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Two-dimensional lead halide perovskites are promising materials for optoelectronics due to the
tunability of their properties with the number of lead halide layers and the choice of an organic
spacer. Physical understanding for the rational design of materials primarily requires knowledge of
crystal structure. 2D lead halide perovskites are usually prepared in the form of films complicating
the experimental determination of structure. To enable theoretical studies of experimentally unre-
solvable structures as well as high-throughput virtual screening, we present an algorithm for crystal
structure prediction of lead halide perovskites. Using automatically prepared classical potential we
show that our algorithm enables fast access to a structure that can be used for further first-principles
studies.

I. INTRODUCTION

In recent years, metal halide perovskites (MHPs) have
proven to be promising candidates for the future ma-
terials of choice for manufacturing light-emitting diodes
(LEDs) and solar cells.[1, 2] A subclass of MHPs of par-
ticular interest for LED applications are the (quasi-) 2D
layered perovskites (Q2DPs) due to larger exciton bind-
ing energies, improved stability, and wider tunability
of properties compared to 3D perovskites.[3] Particu-
larly, the Ruddlesden-Popper and Dion-Jacobson MHP
phases have gained significant attraction.[4, 5] The gen-
eral chemical formula of Ruddlesden-Popper perovskites
(RPPs) is R2An−1BnX3n+1, where R+ is a large amine
spacer cation, A+ is a smaller organic cation or Cs+,
B2+ is a divalent metal cation, X− is a halide anion
and n is the number of layers of BX6 octahedra seper-
ated by a bilayer of R+ spacer cations (3D perovskite
ABX3 is obtained in the limit n → ∞). Similarly, the
chemical formula of Dion-Jacobson perovskites (DJPs) is
RAn−1BnX3n+1, with the difference compared to RPPs
being that R2+ is a diammonium cation. This general-
ity of composition offers a great variety of possibilities in
choosing n as well as the particular chemicals involved
in the synthesis of the layered perovskites, allowing for
the characteristic wide tunability of the RPP and DJP
physical properties.[3]

Knowledge of the crystal structure of a material is the
starting point for understanding its physical properties.
Despite constant advances in methodologies[6–9], crys-
tal structure determination from powder diffraction data
cannot be yet considered a trivial task because the infor-
mation from 3D reciprocal space collapses into its 1D pro-
jection. Although not as straightforward as the structure
solution from single crystals, a huge number of crystalline
phases have been successfully solved from the powder
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diffraction data over the years[10]. On the other hand,
when the sample is prepared in the form of a thin film, as
almost always is the case in Q2DP-based LED/solar cell
research, the determination of structure becomes close to
impossible not only due to the strong influence of crys-
talline texture on the diffracted intensities but also due
to the limited and inadequate methodologies. There have
been some rare attempts to utilize a grazing incidence X-
ray diffraction (GI-XRD) with molecular modeling aim-
ing to determine purely organic structures prepared in
the form of thin film[11] but on the practical side, the
implementation in everyday laboratory work is restricted
due to the requirement that data must be collected using
synchrotron radiation. Even if the equipment is readily
accessible, due to currently underdeveloped methodol-
ogy that would properly deal with texture-related issues
of thin films, such an approach certainly is not efficient
enough to elucidate the immense number of novel Q2DP
structures that emerge on the daily basis. Considering
the inability to solve the structures from the thin film
diffraction data, one way to deal with unknown struc-
tures in Q2DP films would be to prepare them in the
form of a single crystal or powders. However, there are
experimental difficulties when growing materials in the
form of a single crystal[12], for example, due to limita-
tions in the stability. In this scenario, many structures
of large technological potential remain unknown.

Moreover, it would be greatly valuable to know the
structure even before the materials are synthesized. It is,
therefore, desirable to use a computational tool to find,
understand and predict stable Q2DP crystal structures
as well as their physical properties. Different compu-
tational approaches have been proposed to explore the
possibility of formation of various 3D perovskites[13–15].
Similar computational explorations of Q2DPs have been
scarce[16, 17] and did not aim to find the global minimum
energy structure, most likely due to the prohibitively vast
compositional phase space and large system sizes.

Generally, density functional theory (DFT) is utilized
abundantly due to its well-known good balance between
accuracy and low computational cost. However, in the
case of Q2DPs, the approach to crystal structure predic-
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tion via DFT suffers from several drawbacks. Optimizing
an initial-guess structure using a local structural relax-
ation algorithm gives no guarantee that the final struc-
ture is the global minimum. This may be resolved by
exploring a sufficiently large part of the potential energy
surface (PES), but this is computationally unfeasible, as
in the case of Q2DPs unit cells may contain several hun-
dreds of atoms, giving rise to complex PES’s.[18]

In this work, we introduce a workflow for predicting
candidate Q2DP crystal structures using classical model
potentials combined with DFT. The potentials are con-
structed in an automated fashion and then employed
to find a global minimum structure via minima hop-
ping algorithm in the vein of Goedecker [19], Amsler and
Goedecker [20] and Peterson [21]. In this work, we will
refer to the developed algorithm as GO-MHALP (Global
Optimization via Minima Hopping Algorithm for Lay-
ered Perovskites). We aim to develop a method which
is generalizable, but specialized to work for Q2DP struc-
tures with well defined general structural features, such
as the alternating organic/inorganic layered structure.
Therefore, we expect to start from structures not too far
from a global minimum so that minima-hopping is a well
suited technique, as opposed to methods which work well
when starting far away from the global minimum, such
as particle swarm optimization [22] or genetic algorithms
[23]. Our method works in principle for any candidate
Q2DP whose R+/R2+ and A+ compounds are organic
cations consisting of N, C and H and whose inorganic
perovskite octahedra are PbBr6. The complete method-
ology is described in section II while validations of the
model on RPPs containing BA (butylammonium) and
MA (methylammonium) and a DJP containing 4AMP (4-
(aminomethyl)-piperidinium) are presented in section III.
Aditionally, we have extended the method to predict an
unknown Q2DP structure containing mixed-halide per-
ovskite octahedra PbBr3I3 [24].

