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Abstract: We revisit the flat-sky approximation for evaluating the angular power spectra
of projected random fields by retaining information about the correlations along the line of
sight. For the case of projections with broad, overlapping radial window functions, these
line-of-sight correlations are suppressed and are ignored in the commonly adopted Limber
approximation. However, retaining the correlations is important for narrow window functions
or unequal-time spectra but introduces significant computational difficulties due to the highly
oscillatory nature of the integrands involved. We deal with the integral over line-of-sight
wave-modes in the flat-sky approximation analytically, using the FFTlog expansion of the 3D
power spectrum. This results in an efficient computational method, which is a substantial
improvement compared to any full-sky approaches. We apply our results to galaxy clustering
(with and without redshift-space distortions), CMB lensing and galaxy lensing observables
in a flat ΛCDM universe. In the case of galaxy clustering, we find excellent agreement with
the full-sky results on large (percent-level agreement) and intermediate or small (subpercent
agreement) scales, dramatically out-performing the Limber approximation for both wide and
narrow window functions, and in equal- and unequal-time cases. In the cases of lensing,
we show on the full-sky that the angular power spectrum of the lensing convergence can
be very well approximated by projecting the 3D Laplacian (rather than the correct angular
Laplacian) of the gravitational potential, even on large scales. Combining this approximation
with our flat-sky techniques provides an efficient and accurate evaluation of the CMB lensing
angular power spectrum on all scales. We further analyse the clustering and lensing angular
power spectra by isolating the projection effects due to the observable- and survey-specific
window functions, separating them from the effects due to integration along the line of sight
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and unequal-time mixing in the 3D power spectrum. All of the angular power spectrum
results presented in this paper are obtained using a Python code implementation, which
we make publicly available.

Keywords: galaxy clustering, power spectrum, weak gravitational lensing
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1 Introduction

Next-generation galaxy surveys, such as Euclid [1], DESI [2], Rubin [3], Roman [4],
SPHEREx [5, 6] and others, aim to address a range of cosmological questions, from uncovering
the nature of dark energy and tests of general relativity on large scales [7–9], to constraining
the properties of the initial conditions of the universe by measuring signals of primordial non-
Gaussianity [10–14]. To succeed in these tasks, reliable, accurate and efficient measurements
of the galaxy-overdensity statistics are paramount, amongst which the two-point functions
(e.g., angular spectra and 3D power spectra) take a leading role.

The angular power spectrum has been an observable of choice in many surveys, especially
for the study of weak gravitational lensing and the cosmic microwave background (CMB),
where the extensive comparisons of theoretical predictions and observations are used with
the goal of constraining cosmological parameters. Even for galaxy clustering surveys, where
the 3D power spectrum is the most commonly used statistic, the angular power spectrum
has certain advantages, e.g., it is defined in terms of variables — redshifts and angular
coordinates — which are cosmology independent. Moreover, on large angular scales, the
standard 3D power spectrum analysis starts to exhibit effects related to the fixed line of sight.

– 1 –
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On the other hand, angular power spectra are naturally defined on the full sky. However, the
evaluation of full-sky angular power spectra is computationally demanding (see, e.g., [15–19]
for discussion), as it involves integration over two spherical Bessel functions, making the
integrands highly oscillatory. Furthermore, for spectroscopic surveys many angular power
spectra are required between observables projected in narrow radial window functions to avoid
loss of information. There have been several attempts to speed up the full-sky evaluation
based on the FFTLog algorithm [20–23]: by expanding the 3D power spectrum in (complex)
powers of the wavenumber k, the integration over spherical Bessel functions can be performed
analytically in terms of special functions. This provides significant improvements relative
to direct computations, but the evaluation still poses substantial computational challenges
and thus motivates the search for alternative approaches. One commonly used approach
relies on a set of approximations resulting in the ‘Limber approximation’ solution [24, 25],
generically accurate on small scales (large multipoles ℓ) and appropriate only for broad and
overlapping radial window functions. However, relying on the Limber approximation for
galaxy clustering in future surveys could lead to a biased cosmological analysis (e.g., [23]),
particularly if the focus is on large or intermediate scales to avoid other modelling challenges
(e.g., scale-dependent bias, non-linear clustering and baryonic effects). For these reasons,
a middle-ground between the full-sky treatment and Limber-like approximations may be
useful. Furthermore, next-generation surveys will exhibit improved photometric-redshift
accuracy in clustering measurements with narrower radial window functions, allowing efficient
cross-correlation of galaxy fields. This is precisely the regime where the Limber approximation
is known not to be valid and thus cannot be relied upon.

An intermediate regime between the full-sky results and Limber approximations has
received much less attention in the literature, with the existing works varying in the degree of
approximations and corrections they consider [13, 16, 26–30]. The difference between Limber
and these flat-sky results lies in the treatment of the correlations along the line-of-sight, which
Limber neglects. Recently, ref. [31] explored the accuracy of the flat-sky approximation by
comparing it to the full-sky results in various setups, finding that it can reach subpercent
agreement in galaxy number counts and galaxy lensing scenarios. We highlight that the
precise form of these various flat-sky approximations, presented in the literature, can differ
in certain details that can be traced to the different choices in the geometric and other
approximations. Most of the approaches choose the 3D two-point correlation function as the
starting point. Moreover, these differences tend to become starker in the unequal-time case
(when cross-correlating galaxy sources from different redshift bins), and expressions often
get increasingly more complex compared to the equal-time case.

In this work, we revisit the flat-sky approximation enhancing the treatment in several
ways: (i) we consider the case of unequal-time projections and discuss how to define a single
effective radius for connecting the scale of transverse spatial fluctations to angular fluctuations;
(ii) we optimize the flat-sky calculation using the FFTLog algorithm, which can greatly speed
up the calculation; and (iii) we compare our results to the full-sky results in the case of galaxy
clustering and CMB lensing, providing a detailed analysis of where the flat-sky approximation
deviates from the full-sky. We investigate the dependence on 3D scales k of the angular
power spectrum for each of these observables, analysing the importance of contributions from
different integration regions before and after projection over the radial window functions.

– 2 –
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Symbol Definition
δK

ij Kronecker symbol

δnD(x) Dirac delta function in n dimensions
W (χ) Radial window function; related to the specific observable and survey
δ(x) 3D over-density field of matter or biased tracer
δ̂(θ, ϕ) 2D projected field in angular coordinates on the sky
P (k; χ, χ′) Unequal-time power spectrum of the 3D density field
Cℓ(χ, χ′) Unequal-time angular power spectrum (in the narrow window function limit)
Cℓ Projected angular power spectrum (with finite width window functions)

Table 1. Notation used for the most important quantities throughout this paper.

The paper is organized as follows. In section 2, after reviewing the full-sky angular
power spectrum and Limber approximation, we derive the corresponding result within the
flat-sky approximation retaining integration over the line-of-sight wave-modes. We present
two independent derivations of these flat-sky results, starting in Fourier space or real space,
respectively. The latter provides and motivates the commonly used geometric recalibration of
scales in the flat-sky approximation, which we adopt for our numerical results. In the same
section, we describe our implementation of the FFTLog algorithm for a fast and optimized
flat-sky calculation. In section 3, we apply our results to galaxy clustering (including also
redshift-space distortions) and CMB lensing spectra. Section 4 provides a detailed discussion
and comparison of the full- and flat-sky results. We also perform a simple asymptotic
analysis of our flat-sky angular power spectrum clarifying its functional dependencies. We
conclude in section 5. In appendix A we give a short review of the full-sky angular power
spectrum results, while appendix B provides further discussion of approximations we adopt
for lensing power spectra.

Throughout this paper, we work with the Planck best-fit spatially flat ΛCDM cosmol-
ogy [32], with CDM density Ωch

2 = 0.11933, baryon density Ωbh
2 = 0.02242, Hubble constant

H0 = 100h km s−1 Mpc−1 with h = 0.6766, scalar spectral index ns = 0.9665, and fluctuation
amplitude σ8 = 0.8103. In table 1 we summarise our notation for the key quantities that
feature throughout the paper. All results presented here are derived with a Python code
that we have developed and that we make publicly available on the GitHub repository.1 It
is built using Python3 [33], while all the basic cosmological functions are directly imported
from the Boltzmann codes CAMB [34] (for calculation of the matter power spectrum and
comparisons with the full-sky angular power spectrum of the CMB lensing potential) and
CLASS [35] (for calculation of the linear growth factor and logarithmic growth rate).

2 Angular power spectra of projected 3D fields

In this section, we study the angular power spectrum for a general observable obtained by
projecting a 3D random field. We start with a short review of the full-sky results and the

1https://github.com/GZCPhysics/BeyondLimber.git.
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commonly used Limber approximation, also stating the assumptions that the latter is based on.
In the rest of the section, we then derive the expression for the flat-sky approximation for the
angular power spectrum that, crucially, relies on incorporating the wave-modes along the line
of sight. We also discuss the origin of the geometrical recalibration of multipoles ℓ, which is
often made in the Limber approximation. Finally, we present our efficient numerical algorithm,
based on FFTlog, for evaluation of angular power spectra in the flat-sky approximation.

