations (2) to (4). Importantly, these distributions 395

can be related to the parameters of our mechanoresponsive 396

microscopic model, and consequently to the mechanorespon- 397

siveness of individual cells. An independent validation of our 398

model comes from successfully applying the fit function ob- 399

tained from our data, to results on the same cell line provided 400

by others in the field (21). 401

Beyond the experiments discussed in this article, our the- 402

oretical framework can shed some light on the response of 403

dense tissues to stretching (9, 13), which was found to induce 404
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Fig. 4. Relation between the evolving macroscopic structure of expanding tissues and the mechanoresponsive proliferation. Panels (a,b) show data from experiments
on glass and gels. Panels (c,d) provide equivalent information from DPD simulations, respectively, while (e,f) present the results of the DFK model. Each panel compares the
macroscopic tissue structure in early stages of development, close to the formation of the homeostatic state, and after the formation of the steady state expansion profile. For
each stage a third of the colony is cut out and juxtaposed with cutouts from other stages. Overall cell distributions (top right) are furthermore compared with the distribution of
proliferating cells extracted from the same tissue (top left). The graphs in each panel represent the average radial density of cells and the density of proliferating cells throughout
the colony in early (left graph) and steady growth phase (right graph). (a,b) Experimental space-time evolution of the Hoechst and EdU intensities across the tissues. The
graphs show normalized radial intensity profiles on day 2 and day 6. (c,d) DPD simulation space-time evolution of cell density (ρg + ρd), and proliferating cell density (ρd).
Mimicking the experimental results is possible by changing the parameters Rc2 − Rc1 and τd. (e,f) Equivalent information is obtained from the DFK model, where the
experimental results are recovered by changing the parameter c. Other parameters are kept constant.

a burst of division events, even reactivating proliferating dy-405

namics despite having been at homeostasis (9). Such results406

can be easily understood using our microscopic model, where407

stretching can simply take the cells into the regime where408

rd(σ) ̸= 0 (see eq. (4)). Naturally, the opposite experiment,409

namely compression (30, 31, 46), could lead to an arrest of410

proliferation by taking the cells to the regime where rd(σ) = 0411

depending on the compression amplitude. Our microscopic412

model of proliferation can provide the delay upon which the413

burst of dividing cells reaches its maximum as a function of414

the stretching amplitude, as well as the point of arrest due to415

compression.416

Our model is also consistent with results of Abdul Kafi et al417

(47) on HeLa (human cervical) and HEK293T (human embry-418

onic kidney) cells grown on functionalized nano-dot, nano-rods419

and nano-pillars. They measured increased proliferation for420

taller structures which was not understood. An increase of421

proliferation was also observed when changing the diameter of422

the nanopillars (48). With the length of nano-pillars inversely423

proportional to their stiffness, our model suggest that the en- 424

hanced proliferation actually relates to mechanotransduction 425

of proliferation - taller structures appear as softer substrates, 426

while smaller adhesive areas decrease integrin induced stresses, 427

providing similar effects. 428

Finally, we believe that our study will shed a new light on 429

the interaction of proliferation and maintenance of homeostasis 430

in more complex epithelia. Indeed, the mechanical properties 431

of the basal membrane are changed for example in various skin 432

diseases which has been related to the proliferation behavior 433

of cells (49, 50). The here suggested models could provide 434

deeper insights into the relation between observed prolifer- 435

ation, and the emerging restructuring of the tissue due to 436

mechanoresponse. 437

In closing, the main contribution of our work is the demon- 438

stration of the dependence of the proliferation probability 439

on the mechanical properties of the microenvironment. The 440

proliferation probability was evaluated in tissues during all 441

stages of growth - from low density seeding to homeostasis. We 442
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experimentally demonstrated that the fraction of proliferating443

cells only relates to the local density. This observed behavior is444

captured by a minimal microscopic model for mechanosensitive445

cell proliferation in tissues. The model demonstrates that the446

shape of the relation between proliferation rate and density on447

a tissue level can be captured purely trough the description of448

the explicit mechanoresponse of the proliferation of individual449

cells and the homeostatic density. The mechanosensitivity450

of the proliferation probability is then a consequence of cells451

experiencing local environmental pressure set among others by452

the varying local density of cells. This result is fully consistent453

with our experimental findings, which then show that the local454

proliferation probability in tissues does not depended on the455

macroscopic state of the tissue during its development, as long456

as the mechanical environment stays unaltered.457

The effect of proliferation on the macroscopic structuring458

of tissues is further studied by adapting the microscopic model459

to DPD simulations and capturing its essence in the delayed460

Fisher-Kolmogorov approach. Besides highlighting the role of461

a mechanosensitive growth phase and a robust, deterministic462

division phase in the life cycle of the cell, these approaches,463

in full agreement with experiments, show that the evolution464

of density and size of a tissue is indeed deeply affected by465

mechanoresponsive cell proliferation.466

This work opens a new perspective on cell proliferation and467

on the theoretical description of developing epithelial tissues.468

In the near future, we can hope this new detailed description469

will provide a better understanding on the growth and develop-470

ment of more realistic epithelial tissues. Furthermore, we hope471

that this work will provide a new perspective on epithelia-472

related diseases and their eventual relations to alterations of473

the stiffness of the extracellular matrix.474
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