II. METHODOLOGY

In the following two subsections, we describe the proce-
dure of generating structures and the accompanying clas-
sical potentials which are used as inputs for GO-MHALP.
A visual aid in the form of a flowchart of the procedure
can be viewed in Fig. 2. In the third subsection, we de-
scribe the GO-MHALP algorithm itself with an accom-
panying flowchart in Fig. 3.

A. Initial structures generation

One of the advantages of structure prediction using
global optimization algorithms is that the final set of
found structures should not depend strongly on the start-
ing structure inputted to the algorithm. However, in the
particular case of MH, it is necessary to start from a re-
gion in configuration space for which the potential has

a physical meaning, i.e. in our case, the starting struc-
ture should resemble a Q2DP. To this end, we developed
an automatized procedure for the generation of idealized
Q2DP structures for a given R molecule.

We investigated three types of initially tetragonal cell
geometries with parallel or offset interlayer configura-
tions, making a total of six different types of input struc-
tures as shown in Fig. 1. These cell types were cho-
sen because known Q2DP structures often form these
geometries[25]. Furthermore, in the various cell types,
the supercells can be rearranged to produce equivalent
structures, providing an additional check of the indepen-
dence of the found global minimum on the initial guess
structure. The parallel and offset structures are related
by a layer shift, while the 1×1 and

√
2×
√

2 are subcells
of the 2× 2 cell type.

We prepared multiple template structures by arrang-
ing the inorganic layers in ideal aforementioned configu-
rations and (for n > 1) placing MA molecules at the cen-
ters of inorganic cages. The R+/R2+ organic cations are
first added to the template structures so that the NH3

groups of the cations are placed approximately at the
centers of the inorganic pockets. For RPPs, the cations
are reoriented in such a way so that the vector from the
N atom towards the respective cation’s center of mass
points in a predefined direction towards the neighboring
inorganic sheet. The interlayer spacing between the inor-
ganic sheets can be adjusted as needed to accommodate
spacers of various lengths. We advise the reader to see
the code in IV (Data Availability) as well as Section 3. in
Supplemental Material for further details. All generated
initial guess structures are given in the Supplemental Ma-
terial in CIF format as well.

Since we are ultimately interested in global structure
optimizations in which the starting structure should not
be of decisive importance, this simple way of generating
structures works very well for our intentions since it is
automatic and fast.

B. Construction of classical potentials

Following previous work[26–30], and in particular the
idea behind MAPI family of potential developed by Mat-
toni et al. [28, 29], we undertake an approach where the
total classical potential is modeled as a sum of i) non-
bonding potential that depends only on the interatomic
distances with only two-body terms taken into account
and ii) a bonding potential including bonds, dihedrals,
and angles as described by GAFF[31], a generalization of
the AMBER[32] force field.

Denoting the list of positions of the nuclei with {R} :=
(R1,R2, ... ,RN ), the general form of the total potential
energy can be written as

U({R}) =
1

2

N∑
i,j

Uij(Rij) + Ubonding, (1)
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FIG. 1. Types of initial cell configurations. a) Cross sections
perpendicular to the long cell axis with the cell dimensions
labelled in units of Pb− Pb distance dPb−Pb = 6.080 Å.
b) Interlayer configurations shown for the 2×2 cell type. The
long cell axis is shortened and organic molecules are removed
for clarity. In the offset configuration the layers are shifted by
a quarter of the unit cell length in the x− and y− directions.

where Rij := |Ri −Rj |. As in all effective-potential ap-
proaches, the electronic degrees of freedom do not enter
the calculation explicitly but are rather absorbed into the
effective interactions of the nuclei.[33]
Uij is separated into three parts, dealing with the

nonbonding inorganic-inorganic, inorganic-organic and
organic-organic interatomic interactions respectively:

Uij = U II
ij + U IO

ij + UOO
ij . (2)

The explicit form of the inorganic-inorganic interaction
is

U II
ij (Rij) = Aij exp(−Rij/ρij)−

cij
R6
ij

+
qiqj

4πε0Rij
, (3)

where the first two terms comprise the Buckingham
potential[34] with the first term describing the Pauli re-
pulsion at small nuclei distance and the second term de-
scribing the van der Waals interaction with Aij , ρij and
cij as model parameters. The final term is the Coulomb
interaction between two (possibly partial) ionic charges.
The inorganic-organic interaction is modelled as follows:

U IO
ij (Rij) = Aij exp(−Rij/ρij)−

cij
R6
ij

+
qiqj

4πε0Rij

+ 4εij

[
−
( σij
Rij

)6

+
( σij
Rij

)12]
,

(4)

i.e., besides the Buckingham and Coulomb terms a
Lennard-Jones term is added with additional param-
eters εij and σij . For (Pb, Br) - (C, N) interactions
only the Buckingham and Coulomb terms are used,
while only Coulomb and Lennard-Jones terms are
used for (Pb, Br) - H interactions. Similarly, nonbond-
ing organic-organic interactions are described only by
Lennard-Jones and Coulomb terms:

UOO
ij (Rij) = 4εij

[
−
( σij
Rij

)6

+
( σij
Rij

)12]
+

qiqj
4πε0Rij

.