2.1 Full-sky angular power spectrum

We consider the projection δ̂(θ, ϕ) of some 3D field δ, where θ and ϕ are spherical coordinates.
It is convenient to use the spherical-harmonic expansion of δ̂,

δ̂(θ, ϕ) =
∞∑

ℓ=0

ℓ∑
m=−ℓ

δ̂ℓ,mY m
ℓ (θ, ϕ) , (2.1)

where the coefficients δ̂ℓ,m are easily obtained from the orthogonality of the spherical harmonics:
δ̂ℓ,m =

∫
dΩ Y m∗

ℓ (θ, ϕ)δ̂(θ, ϕ). We consider the projected field δ̂(θ, ϕ) in terms of the 3D
field δ(χ, θ, ϕ; η) in real space,

δ̂(θ, ϕ) =
∫

dχ W (χ)δ(χ, θ, ϕ; η0 − χ) =
∫

dχ W (χ)
∫

d3k

(2π)3 eik·xδ(k; η0 − χ) , (2.2)

where W (χ) is a radial window function describing the observing characteristics of a certain
tracer, as well as the specifics of the survey geometry, and η0 − χ is the conformal look-back
time. The quantity δ(k) is the Fourier transform2 of the 3D over-density field, and is related
to the 3D power spectrum as〈

δ(k; η0 − χ)δ(k′; η0 − χ′)
〉

= (2π)3δ3D(k + k′)P (k; χ, χ′) . (2.3)

For compactness, we use χ to label the look-back time η0 − χ in the power spectrum. To
maintain generality, we are interested in the angular cross-power spectrum of projected fields
δ̂(θ, ϕ) and δ̂′(θ, ϕ), where δ̂′ is constructed with a window function W ′(χ); this is given by〈

δ̂ℓ,m(δ̂′ℓ′,m′)∗
〉

=
∫

dΩdΩ′ Y m∗
ℓ (θ, ϕ)Y m′

ℓ′ (θ′, ϕ′)
〈
δ̂(θ, ϕ)δ̂′(θ′, ϕ′)

〉
= 4πδK

mm′δK
ℓℓ′

∫
dχdχ′ W (χ)W ′(χ′)

∫
k2dk

2π2 jℓ(kχ)jℓ(kχ′)P (k; χ, χ′) , (2.4)

where δK denotes the Kronecker delta symbol. Note how the projected fields are statistically
isotropic, with no correlations between different multipoles, a property inherited from the
statistical homogeneity and isotropy of the 3D field being projected. As usual, we define
the angular power spectrum Cℓ as〈

δ̂ℓ,m(δ̂′ℓ′,m′)∗
〉

= δK
mm′δK

ℓℓ′Cℓ , (2.5)

and we have the relation between the angular power spectrum and the unequal-time 3D
power spectrum

Cℓ =
∫

dχdχ′W (χ)W ′(χ′)Cℓ(χ, χ′) , (2.6)

2We use the following Fourier transform convention: f(k) ≡
∫

d3x f(x)e−ik·x.
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where we have introduced the unequal-time angular power spectrum Cℓ(χ, χ′), given by

Cℓ(χ, χ′) ≡ 4π

∫
k2dk

2π2 P (k; χ, χ′) jℓ(kχ)jℓ(kχ′) . (2.7)

The unequal-time angular power spectrum Cℓ can also be viewed as the usual projected
angular power spectrum in the limit of narrow window functions, W (χ) → δD(χ − χ∗).
Equation (2.6) cleanly separates the survey-specific radial selection, as encoded in the window
functions, and the cosmology dependence, which is all contained in Cℓ through its dependence
on the unequal-time 3D power spectrum and the mixing and projecting of 3D wave-modes and
radial distances. We will focus on these purely geometric and survey-independent projection
effects in the next sections when we develop the flat-sky approximation.

In the next sections, we will consider the unequal-time and projected angular power
spectra in flat-sky and Limber approximations. In order to distinguish between the different
quantities and their approximations, we introduce the label to the above spectra so that,
in the full-sky case, we have Cfull

ℓ (χ, χ′) and C full
ℓ correspondingly for the unequal-time and

projected angular power spectra.

2.2 Limber approximation

In studying the statistical properties of extragalactic nebulae [24], Limber first introduced
several approximations to simplify the evaluation of the two-point angular correlation function
(the inverse Legendre transform of the above angular power spectrum). Following this result,
refs. [25, 36, 37] derived the Limber approximation directly in Fourier space. Due to its
simplicity, involving a single integral for the Fourier-space version, the Limber approximation
has remained one of the most commonly used means to evaluate the angular power spectrum.
Its validity has been investigated in [38–40].

There are two basic assumptions underlying the Limber approximation in Fourier space:
(i) the sky is considered as flat; and (ii) the radial window functions are so broad compared to
scales of interest for the inhomogeneities that modes with k∥ ̸= 0 are suppressed to negligible
levels by the radial integration. The second assumption is the one that we will subsequently
relax by including the physical effects of the modes along the line of sight. We briefly re-derive
the Limber approximation here, from these assumptions. Let θ be angular position in the
plane of the sky around some line of sight n̂, and δ̂(θ) the projected field at θ. Starting from
eq. (2.2), the projected two-point correlation function in real space becomes

〈
δ̂(θ)δ̂′(θ′)

〉
=
∫

dχdχ′ W (χ)W ′(χ′)
∫

d3k

(2π)3 eik·(x−x′)P (k; χ, χ′) , (2.8)

where the 3D position x = χ(n̂ + θ) and similarly for x′. Using the second assumption,
i.e., neglecting the k∥ contributions in the 3D power spectrum P (k; χ, χ′) ≈ P (|k⊥|; χ, χ′),
we effectively constrain χ = χ′, and we can write

〈
δ̂(θ)δ̂′(θ + ∆θ)

〉
=
∫

dχ W (χ)W ′(χ)
∫

d2k⊥
(2π)2 eiχk⊥·∆θP (|k⊥|; χ) . (2.9)

– 5 –
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The angular power spectrum in the Limber approximation is then easily obtained by per-
forming the 2D Fourier transform:

CLimber
ℓ =

∫
d2∆θ e−iℓ·∆θ

〈
δ̂(θ)δ̂′(θ + ∆θ)

〉
=
∫

dχ

χ2 W (χ)W ′(χ)P (ℓ/χ; χ) . (2.10)

We shall return to the Limber approximation in section 3, where we further discuss its
validity in relation to exact, full-sky results and our new flat-sky approximation.

2.3 Flat-sky angular power spectrum

We now revisit the flat-sky angular power spectrum, but retaining the integration over modes
along the line of sight. By Fourier transforming the flat-sky projected field δ̂(θ), we obtain

δ̂(ℓ) =
∫

d2θ e−iℓ·θ
∫

dχ W (χ)
∫

d3k

(2π)3 eiχk⊥·θeik∥χδ(k; χ)

=
∫

dχ

χ2 W (χ)
∫

dk∥
2π

eik∥χδ(k∥n̂ + ℓ/χ; χ) . (2.11)

Taking the two-point correlation of this quantity gives us

〈
δ̂(ℓ)δ̂′(ℓ′)

〉
=
∫

dχ

χ2
dχ′

χ′2
W (χ)W ′(χ′)

∫
dk∥
2π

dk′∥
2π

eik∥χ e
ik′

∥χ′
(2π)3δ3D(k + k′)P (k; χ, χ′)

=
∫

dχ

χ2
dχ′

χ′2
W (χ)W ′(χ′)(2π)2δ2D (ℓ/χ + ℓ′/χ′

)
×
∫

dk∥
2π

eik∥(χ−χ′)P

(√
k2
∥ + ℓℓ′

χχ′
; χ, χ′

)
, (2.12)

where, in the first line, k = k∥n̂ + ℓ/χ and k′ = k∥n̂ + ℓ′/χ′. Note that in the 3D power
spectrum, we have set k⊥ =

√
ℓℓ′/

√
χχ′ using the 2D Dirac delta function. This is convenient

since it preserves the symmetry of the integral on the right under simultaneous exchange
of l and l′ and W (χ) and W ′(χ′), even without reference to the delta function, which will
be important later when we approximate the delta function further. Finally, changing the
variables as χ = χ̄ + δχ/2 and χ′ = χ̄ − δχ/2, we obtain〈

δ̂(ℓ)δ̂′(ℓ′)
〉

= (2π)2
∫

dχ̄ dδχ

[χ̄2 − (δχ)2/4]2
W
(
χ̄ + 1

2δχ
)

W ′
(
χ̄ − 1

2δχ
)

δ2D (ℓ/χ + ℓ′/χ′
)

×
∫

dk∥
2π

eik∥δχP

(√
k2
∥ + ℓℓ′

χχ′
; χ, χ′

)
. (2.13)

Notice that in eq. (2.13) the 2D Dirac delta function depends on the χ and χ′ variables
and thus cannot just be taken out of the radial integrals. The interpretation of this observation
is that the unequal-time two-point correlation function, in the flat-sky approximation, is not
diagonal in Fourier space, and there are also non-vanishing contributions when ℓ + ℓ′ ̸= 0.
However, we saw that this does not happen in the full-sky case in eq. (2.4), and is thus
an artefact of performing the flat-sky projections at two different χs (unequal-time). We
can understand this behaviour as follows. At radial distance χ, translating θ by a in the
flat-sky approximation produces a transverse 3D displacement of χa. The unequal-time

– 6 –
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two-point correlation function in real space will therefore not be a function of |θ − θ′|, but
rather |χθ − χ′θ′| since this quantity is invariant under 3D transverse translations. The
2D delta function δ2D (ℓ/χ + ℓ′/χ′) in eq. (2.13) is required to generate this dependence for
the real-space angular correlation function.

Nonetheless, we are most interested in scenarios when the two variables χ and χ′ and
close to the mean, i.e., χ ≈ χ′ ≈ χ̄ ≫ δχ. As argued in [19, 41], we can formally expand
the delta function around δ2D (ℓ + ℓ′) as

δ2D (ℓ/χ + ℓ′/χ′
)

= χ̄2
(
1 − δ2

)2
δ2D(ℓ+ℓ′+δ∆

)
= χ̄2

(
1 − δ2

)2
eδ∆·∂ℓ′ δ2D(ℓ+ℓ′

)
, (2.14)

where δ = δχ/(2χ̄) and ∆ = ℓ′ − ℓ. The two-point angular correlation function can thus
be expanded around its diagonal component as

〈
δ̂(ℓ)δ̂′(ℓ′)

〉
= (2π)2δ2D(ℓ + ℓ′

) ∞∑
n=0

(
←
∂ ℓ′ · ∆)n

2nn! C(n)
(√

ℓℓ′
)

, (2.15)

where the components of the projected angular spectra are given by

C(n)(ℓ) =
∫

dχ̄ dδχ

(
δχ

χ̄

)n

W
(
χ̄ + 1

2δχ
)

W ′
(
χ̄ − 1

2δχ
)
Cflat(ℓ, χ̄, δχ) , (2.16)

and we have introduced a flat-sky version of the unequal-time angular power spectrum

Cflat(ℓ, χ̄, δχ) = 1
χ̄2

∫
dk∥
2π

eik∥δχP

(√
k2
∥ + ℓ2

χ̄2(1 − δ2) ; χ̄, δχ

)
. (2.17)

This can be compared to its full-sky counterpart given in eq. (2.7). Recently, ref. [19] showed
that this flat-sky result can be obtained as a formal asymptotic limit of the full-sky case
when ℓ is large and |δχ/χ̄| ∝ 1/ℓ. In section 3, we will compare the two and show their
close agreement in various cosmological scenarios.