(5)

For U IIij , U IOij and UOOij a cutoff parameter rc is used
so that for Rij > rc only the long range Coulomb in-
teraction is calculated using the P3M algorithm.[35] The
bonding potential which, of course, concerns only inter-
actions within organic molecules, has the following form:

Ubonding =

N∑
ij

Kb
ij(Rij −R0

ij)
2

+

N∑
ijk

Ka
ijk(θijk − θ0

ijk)2

+

N∑
ijkl

Kd
ijkl

(
1 + cos

(
nijklφijkl − φ0

ijkl

))
(6)

expressing bonds, angles and dihedrals respectively.
Rij are two-body distances, θijk are three-body angles
and φijkl are four-body-dihedrals while the other factors
are GAFF parameters. The main advantage of the GAFF
force field is its capability to describe a very large number
of organic molecules with an acceptable level of accuracy.
Besides, its standard working frame allows in principle an
automatic atom type assignment for any given organic
molecules in its (reliably) relaxed geometry.

The idea of GO-MHALP is to have a general and flex-
ible tool that can be applied to any organic molecule
R in a candidate Q2DP structure. If the particular
molecule is not found in the local database of organic
cations the potential can be generated in the very first
step provided a starting geometry along with the GAFF
philosophy. Shortly, to obtain GAFF parameters the
geometry of the R+ molecule is optimized using the
Gaussian[36] program with the B3LYP[37–40] hybrid
DFT functional and 6-311G* basis set [41–43]. Con-
sistently with previous work [28], the electrostatic po-
tential (ESP) of the optimized isolated cation with +1
total charge is obtained via the BP86[37, 44–46] GGA
functional and the Def2TZVP[47, 48] basis set. Par-
tial atomic charges are then obtained by directly fit-
ting this ab initio electrostatic potential (ESP) using
the restrained electrostatic potential (RESP)[49] method
as implemented in the Antechamber[50] program from
the Amber16 suite[51, 52]. Complete molecular topology
and GAFF parameters are generated and translated to
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FIG. 2. Flowchart of the procedure of generating an input LAMMPS file containing information on the structure and interatomic
interactions of a Q2DP.

LAMMPS[53] format and added to the local database of
organic cations.

The parameters for the C−C, N−N and H−H non-
bonding Lennard-Jones interactions are obtained from
GAFF parametrization as described above. As for the
nonbonding parameters concerning Pb−Pb and Br−Br
interactions, the values of these are taken to be the same
as the ones obtained in Hata et al.[29] for MAPbBr3,
barring the charges qi, which for organic molecules we
set to the partial charges obtained by RESP fitting and
for the atoms comprising the inorganic perovskite struc-
ture we set qPb = +2 and qBr = −1. The reason for this
is that the charges in Hata et al. were set by rescaling of
charges obtained by Mattoni et al.[28] for MAPbI3 and
in both of these works the obtained charges of the inor-
ganic lattice PbBr3 do not sum up to 1. In Mattoni et
al. system neutrality was then ensured by refitting the
charge parameters of the whole model (including MA) to
data obtained via DFT. For this work, by setting integer
charges we avoid the need for expensive DFT calcula-
tions and refitting procedures, thus greatly increasing the
transferability of this method for construction of classical
potentials.

A benchmark of the accuracy of the potentials may be
found in the Supplemental Material.

C. Minima hopping

Minima hopping (MH) is an efficient and simple global
optimization method first developed by Goedecker[19].
The general idea is to alternate between molecular dy-
namics (MD) simulations and local structure optimiza-
tions (relaxations) after which some criteria are used to
determine whether the optimized structure will be ac-
cepted as a newfound local minimum. A system may
gain enough kinetic energy during MD to overcome a po-
tential barrier and in this way, a complex PES may be
traversed to arrive at different potential energy basins.

The original MH method conceived by Goedecker con-
cerned only nonperiodic systems and therefore employed
only local optimizations of atomic positions. However,
the ground state of a crystalline system is fully deter-
mined not only by atomic positions but also by the unit
cell parameters. Therefore, by using variable cell shape
MD, Amsler and Goedecker generalized the MH method
to be functional for periodic systems as well.[20] Another
variant of MH, dubbed constrained minima hopping, was
developed by Peterson[21]. Peterson introduced a simple
constraint, based on Hooke’s law, in order to prevent dis-
sociation of molecules adsorbed on a surface during the
MD portion of MH, thereby effectively reducing the con-
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FIG. 3. Flowchart of the full GO-MHALP algorithm. Dashed lines indicate parameter changes at certain steps.

figurational space to be explored by MH only to config-
urations of interest (namely, those where the adsorbate
identity is preserved).

In this work, we combine and modify the approaches
introduced above to develop an MH algorithm suitable
for Q2DP global structure optimization: GO-MHALP.
We simulate MD in the isothermal-isobaric (NPT) en-
semble and optimize the unit cell as well as atomic po-
sitions during local optimizations. Additionally, we de-
veloped a new scheme for detailed exploration of local
energy basins and on-the-fly selection of the lowest en-
ergy structures found in them.

We implemented our algorithm based on an MH algo-
rithm already existing within the ASE[54] package using
the LAMMPSlib interface to read in the classical poten-
tial described in section II B. Now we present an outline
of the algorithm. A list of initial parameters, their de-
scriptions and values can found in Table I.

The input structure is fed into the algorithm and its
cell and atomic positions are optimized. This optimized
structure is the first entry in the list of found local min-
ima. The initial optimization is performed with a looser
force convergence threshold than following optimizations
to avoid a long optimization step since the initial struc-
ture may be far away from a local minimum. For ease of
writing, from now on we will label the physical proper-
ties of the entries in the list of found local minima with

the subscript i, where i = 1, . . . , N so that N labels the
last found minimum. At this point, there is only one
structure in the list of found minima, i.e. N = 1.

An NPT[55–57] molecular dynamics simulation is per-
formed starting from the locally optimized structure at
temperature T = T0 and with other parameter values
being as listed in Table I. The values of the NPT re-
lated parameters were chosen to ensure that the molecu-
lar dynamics is long enough for the system to completely
thermalize. Generally, the starting NPT configuration
is the last (N -th) minimum in the list of found min-
ima and T varies during GO-MHALP as described be-
low. Ions are given random initial velocities correspond-
ing to a Maxwell-Boltzmann distribution of temperature
T . NPT is stopped after mdmin local minima have been
passed over with one pass counted if a sequence of poten-
tial energies calculated at each MD step ends with two
downward points followed by two upward points.

The atomic positions and cell parameters of the last
configuration obtained by NPT dynamics are optimized.
We label the physical properties of this candidate struc-
ture with the subscript c. After optimization, energy
and structure similarity checks are performed to deter-
mine whether the candidate structure will be added to
the list of local minima. Firstly, Ec is compared to EN ;
if Ec > EN + Ediff, the structure is discarded as being
too high in energy, NPT temperature is increased, i.e.
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T → βT and a new NPT/optimization cycle is started
from the N -th minimum in the list of found minima.
Otherwise, a structure similarity check is performed. For
structure comparison we use Oganov fingerprints[58, 59]
which were first used in the context of MH by Amsler and
Goedecker[20]. With this method, for every structure a
unique "fingerprint" may be calculated and represented
as a matrix in an abstract vector space. The compo-
nents of the matrix are sums of Gaussian-smeared delta
functions:

FAB(R) =
∑
Ak,Bl

δ(R−Rkl)
4πR2

kl
NANB
V ∆

− 1, (7)

where the sum runs over all pairs of atoms of types A
and B found within the cutoff distance Rkl < Rc, with
NA and NB being the number of atoms of the respec-
tive type A and B in the unit cell and V being the unit
cell volume. Each fingerprint component FAB(R) is dis-
cretized into bins of width ∆ so it can be represented as
a vector with the m-th vector coordinate being the value
of the fingerprint component FAB(m). A cosine distance
χi,j may then be defined as a measure of dissimilarity of
structures i and j:

χi,j =
1

2

(
1−

∑
AB

∑
m F

i
AB(m)F jAB(m)wAB√
W iW j

)
(8)

where the importance weight wAB is defined as

wAB =
NANB∑
cellNANB

(9)

and W i is the norm

W i =
∑
AB

∑
m

[
F iAB(m)

]2
wAB . (10)

To reduce noise, we excluded hydrogen atoms from the
calculation of cosine distances. The cosine distance χc,i is
calculated as a measure of dissimilarity between the can-
didate structure and a structure i from the list of found
local minima. If χc,i > χ0 for every i and the thresh-
old parameter χ0, the candidate structure is added to
the local minima list and the NPT temperature is re-
set to the initial temperature T0. Otherwise, the candi-
date structure is considered not to be a unique minimum
and the NPT temperature is increased, i.e. T → βT .
The candidate structure replaces the N -th minimum
if the following three conditions are met: Ec < EN ,
min{χc,1, . . . , χc,N} = χc,N and χc,N−1 > χ0. With
this replacement scheme and the choice of parameters as
listed in Table I, we found that the algorithm correctly
explores local potential energy basins while preserving
structural dissimilarity of the found minima.

This concludes a complete MH cycle in our GO-
MHALP frame. If the number of cycles is less than the
given MHsteps parameter the algorithm will start a new
NPT simulation from the last found minimum and oth-
erwise the algorithm stops.

D. DFT calculations

On specific structures (see below), DFT relaxations
were additionally performed in order to validate and re-
fine the results. All DFT relaxations were performed
using the plane-wave basis set code Quantum Espresso
[60, 61] with the plane-wave basis set cutoff being
816 eV. GBRV pseudopotentials [62] were employed to-
gether with the vdW-DF-cx exchange-correlation func-
tional [63]. A Monkhorst-Pack k-point mesh [64] with a
density of 5 Å was used for Brillouin zone integration.
The atomic positions and the unit cell parameters were
relaxed until the pressure, the forces on each atom and
the total energy change were smaller than 0.5 kbar, 0.02
eV Å−1 and 1 meV, respectively.

E. Similarity measures of simulated powder XRD
patterns

In order to assess the validity of the predicted struc-
tures with our protocol, we quantified the similarity
of structures obtained with GO-MHALP to structures
solved from single-crystal XRD data by simulating their
powder XRD (PXRD) patterns and calculating a similar-
ity measure based on cross-correlation functions[65, 66]
as implemented in the PyXtal[67] Python library. Explic-
itly, the similarity measure s12 of two powder diagrams
y1(θ) and y2(θ), invariant against scaling of the PXRD
intensities, is calculated as

s12 =

∫
w(r)c12(r)dr[ ∫

w(r)c11dr
∫
w(r)c22(r)dr

]1/2 (11)

where c12 is the cross-correlation function:

c12(r) =

∫
y1(θ)y2(θ + r)dθ (12)

with the auto-correlation functions c11 and c22 defined
analogously. We used the cosine weighting function:

w(r) =

{
0.5
(

cos
(
π rl
)

+ 1
)
, |r| < l

0, |r| > l
(13)

with the cutoff l = 1.0◦. The similarity measure adopts
values between 0 and 1, where s12 = 1 corresponds to
identical PXRDs. An example of a comparison of PXRDs
simulated from an experimentally solved structure and a
minimum obtained with GO-MHALP is shown in Figure
4.