Regarding the higher components of the projected angular spectrum C(n)(ℓ), we can see
that they are suppressed by the powers of δχ/χ̄, which for suitable and compact choices of
window functions W (χ) is an excellent expansion. In the rest of the paper, we thus consider
only the diagonal piece Cflat(ℓ) ≡ C(0)(ℓ) as our flat-sky approximation of the projected
angular power spectrum. Note that for this term, we may replace the argument

√
ℓℓ′ of C(0)

in eq. (2.15) with ℓ since it is multiplied by the (undifferentiated) delta function. One might
be tempted to consider the higher components C(n)(ℓ) as corrections to the Cflat(ℓ) with the
goal of providing better agreement with the full-sky result C full

ℓ . This is, however, not the
correct interpretation. Indeed, as discussed earlier, from the set-up of our flat-sky result we
have sacrificed the isotropy property (manifested as the translational invariance in the 2D
plane) in the unequal-time case. The correct interpretation of the off-diagonal terms is thus
as the estimate of the error on the validity of our flat-sky Cflat(ℓ) result as an asymptotic
approximation of the full-sky result C full

ℓ , where the statistical isotropy is exactly realised.
At this point it is instructive to revisit the Limber approximation. As we have mentioned in

the previous subsection, in addition to the flat-sky approximation, the Limber approximation
also neglects the dependence of the 3D power spectrum on the wave-modes along the line

– 7 –
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of sight. Adopting this additional approximation, our result in equations (2.16) and (2.17)
immediately reduces to

C(n)(ℓ) → δK
n0

∫
dχ̄

χ̄2 W (χ̄)W ′(χ̄)P (ℓ/χ̄; χ̄) , (2.18)

in agreement with the Limber approximation (eq. (2.10)).
We emphasise that our flat-sky results and the Limber approximation, therefore, differ

only in that we keep the non-zero k∥ information, i.e., we retain the correlations along
the line-of-sight. As we shall see, keeping these wave-modes is crucial to capture features
observed in the full-sky projected angular power spectrum, especially for projected clustering
at unequal times (see [41] for the related discussion).

Before moving on, let us consider in more detail under which physical conditions we
can expect the Limber approximation to be applicable, i.e., when the wave-modes along
the line of sight can be neglected (see also [38]). We start from the expression for Cflat(i.e.,
C(0)) given in eq. (2.16). Neglecting the residual dependence on δχ in Cflat [all except the
term exp(ik∥δχ)], we see that the wavenumber dependence of the 3D power spectrum takes
the form of k2 = k2

∥ + (ℓ/χ̄)2. For the Limber assumption that P (k) ≈ P (ℓ/χ̄) to hold,
the effective k∥ domain has to be suppressed so that ℓ/χ̄ ≫ k∥. This suppression can arise
from the integral over δχ in the case of broad and overlapping radial window functions. If
this integral is performed first, neglecting the sub-leading δχ contributions in the 3D power
spectrum, it reduces to taking the Fourier transform of the δχ-dependent part of the product
of the two window functions.3 Generically, if these δχ window function contributions are
broad (we can associate to them some scale σ) their Fourier transform will be narrow and
constrained to the range |k∥| ≲ 1/σ. Finally, we conclude that for broad enough window
functions (and when the δχ integral bounds modes along the line of sight to the narrow
range |k∥| ≲ 1/σ), for angular modes with ℓ/χ̄ ≫ 1/σ we can use P (k) ≈ P (ℓ/χ̄), and
consequently the Limber approximation.

2.4 Geometric recalibration

Our new derivation of the flat-sky approximate result was obtained by working in Fourier
space. It is instructive also to tackle the problem starting from the two-point correlation
function in real space. This approach has recently been taken in refs. [31, 42]. As we shall see
below, this real-space analysis provides us with some insights into a geometric recalibration
that we include in our flat-sky approximation to improve its accuracy.

3For concreteness, let us consider a simple example of these δχ dependencies for equal Gaussian window
functions, centred on χ∗ and of width σ. We have

W
(
χ + 1

2 δχ
)

W
(
χ − 1

2 δχ
)

= 1
2πσ2 e−(χ−χ∗)2/σ2

e−δχ2/(4σ2) ,

and the δχ integral in the expression for C(0) gives∫
dδχ e−δχ2/(4σ2)eik∥δχ = 2

√
πσe

−σ2k2
∥ ,

which for large σ clearly constrains the support of the integral over k∥ to the region |k∥| ≲ 1/σ.

– 8 –



J
C
A
P
0
2
(
2
0
2
4
)
0
0
3

Figure 1. Geometric layout of the full-sky (left panel) and flat-sky (right panel) unequal-time,
two-point correlation function for points A and B separated by an angle θ and at radial distances
χ′ and χ, respectively. The observer is at O. The line-of-sight axis n̂ is the angle bisector in the
full-sky geometry. Points A′ and B′ are corresponding points in the flat-sky set-up having the same
3D separation as A and B in the spherical case. The flat-sky angular coordinate is ω ≡ 2 sin(θ/2) and
transverse separations are determined from ω through the effective distance χg ≡

√
χχ′.

We aim to compute the unequal-time angular power spectrum Cℓ(χ, χ′) from a Legendre
transform of the angular correlation function:

Cℓ(χ, χ′) = 2π

∫ 1

−1
d cos θ ξ(θ, χ χ′)Pℓ(cos θ) . (2.19)

Here, ξ(θ, χ, χ′) is simply the 3D two-point correlation function ξ3D of the density contrast δ

evaluated at radii χ and χ′ and angular separation θ. It is convenient to choose these two points
A and B as in the left-hand panel of figure 1. The 3D distance between the points satisfies

|
−→
AB|2 = (χ + χ′)2 sin2(θ/2) + (χ − χ′)2 cos2(θ/2)

=
[√

χχ′ 2 sin(θ/2)
]2

+ (χ − χ′)2 . (2.20)

This is the same distance as between points A′ and B′, which lie in planes at perpendicular
distances χ′ and χ from the observer, respectively, and have transverse separation

√
χχ′ω.

Here, ω ≡ 2 sin(θ/2) plays the role of a flat-sky angular coordinate and the effective radial
coordinate χg ≡

√
χχ′ (the geometric mean of χ and χ′) is used to connect ω with transverse

distances. This geometry is illustrated in the right-hand panel of figure 1. We note that the
mapping from the full-sky θ to the flat-sky ω is area preserving, d cos θ = ωdω. Furthermore,
ω naturally arises in the asymptotic expansion of the Legenedre polynomials, as we discuss
below. Expressing the 3D distance in terms of δχ and χgω, we have

ξ(θ, χ, χ′) = ξ3D
(√

χ2
gω2 + (δχ)2; χ, χ′

)
. (2.21)
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The 3D correlation function is the Fourier transform of the (unequal-time) 3D power
spectrum, so we can write

ξ(θ, χ, χ′) =
∫

d3k

(2π)3 P (k; χ, χ′)eik·r

=
∫

d3k

(2π)3 P (k; χ, χ′)eik∥δχeik⊥·(χgω) , (2.22)

where ω is a 2D vector in the plane of the sky with magnitude 2 sin(θ/2). We note that we
have not made any approximations so far. However, to make further progress in evaluating
the Legendre transform in eq. (2.19), we switch the integration variable to ω and extend
the domain of integration from 0 ≤ ω ≤ 2 to 0 ≤ ω ≤ ∞. Moreover, we approximate the
Legendre polynomial by the asymptotic expansion Pℓ(cos θ) ≈ J0(

√
ℓ(ℓ + 1)ω), where J0 is

the zeroth-order Bessel function of the first kind, valid for large ℓ and small θ. This gives

Cℓ(χ, χ′) ≈ 2π

∫
d3k

(2π)3 P (k; χ, χ′)eik∥δχ
∫ ∞

0
ωdω J0

(√
ℓ(ℓ + 1)ω

)
eik⊥·(χgω) . (2.23)

The integral over ω can be evaluated using the integral representation of J0:

2π

∫ ∞
0

ωdω J0

(√
ℓ(ℓ + 1)ω

)
eik⊥·(χgω) =

∫ ∞
0

ωdω

∫ 2π

0
dϕω e−iL·ωeik⊥·(χgω)

=
∫

d2ω eiω·(k⊥χg−L)

= (2π)2δ2D(k⊥χg − L) , (2.24)

where ϕω is the 2D polar angle of ω and L is a 2D vector with magnitude
√

ℓ(ℓ + 1). Finally,
evaluating the integral over k⊥ in eq. (2.23), we find

Cℓ(χ, χ′) ≈ 1
χ2

g

∫
dk∥
2π

eik∥δχP

(√
k2
∥ + ℓ(ℓ + 1)

χ2
g

; χ, χ′
)

. (2.25)

This can be integrated over χ and χ′ [or δχ and χ̄ = (χ + χ′)/2] to obtain

Cℓ ≈
∫

dχ̄dδχ

χ̄2(1 − δ2)W
(
χ̄ + 1

2δχ
)

W ′
(
χ̄ − 1

2δχ
) ∫ dk∥

2π
eik∥δχP (k; χ̄, δχ) , (2.26)

where k2 = k2
∥ + ℓ(ℓ + 1)/[χ̄2(1 − δ2)]. Equations (2.25) and (2.26) can be compared to our

previous flat-sky results, Cflat(ℓ) in eq. (2.17) and Cflat(ℓ) = C(0)(ℓ) in eq. (2.16). The only
differences are the replacement ℓ →

√
ℓ(ℓ + 1) and the presence of χ2

g = χ̄2(1−δ2), rather than
simply χ̄2, in the prefactor in eq. (2.25). The replacement ℓ →

√
ℓ(ℓ + 1) ≈ ℓ + 1/2 is widely

used in applications of the Limber approximation. We refer to it as geometric recalibration.
As we show in section 3, we find universally better agreement between our flat-sky results
and their full-sky counterparts when including this geometric recalibration. For the results in
this paper, we use the prefactor 1/χ̄2 rather than 1/χ2

g as both give very similar results.
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2.5 Evaluation of the flat-sky angular power spectrum

In this subsection we discuss our strategy for numerical evaluation of the flat-sky angular
power spectrum given in, for example, eqs. (2.16) and (2.17). The integral over k∥ is a one-
dimensional Fourier transform, which makes the evaluation fairly straightforward. Nonetheless,
direct evaluation using the discrete Fourier transform can still be somewhat time consuming.
This is especially so when the residual δχ dependencies in the 3D power spectrum are kept
since then one cannot use a single Fourier transform to obtain a grid of corresponding δχs,
but rather a single transform for each δχ point is required.

In this paper we take a different approach, relying on the fact that the 3D power spectra
(be it linear or nonlinear) can be well represented by the discrete Mellin transform. The
pioneering application of this method in cosmology was fast-Fourier-transforming the 3D
power spectrum and correlation function in ref. [20]; the algorithm has been named FFTLog.
Since then, FFTLog has also been used in the computation of nonlinear corrections to
cosmological correlators [43–47], as well as in the evaluation of the full-sky angular power
spectrum [21–23, 48]. We will follow a similar route to ref. [21], but with the difference
of applying the FFTLog algorithm to compute the flat-sky angular power spectrum. The
advantage, as we shall see, is that the resulting flat-sky expressions are significantly simpler
than their full-sky counterparts, yielding a significant computationally speed-up.

Our starting point is thus to represent the 3D power spectrum P (k) in terms of a
sum of (complex) powers of the wavenumber k, i.e., P (k) ≃

∑
i αik

νi . In this work, we
constrain our analysis to the linear version of the 3D power spectrum for which the time
dependence is separable:

P (k; χ̄, δχ) = D
(
χ̄ + 1

2δχ
)

D
(
χ̄ − 1

2δχ
)

p(k) , (2.27)

where p(k) is the 3D linear power spectrum at z = 0 and D(χ) is the linear growth factor
normalised to unity at z = 0.4 Working with the linear form of the power spectrum provides
certain simplifications, however, it is important to stress that in no significant way does this
represent a limitation of the method, and a similar procedure can be adopted when using
any nonlinear P (k) results. As discussed earlier, the relation between multipoles ℓ and 3D
wavenumbers k is, after geometric recalibration,

k =
√

k2
∥ + ℓ̃2 =

√
k2
∥ + ℓ(ℓ + 1)

χ̄2(1 − δ2) , (2.28)

where we introduced the shorthand notation ℓ̃ ≡
√

ℓ(ℓ + 1)/(χ̄
√

1 − δ2). We note that ℓ̃ has
dimensions of inverse length. We use the FFTLog algorithm to obtain the coefficients and
powers of the expansion p(k) =

∑
i αik

νi , where we note that the frequencies νi are complex
numbers with fixed negative real part (known as the bias). One can always change the real
bias term to the frequencies, with an associated change in the coefficients αi, by multiplying
p(k) by the appropriate power of k before performing the transform. In our implementation,

4For simplicity, we have assumed a linear 3D power spectrum. We can also include the nonlinear corrections,
as well as the unequal-time effects (see, e.g. [41]). The only significant change this introduces is the possible
explicit time dependence in the αi coefficients.
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we have found that using ℜ(νi) = −0.5 gives excellent recovery of the 3D power spectrum,
however, one can always change the biasing term in our code, if desired.

The flat-sky result for the unequal-time angular power spectrum given in eq. (2.17)
can thus be written as

Cflat(ℓ, χ̄, δχ) = 1
χ̄2

∑
i

α′i

∫ ∞
−∞

dk∥
2π

eik∥δχ
(
k2
∥ + ℓ̃2

) νi
2

= 1
χ̄2

∑
i

α′i
(2ℓ̃/δχ)

1
2 (νi+1)

√
πΓ
(
−νi

2
) K 1

2 (νi+1)(ℓ̃δχ) , (2.29)

where Kν(z) is the modified Bessel function of the second kind, and where we absorbed the
D (χ̄ + δχ/2) D (χ̄ − δχ/2) factor in the α′i coefficients. It is useful to introduce a function
defined as

M (2)
ν (x) ≡ 2

1
2 (ν+1)

√
πΓ
(
−ν

2
)x− 1

2 (ν+1)K 1
2 (ν+1)(x) , (2.30)

which enables us to rewrite the unequal-time angular power spectrum Cflat(ℓ) in the fol-
lowing form:

Cflat(ℓ, χ, δχ) = 1
χ̄2

∑
i

α′i ℓ̃νi+1M (2)
νi

(
ℓ̃δχ

)
. (2.31)

We note that M
(2)
ν (x) is an even function,5 i.e., M

(2)
ν (−x) = M

(2)
ν (x), which is a property

inherited from the fact that Cflat(ℓ, χ̄, δχ) = Cflat(ℓ, χ̄, −δχ). The representation of our results
in terms of the M

(2)
ν (x) functions provides us with several benefits. First, we note that

these functions do not carry any information on the cosmological parameters, i.e., in any
cosmological analysis (and once the grid of νi has been fixed) M

(2)
νi (x) can be pre-computed

and interpolated in the x variable. This allows for almost instantaneous evaluation of these
functions for any choice of x = ℓ̃δχ. Note that the argument ℓ̃δχ depends on cosmology via
the definition of the radial distances; however, we can ensure that M

(2)
νi (x) is pre-computed

over a sufficiently wide range to encompass any reasonable variation in cosmology. The rest of
the cosmological information is, of course, carried by the α′i coefficients obtained by the single
FFTLog decomposition of the linear power spectrum. The second beneficial property is that
we require (pre-evaluation) of only Nν special functions M

(2)
νi (x) functions, where Nν is the

number of frequencies used in the FFTLog expansion of p(k). This is to be contrasted with
the evaluation of the full-sky Cfull

ℓ with the FFTLog expansion, as put forward in refs. [21, 22]
and which we summarise in appendix A. The equivalent full-sky representation of the angular
power spectrum is given in eq. (A.4); it depends on the functions Iℓ (ν, t) (defined in eq. (A.3)
and where t = χ′/χ). For a given νi, separate evaluations of special functions (in this case,
involving the hypergeometric function 2F1) are required over a grid of ℓ and t values as
the arguments do not combine into the single x = ℓ̃δχ as in the flat-sky case. The full-sky
calculation thus requires a much larger number of special-function evaluations. Moreover,

5We can use the property Iν(−z) = (−1)νIν(z), and since Kν(z) = π[I−ν(z) − Iν(z)]/[2 sin(νπ)], it follows
that Kν(−z) = (−1)νKν(z).
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in each evaluation the hypergeometric function 2F1 is required, which is more involved and
thus computationally more costly than the M

(2)
ν (x). Being able to pre-compute the functions

M
(2)
νi (x) and then interpolate the argument makes the computational performance advantage

of the flat-sky approximation even starker.
In our default setup, we use Nν = 201 modes for the expansion of p(k), which is

sufficient to reproduce precisely the linear power spectrum at z = 0. We typically choose
kmin = 10−8 h/Mpc and kmax = 52.0 h/Mpc when taking the transform of p(k). With these
choices, the fractional error in the reconstructed p(k) is below 0.5% for 5 × 10−4 h/Mpc ≤
k ≤ 8 h/Mpc. One can further optimise the choice of frequencies if required. As mentioned,
we then pre-calculate the set of M

(2)
νi (x) functions choosing 2000 sampling points for their

x arguments. For projected galaxy clustering, if we sample χ̄ and δχ at 50 and 100 points,
respectively (which we found to provide a converged result), it takes about 12 s to calculate
150 multipoles in Python3 on a personal laptop. Note that these timings do not include
generation of the arrays of window functions and growth factors, and depend on the choice
of the length of sampling arrays. The algorithm could certainly be further optimised for
application in likelihood analysis, where computational time is critical. The details of our
calculation and code documentation can be found in the GitHub repository.6

3 Results for galaxy clustering and CMB lensing

In this section, we first use our results to compute the projected angular power spectrum
in the case of galaxy clustering. We then extend this analysis by including redshift-space
distortions. Lastly, we turn to the case of CMB lensing. We compare our results to the
full-sky FFTLog-based calculation following ref. [21], which we have also implemented in our
code. In each case, we also show comparisons with the Limber approximation.

3.1 Galaxy clustering

We focus first on projected galaxy clustering, where galaxies are selected within a given
redshift range according to the radial window function W (χ). We assume a simple case where
the window function is Gaussian, specified by a central distance χ∗ and width σχ, i.e.,

Wg(χ) = 1√
2πσχ

exp
[
−(χ − χ∗)2

2σ2
χ

]
, (3.1)

where, for narrow window functions, σχ is related to the standard deviation of redshift via
σχ = cσz/H(z) for a0 = 1. We highlight that our computation of the projected angular power
spectrum Cℓ, as given in eq. (2.26), is not particularly sensitive to characteristics of W (χ)
such as its smoothness. In particular, we do not require W (χ) to be differentiable (a property
used, for example, in [21]) or to have a smooth and well-behaved Fourier transform (utilised
in [23]). This may prove helpful in analyses of survey data, where the window functions may
be complicated due to photometric redshift uncertainties, for example. Rather, we focus
on developing fast computational methods for the unequal-time angular power spectrum
Cℓ, which is then integrated against the pair of window functions, without needing to put
additional constraints on these, to obtain the projected spectrum Cℓ.

6https://github.com/GZCPhysics/BeyondLimber.git.

– 13 –

https://github.com/GZCPhysics/BeyondLimber.git


J
C
A
P
0
2
(
2
0
2
4
)
0
0
3

100

101
C

(×
10

6 )
z = z′ = 1.0, z = z′ = 0.05

Flat-sky
Flat-sky recal.
Limber
Limber recal.
Full-sky

101 1025

0

5

Re
l. 

er
r. 

[%
]

100

101

C
(×

10
7 )

z = z′ = 2.0, z = z′ = 0.3

101 1025

0

5

Re
l. 

er
r. 

[%
]

Figure 2. Angular power spectra of projected galaxy clustering with equal-time window functions.
The left panel is for central redshifts z = z′ = 1.0 and width σz = 0.05, while the right panel is for
z = z′ = 2.0, with σz = 0.3. In both panels, we compare the full-sky expression (black dash-dotted
line), the Limber approximation (blue dashed line), and the flat-sky approximation (red solid line). The
green solid line and cyan dashed line are geometrically recalibrated flat-sky and Limber approximations,
as described in section 2.4. In the bottom panels we show fractional residuals compared to the full-sky
results. The grey bands represent the (fractional) statistical error in the amplitude of the power
spectrum, using all multipoles less than ℓ, in the cosmic-variance limit as described in the text.

In figure 2, we present results for the angular power spectrum of galaxy clustering
projected with equal window functions centred on redshifts z = 1.0 and 2.0, and with widths
σz = 0.05 and σz = 0.3, respectively. We find excellent overall agreement of the full- and
flat-sky results, on all scales, while the Limber approximation deviates significantly from
these on large scales. For multipoles ℓ ≲ 50, the flat-sky approximation (before geometric
recalibration) only deviates from the target full-sky angular power spectrum by a few percent
at most. These small differences between the full- and flat-sky results are removed very
effectively when the additional geometric recalibration ℓ →

√
ℓ(ℓ + 1) is implemented in the

flat-sky result (see the discussion in section 2.4). Geometric recalibration in the Limber
approximation also improves its agreement with the full-sky result somewhat, but starting
from much larger errors than our flat-sky results. We note that for the relatively narrow
window functions (left panel of figure 2), the fractional error in the Limber approximation
remains at the percent level or higher up to multipoles of a few hundred. The Limber
approximation performs better for the higher-redshift and broader window functions (the
right panel of figure 2), as expected from the discussion in section 2.2.