F. Potentials for iodine and mixed halide systems

GO-MHALP is a general procedure which can in prin-
ciple, given a suitable classical potential, be used for any
systems. E.g., classical potentials for Q2DPs containing
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FIG. 4. Comparison of simulated PXRDs of experimentally
solved and one of the structures predicted with GO-MHALP
of BA2PbBr4. PXRD intensity is scaled so that the highest
peak has the value 1.0. In this example the similarity measure
amounts to s =0.636.

iodine instead of bromide can be constructed in a com-
pletely analogous manner as described in Section II B,
but using the parameters for MAPbI3.[28, 30]. As de-
tailed in an another work[24], we employed GO-MHALP
to predict a mixed halide structure. We use the Berthelot
rule to calculate the Buckingham parameters for Pb−Pb
and Br− I interactions:

Amixed =
√
ABrAI, (14)

where ABr and AI denote Buckingham parameters used
for pure halide structures and Amixed are Buckingham
parameters used for the mixed halide structures.

III. RESULTS AND DISCUSSION

We first validate GO-MHALP on the well known case
of R+ = BA+ (butylammonium) cation as spacer. Both
BA2PbBr4 and BA2MAPb2Br7 have been successfully
prepared and their crystal structures were solved.[68, 69]
Following the tests on RPPs with BA we continue the val-
idation of GO-MHALP on a DJP structure containing
4AMP (4-(aminomethyl)-piperidinium).[3] We use the
experimentally obtained structures as reference points for
validation of GO-MHALP predictions. Radial distribu-
tion functions and simulated PXRD patterns for relevant
(predicted and experimental) structures may be found in
the Supplementary Information. CIF files for these struc-
tures are given the Supplementary Data.

Finally, we show performance of GO-MHALP to pre-
dict a structure of a mixed-halide Q2DP t-BA2PbBr2I2.
This structure was experimentally solved after the pre-
diction with GO-MHALP.

a) b) c)

N C H

FIG. 5. Organic spacers for which the Q2DP structure was
predicted with GO-MHALP: a) butylammonium (BA), b)
4-(aminomethyl)-piperidinium (4AMP), c) tert-butyl ammo-
nium (t-BA).
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FIG. 6. Summary of a GO-MHALP run for BA2PbBr4 with
the 2× 2 cell type and initially offset layers. Top panel: NPT
thermostat temperature and the average kinetic energy of the
last 20 ps of MD across MH cycles. Bottom panel: classical
potential energies of the candidate structures across the run
(blue) and the experimentally solved structure relaxed with
the classical potential (dashed black). Identified local minima
are marked with circles.
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FIG. 7. Similarity measures and potential energies of minima obtained with GO-MHALP for BA2PbBr4. The vertical dashed
lines labelled in legend as X/Y show similarity measures of structures X relaxed with Y level of theory (see text). Different
markers indicate different cell types, where P(O) indicates an initially parallel (offset) structure (see section IIA). Diamond (�)
markers indicate the starting GO-MHALP points after initial relaxation. The star(F) marker indicates the similarity measure
and energy of the experimental structure relaxed with the classical potential. The order of the accepted minima for the optimal
cell type is shown in the inset with the global GO-MHALP minimum emphasized with a bolded edge. Energies are shown per
formula unit with the zero of the potential energy chosen as the energy of the global GO-MHALP minimum.

A. BA2PbBr4

We first applied GO-MHALP to BA2PbBr4 RPP. The
six types of unit cells described in IIA were used as in-
puts. A summary of a GO-MHALP run is shown in Fig.
6. First, the top panel shows that during MD the sys-
tem is well thermalized to the set thermostat temper-
ature. Potential energy barriers are overcame by grad-
ually increasing the temperature and newfound minima
are accepted upon entrance into a local energy basin.
After each restart of the NPT temperature to T0, GO-
MHALP explores the surrounding configuration space in
detail and the replacement scheme described in section
IIC selects the lowest energy structure found in a basin.
The global minimum for this run, i.e. the lowest energy
local minimum, is found in a distinct basin that lies very
close in energy to the experimentally solved structure
whose atomic positions and cell parameters were opti-
mized with the classical potential (dashed line). This
is an indication that the global minimum of the model
potential is connected to the true (experimental) global
minimum by a local optimization, a point to which we
will return below.

For a complete test and validation of GO-MHALP, we
calculated similarity measures of PXRDs between the ex-
perimental structure and

a) each of the final minima predicted with six GO-
MHALP runs for the six different cell types;

b) experimental structure, relaxed with the classical po-
tential;

c) experimental structure, relaxed with DFT;

d) lowest energy (global) minimum found with GO-
MHALP, relaxed with DFT;

e) the GO-MHALP initial structure from which the global
minimum was found, relaxed with DFT.

Similarity measures a) and b) are plotted against clas-
sical potential energies in Fig. 7 as scatter points and
similarity measures b)-e) are plotted as vertical dashed
lines. In particular, the line corresponding to case (b)
sets the practical limit of the similarity measure that can
be reached by this version of GO-MHALP.