When considering what size of theoretical errors in the power spectrum can be tolerated,
it is not sufficient to compare to the cosmic-variance error per multipole since many multipoles
are combined to estimate cosmological parameters and the theoretical errors may be coherent
across the multipole range. Instead, we adopt the following procedure here. Consider
estimating an amplitude parameter A that simply scales a fiducial spectrum, so the true value
is A = 1. If we use all multipoles less than ℓmax when estimating A, then its cosmic-variance
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Figure 3. As figure 2 but for unequal-time window functions. The left panel is for central redshifts
z = 1.0, z′ = 1.25, with σz = 0.05 in both cases, while the right panel is for z = 2.0, z′ = 3.5, with
σz = 0.3. The true angular power spectrum is negative on large scales (the absolute value is plotted).

error is
√

2/ℓmax. If the fractional theoretical error on the power spectrum ϵℓ is less than
this cosmic-variance error for all ℓ < ℓmax, the bias in A is ensured to be less than cosmic
variance. We show

√
2/ℓ by the grey band in figure 2.

We now consider the cross-correlation between the signal projected with unequal-time
window functions. The magnitude of the angular power spectrum is shown in figure 3 for
two setups: first with central redshifts z = 1.0, z′ = 1.25 and equal widths σz = 0.05; and
second with z = 2.0, z′ = 3.5 and σz = 0.3. We again find very good overall agreement of the
full- and flat-sky results, especially once the geometric recalibration is taken into account.
In both scenarios considered, the angular power spectrum is negative (anti-correlated) on
large scales while remaining positive on smaller scales. This anti-correlation feature is also
captured very well by the flat-sky result, providing us again with sub-percent agreement with
the full-sky result on all scales (away from the zero crossing) after geometric recalibration. We
highlight that even without the recalibration, the flat-sky result correctly captures the sign
change and the shape of the full-sky results. The effect that the ℓ →

√
ℓ(ℓ + 1) recalibration

provides is a slight horizontal shift to lower multipoles on large scales. In contrast, the Limber
approximation fails to capture the sign change on large scales, being strictly positive on all
scales, and, in general, performs poorly for cross-correlations with little overlap between
the radial window functions.

As mentioned in section 2, the key difference between the Limber approximation and
our flat-sky result is that the latter retains information about the k∥ wave-modes, which
the Limber approximation explicitly disregards. As a result, the flat-sky approximation can
model both equal-time and unequal-time correlations. The inclusion of these modes along
the line-of-sight is essential to capture the correct behaviour of the cross-power spectrum for
unequal-time window functions on large scales, where they lead to anti-correlations (figure 3).
Keeping the integration over k∥ is thus the primary source of the improvements we observe in
the flat-sky results over those from the Limber approximation. Both of these approximations,
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Figure 4. Angular power spectrum for the cross-correlation of galaxy clustering with central redshifts
z = 1.0, z′ = 1.1 and equal widths σz = 0.1. The grey band is derived from the cosmic variance on
the amplitude of the cross power spectrum; see eq. (3.2).

of course, fail to account for the effects of sky curvature beyond what is already captured
by the geometric recalibration ℓ →

√
ℓ(ℓ + 1). However, our results suggest that these are

only relatively minor corrections for any realistic clustering survey setup and geometry, even
on the largest scales (ℓ < 10).

To assess the accuracy required in a cross-spectrum, we note that if the maximum
fractional error in CXY

ℓ for ℓ < ℓmax satisfies

max(ϵℓ) <

ℓmax∑
ℓ=2

(2ℓ + 1)
1 + 1/r2

ℓ

−1/2

, (3.2)

the bias in the amplitude of the cross-spectrum estimated from multipoles less than ℓmax will
be less than the cosmic variance error. Here, the correlation coefficient rℓ ≡ CXY

ℓ /
√

CXX
ℓ CY Y

ℓ .
For widely separated radial window functions, the correlation is very low and the cosmic-
variance error is dominated by chance fluctuations in the two observables X and Y . In this
limit, the requirement on the fractional accuracy of the cross-spectrum is very weak and
too large to show in figure 3. For this reason, we show in figure 4 a case with much larger
correlation (central redshifts z = 1.0 and z′ = 1.1 and widths σz = σz′ = 0.1) and include
the right-hand side of eq. (3.2) as a grey band. We see again the excellent accuracy of the
geometrically recalibrated flat-sky result.

3.2 Galaxy clustering with redshift-space distortions

In addition to the Hubble expansion, galaxies experience an additional, large-scale peculiar
motion due to gravitational infall. This motion, via the Doppler effect, causes the apparent dis-
placement of the real-space galaxy distribution along the line-of-sight direction when observed
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in redshift. In linear theory (assuming the flat-sky and distant-observer approximation), the
effect on the redshift-space over-density of sources (e.g., galaxies) can be expressed as

δs(k, z) =
(
b(k, z) + f(z)k2

∥/k2
)

δ(k, z) , (3.3)

where f ≡ d ln D/d ln a is the logarithmic growth rate, and b is the linear galaxy bias, which
we set to unity throughout this paper. Equation (3.3) is the well-known Kaiser effect [49, 50]
describing redshift-space distortions (RSD). The unequal-time 3D linear power spectrum
of δs is then simply given as

Ps(k; χ, χ′) =
(
1 + f(χ)k2

∥/k2
) (

1 + f(χ′)k2
∥/k2

)
PL(k; χ, χ′) , (3.4)

where PL(k; χ, χ′) is the 3D linear matter power spectrum at lookback times χ and χ′.
Note that Ps(k) depends separately on k∥ and k⊥ as the fixed line-of-sight breaks statistical
isotropy. Using the 3D RSD power spectrum in the expression for the unequal-time angular
power spectrum (eq. (2.17)), and keeping track separately of k∥ and k⊥, we have

Cflat(ℓ, χ̄, δχ) = 1
χ̄2

∫
dk∥
2π

eik∥δχ

(
1 +

[
f(χ) + f(χ′)

] k2
∥

k2 + f(χ)f(χ′)
k4
∥

k4

)
PL (k; χ̄, δχ) ,

(3.5)
where k =

√
k2
∥ + ℓ̃2. We decompose the linear power spectrum as a sum of power laws in the

same way as in section 2.5. To handle the additional k2
∥ and k4

∥ terms, we take derivatives of
the expression given in eq. (2.29) with respect to δχ (treating ℓ̃ and χ̄ as parameters that are
not differentiated) and simultaneously shift the νi index down. We obtain the following:∫ ∞

−∞

dk∥
2π

eiδχk∥k2
∥

(
k2
∥ + ℓ̃2

)νi/2−1
= −ℓ̃νi+1 d2M

(2)
νi−2

dx2

∣∣∣∣∣∣
x=ℓ̃δχ

, (3.6)

∫ ∞
−∞

dk∥
2π

eiδχk∥k4
∥

(
k2
∥ + ℓ̃2

)νi/2−2
= ℓ̃νi+1 d4M

(2)
νi−4

dx4

∣∣∣∣∣∣
x=ℓ̃δχ

, (3.7)

where the functions M
(2)
ν (x) are defined in eq. (2.30). Evaluating the derivatives using

relations for derivatives of modified Bessel functions, we have

M (3)
ν (x) ≡ −d2M

(2)
ν

dx2 = − 2
1
2 (ν+1)

√
πΓ
(
−ν

2
)x− 1

2 (ν+1)
[
K 1

2 (ν+1)(x) + (ν + 2)x−1K 1
2 (ν+3)(x)

]
, (3.8)

M (4)
ν (x) ≡ d4M

(2)
ν

dx4 = 2
1
2 (ν+1)

√
πΓ
(
−ν

2
)x− 1

2 (ν+1)
[
K 1

2 (ν+1)(x) + 2(ν + 2)x−1K 1
2 (ν+3)(x)

+(ν + 2)(ν + 4)x−2K 1
2 (ν+5)(x)

]
. (3.9)

The treatment and numerical implementation of these functions is similar to our discussion
of M

(2)
ν (x) in section 2.5.

Using the FFTLog expansion, eq. (3.5) can now be written as (where the linear growth
factors are again absorbed into the α′i coefficients)

Cflat(ℓ, χ, δχ) = 1
χ̄2

∑
i

α′iℓ̃
νi+1

(
M (2)

νi
(ℓ̃δχ) +

[
f(χ) + f(χ′)

]
M

(3)
νi−2(ℓ̃δχ)

+f(χ)f(χ′)M (4)
νi−4(ℓ̃δχ)

)
. (3.10)
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This is the expression we have implemented in our code. Implementation requires two
additional sets of pre-calculated special functions compared to the non-RSD case. As a result,
the total pre-calculation time increases approximately three-fold (taking around 15 min on a
personal laptop, using 2000 sampling points for ℓ̃|δχ|). For a given choice of window functions
and their sampling, the computational time for Cflat(ℓ) including RSD also increases five-fold
to approximately 0.45 sec per multipole.

Before presenting numerical results, let us briefly discuss the Limber approximation in the
presence of RSD. In its strictest form, RSD do not contribute in the Limber approximation
since they require non-zero k∥. However, by relaxing the Limber assumptions to a certain
level, ref. [51] provides a way of extending the Limber approximation to include RSD.7 We
have implemented this model in order to compare and contrast the performance of our results.

Figures 5 and 6 show the angular power spectra for projected galaxy clustering, including
RSD, for the same equal- and unequal-time setups as in section 3.1. Our flat-sky approach is
in very good agreement with the full-sky results. Similar to the case without RSDs, before
geometric recalibration, the flat-sky approximation deviates from the full-sky result by less
than 4% (for the equal-time case) and less than 6% (for the unequal-time case) on all scales
of interest. Our results again correctly capture the large-scale anti-correlation feature in the
unequal-time case. When the ℓ →

√
ℓ(ℓ + 1) geometric recalibration is taken into account,

our flat-sky results further improve, reducing the relative error to less than 2% for both
equal-time and unequal-time cases, even on the largest scales.

In comparison, the extended Limber approximation of ref. [51] exhibits similar behaviour
as without RSD for the case of equal-time window functions (figure 5). As expected, the
approximation is only accurate at smaller scales and performs better with broader window
functions, although the RSD are suppressed for such window functions. In the case of unequal-
time window functions (figure 6), with RSD included, the extended Limber approximation
does capture the large-scale anti-correlation feature in the angular power spectrum, although
the shape is not accurately reproduced. We note that while the usual Limber approximation
without RSD is strictly positive on all scales, the RSD contributions to GLimber

ℓ (χ) of the
extended approximation may be negative on large scales for some range of χ, allowing the
power to be negative too. Since RSD make a significant contribution on large scales in
figure 6 (compare with figure 3), this may account for the rough agreement there between
the extended Limber approximation and the full-sky spectrum.

7This extension can be implemented by first defining G(χ) = D(χ)W (χ) and Gf (χ) = f(χ)D(χ)W (χ)
for each radial window function W (χ), and then using the following effective weight in the usual Limber
approximation (with the 3D power spectrum evaluated at k = (ℓ + 1/2)/χ):

GLimber
ℓ (χ) = G(χ) + 2ℓ2 + 2ℓ − 1

(2ℓ − 1)(2ℓ + 3)Gf (χ) − (ℓ − 1)ℓ
(2ℓ − 1)

√
(2ℓ − 3)(2ℓ + 1)

Gf

(2ℓ − 3
2ℓ + 1χ

)
− (ℓ + 1)(ℓ + 2)

(2ℓ + 3)
√

(2ℓ + 1)(2ℓ + 5)
Gf

(2ℓ + 5
2ℓ + 1χ

)
.
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Figure 5. Angular power spectra of projected galaxy clustering, including RSD, with equal-time
window functions. The left panel is for central redshifts z = z′ = 1.0 and width σz = 0.05, while the
right panel is for z = z′ = 2.0, with σz = 0.3. In both panels, we compare the full-sky calculation
(black dash-dotted line), the extended Limber approximation (blue dashed line), and the flat-sky
approximation without geometric recalibration (red solid line) and with recalibration (green solid line).
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Figure 6. As figure 5 but for unequal-time window functions. The left panel is for central redshifts
z = 1.0, z′ = 1.25, with σz = 0.05, while the right panel is for z = 2.0, z′ = 3.5, with σz = 0.3.

3.3 CMB lensing

Moving on from the galaxy clustering case, in this subsection we apply the flat-sky approx-
imation to CMB lensing (see ref. [52] for a review). The variable of interest is the CMB
lensing potential ϕ, which is related to the line-of-sight integral of the Newtonian potential
Ψ (or, more carefully, the Weyl potential) in the Born approximation:

ϕ = −2
∫ χ∗

0
dχ

χ∗ − χ

χ∗χ
Ψ(x; η0 − χ) , (3.11)
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where χ∗ is the comoving distance of the CMB last-scattering surface (note that in all the
calculations, we assume a flat universe).

Two differences emerge, therefore, when comparing the galaxy clustering and CMB
lensing calculations, as follows.

(i) The choice of window function:

WΨ(χ) = −2χ∗ − χ

χ∗χ
. (3.12)

(ii) The field being considered is the Newtonian potential Ψ rather than the matter over-
density. They are related by the Poisson equation (in Fourier space and assuming
anisotropic stress is negligible)

−k2Ψ(k; z) = 4πGa2ρ̄m(z)δ(k; z) , (3.13)

where ρ̄m(z) is the background matter density.

It is straightforward to relate the 3D power spectra of Ψ and δ according to

PΨ(k; χ, χ′) = 3Ωm(χ)a2(χ)H2(χ)
2

3Ωm(χ′)a2(χ′)H2(χ′)
2

Pδ(k; χ, χ′)
k4 , (3.14)

where Ωm(χ) is the fraction of the energy density in matter, and H(χ) is the Hubble parameter.
Defining NΨ(χ) ≡ 3Ωm(χ)a2(χ)H2(χ)/2, our flat-sky approximation to the angular power
spectrum of the lensing potential is

Cϕϕ(ℓ) =
∫

dχ̄dδχ WΨ
(
χ̄ + 1

2δχ
)

WΨ
(
χ̄ − 1

2δχ
)

NΨ
(
χ̄ + 1

2δχ
)

NΨ
(
χ̄ − 1

2δχ
)

× 1
χ̄2

∫
dk∥
2π

eik∥δχ 1
k4 Pδ (k; χ̄, δχ) , (3.15)

where the total wavenumber k is again given by eq. (2.28).
For the 3D power spectrum of the matter over-density, Pδ, we again take the unequal-time

linear theory prediction given in eq. (2.27). After performing the FFTLog expansion of p(k),
all we need is to shift every νi in eqs. (2.29) and (2.31) to νi − 4, while keeping the α′i
unchanged. The angular power spectrum of the lensing potential can then be written as

Cϕϕ(ℓ) =
∫

dχ̄dδχ WΨ
(
χ̄ + 1

2δχ
)

WΨ
(
χ̄ − 1

2δχ
)
Cflat(ℓ, χ̄, δχ) , (3.16)

where the appropriate unequal-time angular power spectrum for lensing is

Cflat(ℓ, χ, δχ) = NΨ
(
χ̄ + 1

2δχ
)

NΨ
(
χ̄ − 1

2δχ
) 1

χ̄2

∫
dk∥
2π

eik∥δχ 1
k4 Pδ (k; χ̄, δχ)

= 1
χ̄2 NΨ

(
χ̄ + 1

2δχ
)

NΨ
(
χ̄ − 1

2δχ
)∑

i

α′i ℓ̃νi−3M
(2)
νi−4

(
ℓ̃δχ

)
. (3.17)

In the CMB lensing literature, when employing the Limber approximation, the angular
power spectrum of the lensing convergence κ is generally calculated rather than the lensing
potential ϕ. The convergence is related to the angular Laplacian of the lensing potential:
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κ = −∇2
θϕ/2, so that the spherical power spectra are related by Cκκ

ℓ = [ℓ(ℓ + 1)]2Cϕϕ
ℓ /4.

In the flat-sky approximation, we have

∇2
θϕ =

∫
dχ WΨ(χ)χ2∇2

⊥Ψ , where ∇2
⊥Ψ = ∇2Ψ − ∂2Ψ

∂χ2 . (3.18)

The field being projected is, therefore, the transverse Laplacian of Ψ, which in Fourier space is

−k2
⊥Ψ = −

(
k2 − k2

∥

)
Ψ = −

(
1 − k2

∥/k2
)

k2Ψ =
(
1 − k2

∥/k2
)

NΨ(χ)δ(k) . (3.19)

If we calculate the angular power spectrum of κ directly with our flat-sky approximation,
we have

Cκκ(ℓ) = 1
4

∫
dχ̄dδχWΨ

(
χ̄+ 1

2δχ
)

WΨ
(
χ̄− 1

2δχ
)

NΨ
(
χ̄+ 1

2δχ
)

NΨ
(
χ̄− 1

2δχ
)

χ̄4
(
1−δ2

)2

× ℓ̃4

χ̄2

∫
dk∥
2π

eik∥δχ Pδ(k; χ̄, δχ)
k4

∣∣∣∣
k=
√

k2
∥+ℓ̃2

, (3.20)

where ℓ̃ =
√

ℓ(ℓ + 1)/χg with χg = χ̄
√

1 − δ2 =
√

χχ′ as usual (after geometric recalibration).
Here, the factor χ̄4 (1 − δ2)2 = (χχ′)2 comes from the conversions between angular and
transverse Laplacians at radii χ and χ′, and ℓ̃4 from k4

⊥. Their product is [ℓ(ℓ + 1)]2 and
so, comparing with eq. (3.15), we recover

Cκκ(ℓ) = [ℓ(ℓ + 1)]2Cϕϕ(ℓ)/4 , (3.21)

in agreement with the full-sky relation.
As we shall discuss shortly, the flat-sky expression (3.15) for the angular power spectrum

of the CMB lensing potential is less accurate on large scales than the clustering results
presented in the previous section. This is because of the different scale dependencies of the
3D power spectra P (k) (gravitational potential versus over-density), with the lensing case
having most power on large scales, and the window functions, with lensing being very broad
and extending to χ = 0 where WΨ ∝ 1/χ. We propose an alternative flat-sky approximation
whereby we ignore the distinction between the transverse and full Laplacian in the lensing
convergence, approximating

κ ≈ −1
2

∫ χ∗

0
dχ WΨ(χ)χ2∇2Ψ(x; η0 − χ) . (3.22)

In this case, the scale dependence of the field being projected is the same as for clustering.
The approximation wrongly includes radial derivatives of the gravitational potential. We test
the accuracy of this approximation firstly in the full-sky case. In figure 7 (left panel), we
compare the full-sky angular power spectrum of the approximate convergence (eq. (3.22))
with the full-sky [ℓ(ℓ + 1)]2Cϕϕ

ℓ /4; the maximum difference is below 0.5% (and much less
on smaller scales). The effect of the radial derivatives is very small, even on large scales,
because of the integration over the broad lensing window function. We provide further insight
into this approximation in appendix B.
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Figure 7. Angular power spectrum of the CMB lensing potential. In the left panel, the green solid
line is our flat-sky approximation computing the power spectrum of the lensing potential directly
(eq. (3.15)), while the red solid line is our alternative flat-sky approximation, computing the convergence
directly with the full 3D Laplacian rather than just the transverse Laplacian (eq. (3.23)). The cyan
dashed line is the Limber approximation. This, and the flat-sky results in this panel, include geometric
recalibration. The black dot-dashed line is the exact full-sky angular power spectrum, while the blue
solid line is from the full-sky convergence power spectrum but computed with the full 3D Laplacian,
rather than the transverse Laplacian, acting on the gravitational potential. The latter wrongly includes
radial derivatives of the potential, but introduces only a very small error. In the right panel, we
compare the exact full-sky result to the flat-sky (working from the lensing potential) and Limber
approximations without geometric recalibration. Comparing with the same colour lines in the left
panel illustrates the importance of recalibration (i.e., replacing ℓ with

√
ℓ(ℓ + 1)) on large scales for

lensing. The grey bands represent the (fractional) statistical error in the amplitude of the power
spectrum, using all multipoles less than ℓ, in the cosmic-variance limit as described in section 3.1.