First of all, we can notice that the energies of the best
(lowest energy) minima of 1 × 1 cell types are notice-
ably higher than the larger cell types, meaning that GO-
MHALP predicts that 1 × 1 unit cells are too small to
capture all experimentally realized degrees of freedom,
which is indeed correct as the experimental structure is
of the

√
2×
√

2 type. The best minima of
√

2×
√

2 and
2 × 2 cell types cluster nearby the experimental struc-
ture relaxed with the classical potential (marked with
a star) regardless of the initially parallel or offset inter-
layers, showing that in these cases GO-MHALP reliably
finds the global minimum of the potential regardless of
the details of the input structures. While GO-MHALP
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FIG. 8. Summary of a GO-MHALP run for BA2MAPb2Br7
with the

√
2 ×
√
2 cell type and initially parallel interlayer

configuration. Top panel: NPT thermostat temperature and
the average kinetic energy of the last 20 ps of MD across MH
cycles. Bottom panel: classical potential energies of the can-
didate structures across the run (blue) and the experimentally
solved structure relaxed with the classical potential (dashed
black). Identified local minima are marked with circles.

finds the experimental structure relaxed with the clas-
sical potential, agreement of these structures with the
true experimental structure is not completely satisfactory
(similarity of around 0.7). On the other hand, relaxing
the experimental structure with DFT achieves a similar-
ity of 0.95. Clearly, GO-MHALP has the ability to find
the global minimum, but the model potential should be
improved.

The global minimum itself is found for the initially O:
2×2 cell type, with the best P: 2×2 and the

√
2×
√

2 min-
ima being slightly higher in energy. O: 2× 2 input struc-
ture after initial relaxation shows already a good similar-
ity of 0.515 which is further improved by GO-MHALP to
score 0.635 at the global minimum. Relaxing the global
minimum with DFT significantly improves this value to a
similarity measure of 0.915. This final step suggests that
an extra DFT relaxation of the global minimum found by
GO-MHALP renders final structures that can be highly
accurate. The small inset in Figure 7 depicts how the
PES exploration works in GO-MHALP in the case of the
O:
√

2×
√

2 unit cell. The system goes through a couple
of minima before locating the basin containing the global
minimum.
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FIG. 9. Summary of a GO-MHALP run for (4AMP)PbBr4
with the

√
2×
√
2 cell type, initially parallel interlayer config-

uration and alternating 4AMP molecules configuration. Top
panel: NPT thermostat temperature and the average kinetic
energy of the last 20 ps of MD across MH cycles. Bottom
panel: classical potential energies of the candidate structures
across the run (blue) and the experimentally solved structure
relaxed with the classical potential (dashed black). Identified
local minima are marked with circles.

B. BA2MAPb2Br7

We continue the validation of GO-MHALP on a sim-
ilar n = 2 RPP: BA2MAPb2Br7. The obtained simi-
larity measures are summarized in Fig. S10. As is the
case for BA2PbBr4, the global minimum of the poten-
tial is nearby the experimental structure relaxed with the
classical potential with a higher similarity measure com-
pared to the n = 1 case. A possible rationalization of
this fact is that the accuracy of the potential is expected
to grow with the number of layers n as the potential is
constructed using parameters for a 3D perovskite.

GO-MHALP correctly predicts that BA2MAPb2Br7
crystallizes in the

√
2×
√

2 cell type. The low energy re-
gion of the PES is not as rich as is the case for BA2PbBr4
and is surrounded by higher potential barriers. This can
be seen in Fig. 8: the first local basin that GO-MHALP
found was the one containing the global minimum and
higher NPT temperatures were needed to overcome basin
barriers. The relative flatness of the PES going from the
input to the global minimum is the reason why relax-
ations of input structures, both by using DFT and classi-
cal potentials, resulted in structures near the global min-
imum with an already large similarity measure. Relax-
ing the found global minimum with DFT again achieves
a slightly better similarity (0.940) compared to relaxing
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FIG. 10. Similarity measures and (classical) potential energies of (4AMP)PbBr4 starting from the experimental-like 2
√
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√
2

cell type. The vertical dashed lines indicated as X/Y show similarity measures of structures X relaxed with Y level of theory
(see text). Different markers indicate different patterns of connection of 4AMP molecules to the inorganic perovskite layer (see
text). Diamond (�) markers indicate the starting GO-MHALP points after initial relaxation. The star (F) marker indicates
the similarity measure and energy of the experimental structure relaxed with the classical potential. Energies are shown per
formula unit with the zero of the potential energy chosen as the energy of the global GO-MHALP minimum.
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FIG. 11. Starting GO-MHALP structures for t-BA2PbBr2I2.
The cell type is 2 × 2. The vectors from the nitrogen atoms
of the t-BA molecules towards the respective centers of mass
are aligned with the z-axis. The structures differ in the halide
distrubution, with the bromides (iodides) occupying a) equa-
torial (axial), b) axial (equatorial) and c) alternating posi-
tions.

the initial structure with DFT (0.930).