We therefore proceed to compute the angular power spectrum of the approximate
convergence in eq. (3.22) using the flat-sky approximation. This is simply given by eq. (3.20),
but with 1/k4 in the integral over k∥ replaced with 1/ℓ̃4, so that

Cκκ(ℓ) = 1
4

∫
dχ̄dδχWΨ

(
χ̄+ 1

2δχ
)

WΨ
(
χ̄− 1

2δχ
)

NΨ
(
χ̄+ 1

2δχ
)

NΨ
(
χ̄− 1

2δχ
)

χ̄4
(
1−δ2

)2

× 1
χ̄2

∫
dk∥
2π

eik∥δχPδ

(√
k2
∥+ ℓ̃2; χ̄, δχ

)
. (3.23)

We shall also compare to the Limber approximation. For CMB lensing this is

Cϕϕ,Limber
ℓ =

∫
dχ̄ W 2

Ψ (χ̄) N2
Ψ (χ̄) χ̄2

ℓ4 Pδ(ℓ/χ̄; χ̄) , (3.24)

while with geometric recalibration we replace ℓ with
√

ℓ(ℓ + 1).
Figure 7 compares several approximations to the CMB lensing angular power spectrum

with the full-sky result. The flat-sky result in eq. (3.15), which starts from the lensing
potential ϕ, and the Limber approximation in eq. (3.24) are accurate at the percent level
or better for ℓ > 10 after geometric recalibration. The importance of recalibration is shown
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Figure 8. As figure 7, but for the lens source plane at z = 2 rather than the CMB last-scattering sur-
face.

in the right panel of the figure; without it, the fractional errors in the flat-sky and Limber
approximations are significantly larger at low multipoles and not until ℓ ≳ 100 are they
at the percent level. For ℓ ≲ 10, the recalibrated flat-sky and Limber approximations are
less accurate. As noted above, these larger errors arise from the shape of PΨ(k) and the
form of the window function for CMB lensing. However, we find that if instead we compute
the convergence power spectrum approximating the transverse Laplacian with the full 3D
Laplacian (eq. (3.23)), the errors on large scales are reduced to below one percent and are
much below this on smaller scales. This provides a uniformly accurate approximation, and
outperforms the Limber approximation on all scales.

Curiously, the Limber approximation after geometric recalibration is rather more ac-
curate on large scales than the flat-sky approximation that takes the lensing potential as
its starting point (compare the cyan and green lines in figure 7). This is only the case
after geometric recalibration, which appears to overly suppress the CMB lensing angular
power spectrum.

3.4 Galaxy lensing

We find similar results as for CMB lensing when the source plane is at lower redshift, as
appropriate for lensing of galaxies. In figure 8, we show the angular power spectrum of the
lensing potential for sources at z = 2 (compared to z ≈ 1080 for the CMB last-scattering
surface). In figure 9, we consider the cross-correlation between the lensing convergence field
for these sources and projected clustering centred at z = 0.5 with σz = 0.2. In both cases,
replacing the transverse Laplacian by the full 3D Laplacian in the spherical convergence
is still a very good approximation on all scales. Furthermore, the (recalibrated) flat-sky
approximation with the 3D Laplacian very accurately reproduces its full-sky equivalent.
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Figure 9. Angular power spectrum for the cross-correlation between the lensing convergence for a
source plane at z = 2 and projected clustering with central redshift z = 0.5 and width σz = 0.2. The
grey band is derived from the cosmic variance on the amplitude of the cross power spectrum; see
eq. (3.2).

4 Unequal-time angular power spectra, Cℓ

In the previous section, we compared the full-sky and flat-sky-approximated projected angular
power spectra for galaxy clustering and CMB lensing. In both cases, the results are given as
integrals of the unequal-time angular power spectrum Cℓ over the observable- and survey-
specific window function. The expression for the full-sky case is given in eq. (2.6), while for
the corresponding flat-sky case we refer to eq. (2.16) (or eq. (2.26)). Any errors in the flat-sky
approximation for the projected angular power spectra must therefore8 arise from errors in
the unequal-time spectra Cℓ. Moreover, Cℓ is entirely independent of the specific survey and
functional forms of the chosen window functions and thus solely determined by cosmology. In
this section, we analyse these unequal-time spectra in more detail, comparing the full-sky Cℓ,
given in eq. (2.7), and the flat-sky Cflat(ℓ), given in eq. (2.17). For CMB lensing, we consider
the calculation of the lensing potential, wherein we project the gravitational potential, to
highlight the effect of the very different scale dependence of the 3D power spectrum. The
relevant flat-sky Cflat(ℓ) is given in eq. (3.17). Throughout this section, we adopt the geometric
recalibration of the flat-sky spectra, replacing ℓ with

√
ℓ(ℓ + 1).

Recall that the key differences between the calculations for matter clustering and the
CMB lensing potential are: (i) the scale dependence of the 3D power spectra P (k) (over-

8Of course, errors in the unequal-time angular power spectrum may cancel when performing the radial
integrals. Reproducing the unequal-time spectrum for all radii is therefore sufficient, but not necessary, for the
observable spectrum to be accurate. For example, with broad window functions the Limber approximation
is accurate on small scales, but the unequal-time angular power spectrum will generally still have support
for δχ ̸= 0.
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Figure 10. 2D plots of the unequal-time angular power spectrum Cℓ(χ, χ′) for projected clustering.
The columns correspond to multipoles ℓ = 2, 10 and 100. The first row shows the flat-sky approximation
Cflat(ℓ), while the second row is the full-sky Cfull

ℓ . The third and fourth rows are the flat-sky and
full-sky Cℓ(χ, χ′), respectively, multiplied by radial window functions that are Gaussians centred at
z = z′ = 1.0, with widths σz = σz′ = 0.05. Note the colour scales are logarithmic and the dynamic
range is greatly expanded in the bottom two rows to probe the tails of the window functions.

density versus gravitational potential), with the lensing case having most power on large
scales; and (ii) the window functions, with lensing being very broad and extending to χ = 0
where WΨ ∝ 1/χ. Both differences would be expected to exacerbate errors in the flat-sky
approximation at low multipoles, as seen in figure 7. Only the difference in the 3D power
spectra impacts the Cℓ directly, but the window functions control what ranges of χ and χ′

(or χ̄ and δχ) contribute significantly to the projected spectra Cℓ.
In figures 10 (for clustering) and 11 (lensing), we plot in the top two rows Cfull

ℓ and
Cflat(ℓ) as a function of χ and χ′ for multipoles ℓ = 2, 10 and 100. Comparing the two figures,
we see clearly how the dependence of Cℓ on distances is determined by the shape of the
3D power spectrum. For clustering, the support of Cℓ is strongly clustered around χ = χ′

(δχ = 0) and so correlations between different radii fall sharply with their separation. For
window functions broad compared to the off-diagonal width of Cℓ, the Limber approximation
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will be very accurate. In constrast, for the lensing case there are significant correlations
between widely separated radii, with the distributions becoming broader at low multipoles.
These differences arise from the very different k∥ dependence of the 3D spectra P (

√
k2
∥ + ℓ̃2)

when projecting δ or Ψ, being much more concentrated around k∥ = 0 for the lensing case.
Since the δχ dependence of Cℓ is determined mostly by the Fourier transform of the 3D
spectrum with respect to k∥, the narrower 3D spectra for lensing give broader correlations in
δχ. The bottom two rows in figures 10 and 11 multiply the Cℓ by the appropriate pair of
window functions; the integral of the resulting quantity over χ and χ′ gives the observable
projected spectra. For clustering, the window functions are Gaussians centred on z = 1 with
widths σz = 0.05. At low multipoles, the lensing angular power spectrum receives significant
contributions from nearby structures, a point we shall return to below. For both clustering
and lensing, we see good agreement between the full- and flat-sky results, and indeed at the
level of figures 10 and 11 it is difficult to see any differences.

In order to highlight specific aspects of the unequal-time angular power spectra, we plot
slices through Cℓ(χ, χ′) in figures 12 (clustering) and 13 (lensing). The top rows show the
dependence on χ̄ ≡ (χ + χ′)/2 at δχ ≡ χ − χ′ = 0. For the clustering case, Cℓ monotonically
decreases with χ̄, while for lensing it monotonically increases. In section 4.1 we explain how
the asymptotic behaviours of the Cℓ at small and large χ̄, for δχ = 0, follow from the shape
of the specific 3D power spectrum being projected. The bottom rows of the figures show the
changes in the compactness of Cℓ considered as a function of δχ for a fixed χ̄ = 2381 Mpc/h

(corresponding to z = 1.05). In both clustering and lensing cases, the peak of Cℓ over δχ

becomes narrower as ℓ increases so that correlations between different radii are suppressed.
As also seen in the 2D plots in figures 10 and 11, the peak is much broader and flat-topped
for lensing than clustering. It is also noteworthy that the clustering Cℓ can be negative for
low multipoles, giving anti-correlations between different radii, but the lensing Cℓ cannot.
This behaviour arises from the 3D clustering power spectrum, Pδ(

√
k2
∥ + ℓ̃2), having a local

minimum at k∥ = 0 for ℓ̃ ≪ keq, where keq is the matter-radiation equality scale.
Let us focus next on the comparison of the full-sky and flat-sky Cℓ in the sectional

plots in figures 12 (clustering) and 13 (CMB lensing). At low multipoles, differences start
to appear in the lensing case for small radii χ and χ′ or, equivalently, at low χ̄ for δχ = 0
(as in the top row of figure 13), or for |δχ| ≈ 2χ̄ (bottom row of the figure). These differences
are exacerbated by multiplication by the lensing radial window functions, which, recall,
behave as WΨ ∝ 1/χ for χ ≪ χ∗, as shown in the second row of the figure. At the
lowest multipoles, significant errors in Cflat(ℓ) from lenses at χ̄ ≲ 200 Mpc/h lead to the
relatively large errors in the angular power spectrum of the CMB lensing potential seen
in figure 7. However, we emphasise again that a simple and accurate work-around is to
calculate the flat-sky convergence power spectrum, replacing the transverse Laplacian by
the full 3D Laplacian.

Finally, let us look in more detail at the range of distances that contribute to the CMB
lensing angular power spectrum. We show in figure 14 the cumulative contribution to Cϕϕ

ℓ

from χ̄ ≤ χ̄up (integrating over all allowed δχ). We compare the full-sky result, the Limber
approximation and the flat-sky approximation (proceeding via the lensing potential). As
expected from the projection, CMB lensing picks up more contributions from larger distances
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Figure 11. As figure 10 but for the CMB lensing case, where the relevant 3D power spectrum is
Pδ(k)/k4 rather than Pδ(k). In the bottom two rows, the lensing kernels (eq. (3.12)) are included.

at higher multipoles. At ℓ = 2, around 10 % of the angular power comes from χ̄ < 200 Mpc/h,
where figure 13 shows there are significant errors in the flat-sky approximation.