C. (4AMP)PbBr4

To validate the GO-MHALP workflow on a Q2DP
containing a different spacer, we select the Dion-
Jacobson type perovskite (4AMP)PbBr4.[70] 1-(4-
Piperidinyl)methanamine (4AMP) structure is shown in
Fig. 5. At one molecular end, one nitrogen atom
belongs to the aminomethyl unit, while the other is
within the piperidinyl ring on the opposite side. In a
Dion-Jacobson perovskite, these two nitrogens connect
to the inorganic perovskite layers. Therefore, neighbour-
ing organic 4AMP molecules may differently connect to
the same layer, i.e. one 4AMP may connect via the
aminomethyl unit and its neighbour via the piperidinium
unit. To account for this possibility, we considered the
following initial configurations:

(na) non-alternating; i.e. all neighbouring 4AMP
molecules connect to a perovskite layer in the same
manner;

(a1) all-alternating; i.e. all neighbouring 4AMP
molecules connect to a perovskite layer in the op-
posite manner;

(a2) half-alternating; i.e. two neighbouring 4AMP
molecules connect to a perovskite layer in the same
manner, while the other two connect in the oppo-
site manner.

Note that the configuration (a1) is possible for
√

2×
√

2
and 2×2 cell types, while (a2) is possible only for 2×2. It



11

is necessary to explicitly include all these configurations
in the initial structures since it is extremely unlikely for
the molecules to completely reorient during MD. This
gives a total number of 12 types of initial structures for
GO-MHALP.

A summary of a GO-MHALP run is shown in Fig.
9. After locating ten Q2DP local minima (including the
minimum obtained with initial relaxation), GO-MHALP
is unable to find a new unique minimum, which results
in the MD temperature rising to about 600 K. This high-
temperature MD "melts" the inorganic perovskite struc-
ture resulting in the newfound local minimum losing its
Q2DP character. We deem these "melted" types of struc-
tures unphysical predictions as the classical potential is,
by construction, well-defined only for Q2DPs and we ex-
clude them from following analysis.

The second point to be noted in Fig. 9 is that the en-
ergy of the experimentally solved structure relaxed with
the classical potential is significantly lower than any of
the structures explored by GO-MHALP. The reason for
this is that the experimentally resolved structure has
more degrees of freedom than the ones describable by
configurations in Fig. 9. Specifically, in the notation es-
tablished in this paper, the experimentally obtained cell
is of the 2

√
2×
√

2 type.[70] This cell type allows for an
intricate pattern of alternating 4AMP orientations: along
the shorter cell axis, the manner of connection does not
change, while it is altered for every second neighbour
along the long cell axis.

The summary of GO-MHALP runs for all cell types is
shown in Fig. S11. As explained in the last paragraph, all
structure types lack the necessary number of degrees of
freedom to find the experimental structure relaxed with
the classical potential. Relaxing the lowest energy min-
imum of the O(a2): 2 × 2 cell type with DFT actually
results in worse similarity (0.715) compared to simply
relaxing the initial guess structure with DFT (0.776).
However, the energy (as calculated with DFT) of the
relaxed O(a2): 2× 2 minimum is significantly lower than
the energy of the relaxed initial guess structure (0.15 eV
per formula unit), meaning that, while it is not close to
the experimental structure in a sense, it is a lower energy
local minimum.

To allow GO-MHALP to find the true global minimum,
we prepared three input structures with the same cell
type as the experimental structure by first removing the
one redundant inorganic layer from the

√
2×
√

2 cell type,
followed by an extension to a 2

√
2 ×
√

2 supercell. We
considered three 4AMP configurations:

• nonalternating: all 4AMP molecules connect to the
perovskite layer in the same manner;

• alternating: the 4AMP molecules alternate the
manner of connection to the perovskite layer along
the long cell-axis;

• experimental-like: the manner of connection of the
4AMP molecules to the perovskite layer is alter-
nated for every second neighbour.

The results of the GO-MHALP run with these struc-
ture types are shown in Fig. 10. The global mini-
mum of the potential (the experimental structure relaxed
with the classical potential) is found exclusively for the
experimental-like connection pattern. Relaxing the ini-
tial guess structure of the experimental cell type with
DFT achieves a similarity of 0.74, while relaxing the
found global minimum achieves a remarkable similarity
of 0.968, almost perfectly overlapping the similarity of
the experimental structure relaxed with DFT.

D. t-BA2PbBr2I2

We have employed GO-MHALP to predict a previously
unknown Q2DP structure and verified its prediction by
single-crystal XRD measurements. We used tert-butyl
ammonium (t-BA) as the organic spacer. While this is
detailed in a separate work [24], we here deepen the dis-
cussion of the application of GO-MHALP to that chal-
lenging case. The optical measurements indicated that
synthesis starting from a one-to-one iodide-bromide sto-
ichiometry results in t-BA2PbBr2I2, a crystallized n = 1
RP phase, while syntheses starting from pure bromide
or pure iodide stoichiometries do not yield Q2DP struc-
tures [24]. We confirmed the instability of the pure halide
Q2DPs by calculating the formation energies of the global
minima found with GO-MHALP as well as by XRD mea-
surements.

To predict the structure of the mixed-halide
t-BA2PbBr2I2, we prepared three types of input struc-
tures for GO-MHALP as shown in Fig. 11 with the cor-
responding GO-MHALP runs shown in Fig. S12. We
see that the minimum corresponding to the experimen-
tal structure relaxed with the classical potential is found
exclusively starting from the equatorial (axial) bromide
(iodine) initial configuration, consistent with the spe-
cific halide distribution we found in the structure we re-
solved experimentally with single-crystal XRD. Relaxing
the global minimum with DFT results in a remarkable
similarity of 0.967. The relaxed global minimum struc-
ture is a local DFT minimum almost isoenergetic to the
experimental structure relaxed with DFT (its energy as
calculated with DFT is higher by ≈ 4 meV/f.u), but it is
closer to the experimental structure by ≈ 0.02 similarity
points.

IV. CONCLUSION

In this work, we have introduced a workflow for au-
tomatic crystal structure prediction of Q2DP structures.
To achieve this, we have developed an automatized ini-
tial structure guess and classical potential generation
and combined them with a variant of the minima hop-
ping algorithm dubbed GO-MHALP. We tested GO-
MHALP on well known Q2DP structures: BA2PbBr4,
BA2MAPb2Br7 and (4AMP)PbBr4. We have shown that
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the global minimum is reliably found by GO-MHALP
with a weak dependence on the input structure.

The case of (4AMP)PbBr4 suggests that it is neces-
sary to start from a structure with the minimum neces-
sary number of degrees of freedom. We have also shown
how GO-MHALP can be used to predict the structure
of a mixed-halide Q2DP: t-BA2PbBr2I2. We confirmed
that not only the specific halide distribution was correctly
predicted by GO-MHALP, but also that the structural
details were predicted very precisely.[24]

While the accuracy of the classical potential itself can
be significantly improved, within our method it is not
necessary for it to be extremely precise. We have shown
that the sufficient condition for a very accurate predic-
tion is only that the global minimum of the potential is
connected to the DFT global minimum by a DFT local
relaxation. However, the potential should be improved
in general to provide reliable predictions for any Q2DP.

We also note that our approach provides physically re-
alistic predictions at a low computational price. Assum-
ing one evaluation of energy and forces with a classical
potential is 106 times faster than a single SCF calcula-
tion, 200 GO-MHALP cycles of 25 ps NPT simulations
take about as long as 5 SCF calculations. This is much
less than the number of SCF calculations performed in
a typical DFT structural relaxation. Therefore, an un-
biased structure prediction may be obtained in less time
than necessary for two DFT structural relaxations. Since
this computational cost is negligible, GO-MHALP may
be further improved by using DFT to relax a larger num-
ber of predicted structures around the found global min-
imum.

Compared to previously available minima hopping al-
gorithms, we implemented several improvements: i) the
MD temperature is restarted after a structurally unique
minimum is found; ii) the replacement scheme, which in
combination with i) ensures detailed exploration of local
PES basins; iii) employment of an NPT ensemble for the

MD part of minima hopping, and iv) inclusion of both cell
and atomic coordinate relaxations. We believe that these
improvements could be employed in structure prediction
problems generally whenever multiple kinds of degrees of
freedom (configurational, conformational, combinatorial,
etc.) render the exploration of PES particularly difficult,
e.g. in soft-matter and molecular crystals.

DATA AVAILABILITY

The complete code for generating initial struc-
tures, corresponding model potentials and running GO-
MHALP is available free of charge at https://github.
com/ovcarj/classical-RPP/tree/ase2020. Using this
code all presented data can be regenerated. Derived data
are also available from the corresponding author upon
reasonable request.

See Supplemental Material at [URL will be inserted by
publisher] for a benchmark of the accuracy of the classical
potentials, a detailed technical description of the struc-
ture generation algorithm, calculated radial distribution
functions, simulated powder XRD patterns and plots of
similarity measures versus potential energies. CIF files
of all the initial guess structures and the most relevant
found structures are also given in the Supplemental Ma-
terial.
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Value Description
Outer loop

MHsteps 170 Algorithm stops after completing MHsteps minima hopping cycles

mdmin 4000 Number of local minima to be passed through before stopping NPT dynamics

T0 / K 50 Initial temperature of NPT dynamics; temperature is reset to T0 if a minimum is
accepted

β 1.1 Factor by which the temperature of the NPT thermostat is multiplied if a candidate
minimum is rejected

Ediff / eV 1.1 If a candidate structure is greater in energy compared to the last found minimum by
Ediff, the candidate is rejected

NPT

∆t / fs 0.5 Timestep of NPT dynamics

P0 / eVÅ−3 0.0 Pressure exerted on the system during NPT dynamics

τ / fs 25.0 Characteristic timescale of the thermostat

W / eVfs2Å−3 337.5 A constant in the barostat differential equation

Local optimizations

Optimizer BFGS The local optimization algorithm

Finit / eVÅ−1 0.05 Total force convergence threshold for the initial cell optimization

Fgeo / eVÅ−1 0.1 Total force convergence threshold for geometry optimizations

Fcell / eVÅ−1 0.01 Total force convergence threshold for cell optimizations

Oganov fingerprints

χ0 0.005 Maximum cosine distance between two structures below which they are considered to
be the same structure

∆ / Å 0.05 Width of the bins into which the Oganov fingerprint components are discretized

σ / Å 0.1 Standard deviation of the gaussian smearing of fingerprints

Nσ 5 Number of standard deviations σ at which the gaussian smearing is cut off

Rc / Å lmin
Cutoff radius in Angstrom for the fingerprints. At every MH step, the shortest cell

length lmin is used

TABLE I. List of parameters used in the MH algorithm.


	Crystal structure prediction of (quasi-)two-dimensional lead halide perovskites
	Abstract
	I Introduction
	II Methodology
	A Initial structures generation
	B Construction of classical potentials
	C Minima hopping
	D DFT calculations
	E Similarity measures of simulated powder XRD patterns
	F Potentials for iodine and mixed halide systems

	III Results and discussion
	A BA2PbBr4
	B BA2MAPb2Br7
	C (4AMP)PbBr4
	D t-BA2PbBr2I2

	IV Conclusion
	 Data Availability
	 Acknowledgments
	 References