4.1 Asymptotic analysis of the flat-sky Cℓ

In this subsection, we discuss the asymptotic behaviour of the unequal-time angular power
spectrum for small and large χ̄ at δχ = 0, corresponding to the top rows in figures 12 and 13.
In the earlier sections, we have found good agreement between the full-sky and the flat-sky
behaviour; for simplicity, we therefore focus on analyzing the flat-sky case only. For this
purpose, we also reduce the 3D power spectrum to a very simple form, roughly capturing the
behaviour of the ΛCDM matter power spectrum in the IR/UV regime. We thus have

k3
eqp(k) ∼

k/keq , k ≪ keq ,

(k/keq)−3+ϵ , k ≫ keq ,
(4.1)

where keq is the power spectrum equality scale and 0 < ϵ < 1.
Setting δχ = 0 in eq. (2.17), Cflat(ℓ) simply reduces to integrating the matter power

spectrum over k∥. We consider first the behaviour as χ̄ → 0 so that ℓ̃ ≫ keq for all ℓ.
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Figure 12. Slices through the unequal-time angular power spectrum Cℓ(χ, χ′) for projected clustering.
The columns correspond to multipoles ℓ = 2, 10 and 100. The first row compares the flat-sky
approximation Cflat(ℓ) and the full-sky Cfull

ℓ as a function of χ̄ ≡ (χ + χ′)/2 at δχ ≡ χ − χ′ = 0. The
second row shows slices at χ̄ = 2381 Mpc/h (around z = 1) as a function of δχ.
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Figure 13. Slices through the unequal-time angular power spectrum Cℓ(χ, χ′) appropriate to the CMB
lensing potential. The columns correspond to multipoles ℓ = 2, 10 and 100. The first row compares
the flat-sky approximation Cflat(ℓ) and the full-sky Cfull

ℓ as a function of χ̄ at δχ = 0. The second row
multiplies these by the lensing window functions [so the quantity plotted has dimensions of (h/Mpc)2].
The third row shows slices (without multiplication by the window functions) at χ̄ = 2381 Mpc/h

(around z = 1) as a function of δχ.
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Figure 14. Cumulative contribution to the angular power spectrum of the CMB lensing potential,
Cϕϕ

ℓ , from χ̄ ≤ χ̄up. Results are shown for the full-sky (blue solid lines), Limber approximation (green
dashed lines) and flat-sky approximation (eq. (3.16); orange dot-dashed lines). Each panel represents
a different multipole ℓ.

For k∥ ≪ ℓ̃, we approximately consider the power spectrum as independent of k∥, i.e.,
k3

eqp(k) ∼ (ℓ̃/keq)−3+ϵ, while for k∥ ≫ ℓ̃, we can ignore the contribution of ℓ̃ in k, so that
k3

eqp(k) ∼ (k∥/keq)−3+ϵ. For clustering, therefore, we have

Cflat(ℓ) ∼ D2(χ̄)
k3

eqχ̄2

∫ ℓ̃

0

dk∥
2π

(
ℓ̃

keq

)−3+ϵ

+
∫ ∞

ℓ̃

dk∥
2π

(
k∥
keq

)−3+ϵ


= 1
2π

(3 − ϵ

2 − ϵ

)
[ℓ(ℓ + 1)]−1+ϵ/2(keqχ̄)−ϵ , (4.2)

where we have used the asymptotic property of the linear growth factor at low χ̄, D(χ̄) → const.
The only change in the lensing case is that we divide P (k) by an additional factor of k4,
which gives the asymptotic χ̄4−ϵ behaviour. These asymptotic behaviours can be observed in
the top rows of figures 12 and 13 for projected clustering and lensing, respectively.

Similarly, for large χ̄, we can take ℓ̃ to be much smaller than keq. We have to consider three
regions in the matter power spectrum. For k∥ ≪ ℓ̃, we still have a constant k3

eqp(k) ∼ ℓ̃/keq.
For ℓ̃ ≪ k∥ ≪ keq, we take k3

eqp(k) ∼ k∥/keq, while for k∥ ≫ keq, we take k3
eqp(k) ∼

(k∥/keq)−3+ϵ. Collecting the three regimes gives us

Cflat(ℓ) ∼ D2(χ̄)
k3

eqχ̄2

∫ ℓ̃

0

dk∥
2π

(
ℓ̃

keq

)
+
∫ keq

ℓ̃

dk∥
2π

(
k∥
keq

)
+
∫ ∞

keq

dk∥
2π

(
k∥
keq

)−3+ϵ


= 1
2π

D2(χ̄)
(keqχ̄)2

(
ℓ(ℓ + 1)
2(keqχ̄)2 + 1

2 + 1
2 − ϵ

)
. (4.3)

For projected clustering and keqχ̄ ≫ 1, this implies that Cflat
ℓ ∼ D2(χ̄)χ̄−2, consistent with

the steeper fall-off in the top row of figure 12 at large χ̄. Following the same calculation for
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lensing (and dividing the power spectrum by k4), we have

Cflat(ℓ) ∼ 1
k3

eqχ̄2

∫ ℓ̃

0

dk∥
2π

(
ℓ̃

keq

)−3

+
∫ keq

ℓ̃

dk∥
2π

(
k∥
keq

)−3

+
∫ ∞

keq

dk∥
2π

(
k∥
keq

)−7+ϵ


= 1
2π

1
(keqχ̄)2

(
3
2

(keqχ̄)2

ℓ(ℓ + 1) − 1
2 + 1

6 − ϵ

)
, (4.4)

where we have already used the property that D(χ̄)NΨ(χ̄) is approximately constant at
large χ̄. This means that Cflat(ℓ) approaches to a constant for large χ̄, as we observe in
the top row of figure 13.

5 Conclusion

We revisited the performance of the flat-sky approximation in evaluating the angular power
spectrum of projected fields. Unlike the commonly used Limber approximation, we retained
the contribution of wave-modes along the line of sight (labelled by k∥). We showed that
with this inclusion, very accurate spectra can be obtained with the flat-sky approximation
including cases where the projection is with narrow radial window functions or window
functions with limited overlap. Moreover, the approximation generally remains accurate
at low multipoles, where curved-sky effects are expected to be significant, with a simple
geometric recalibration of the flat-sky results. Our flat-sky approximation also provides
a self-consistent way of including redshift-space distortion effects, given that we explicitly
retain the dependence on the k∥ modes.

Our results were developed in a general form, independent of the specifics of a given
observable or survey. For this purpose, we separated the computation of the projected angular
power spectrum into computation of the unequal-time angular power spectrum, Cℓ(χ, χ′), and
integration over survey- and observable-specific radial window functions, W (χ) and W ′(χ′).
The Cℓ(χ, χ′) includes only the projections of the relevant unequal-time 3D power spectrum
onto radii χ and χ′, and takes the form of a Fourier integral over k∥ with conjugate variable
δχ = χ − χ′. Given the specifics of each observable and survey, the treatment of the radial
integrals over the window functions can then be further optimised.

A key step in our numerical evaluation of the angular power spectrum in the flat-sky
approximation is accelerating the evaluation of Cℓ(χ, χ′) based on a discreet Mellin transform
of the 3D power spectrum, commonly called the FFTLog algorithm. We utilise FFTLog
to expand the 3D power spectrum as a sum of power-laws in k with complex frequencies
νi. The Fourier integral required for Cℓ(χ, χ′) can then be expressed as a sum of modified
Bessel functions of the second kind Kνi(x). In comparison, an equivalent procedure in the
calculation of the full-sky angular power spectrum results in a sum of terms involving the
hypergeometric functions 2F1(a, b; c; z) [21], increasing the computational complexity and
evaluation time. Moreover, these modified Bessel functions depend only on the variable
x = δχ

√
ℓ(ℓ + 1)/

√
χχ′. We can therefore easily pre-compute and store the Kνi(x) functions

and interpolate them as required to evaluate the angular power spectrum at different points in
parameter space when sampling over cosmological parameters during inference. For simplicity,
we presented results using only the linear-theory 3D power spectrum. However, the method
is general and can be applied to any choice of the 3D power spectrum (not necessarily
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given in perturbative form). We note that further numerical optimisations are possible, e.g.,
implementing an optimised set of the complex frequencies νi and improved sampling for the
integration over the radial window functions. We are exploring the former, and emulation
of the associated Mellin transform, in ongoing work. Even so, and irrespective of these
further optimisations, our flat-sky approach already provides a significant computational
improvement compared to the full-sky FFTLog-based algorithm.

We presented results for projected clustering (e.g., galaxy surveys) with and without
redshift-space distortions, gravitational lensing and their cross-correlation. In general, we
found excellent (percent-level or better) agreement of the flat-sky and full-sky results on
all scales (including also the lowest ℓs), with the flat-sky results outperforming the Limber
approximation. However, we found rather larger errors from the flat-sky approximation
when evaluating the angular power spectrum of the CMB lensing potential at low multipoles.
These errors arise since the power spectrum of the gravitational potential, whose projection
determines the CMB lensing potential, is very red with most power on large scales. Further-
more, the radial window function rises as 1/χ at small radial distances, so at low multipoles
non-negligible contributions to the lensing power spectrum come from nearby lenses. We
presented a simple work-around that restores the accuracy of the flat-sky approximation on
large scales. This involves working with an approximate form of the lensing convergence,
which approximates the transverse part of the Laplacian of the gravitational potential (coming
from the angular Laplacian in the convergence) by the full 3D Laplacian including radial
derivatives. In this manner, the approximate convergence involves the projection of the
matter over-density, which has a power spectrum that peaks at the equality scale keq. As
an aside, we verified that using an equivalent approximation in the spherical convergence is
very accurate at all multipoles. We found that, in all scenarios the accuracy of recalibrated
flat-sky approximation is well with in the range of cosmic variance.

To conclude, in this paper, we investigated the performance of the flat-sky approximation
taking into account the correlations along the line of sight. This gives an accurate and
efficient approximation of the full-sky angular power spectrum (at sub-percent level) for
galaxy clustering (including redshift-space distortions) and gravitational lensing. We have
developed an efficient Python implementation of our flat-sky method, based on the FFTLog
expansion, which we make publicly available.9 With this method and further optimisation,
one can compute the projected angular power spectrum at speeds comparable to the Limber
approximation. This opens an alternative route for efficient computation of angular power-
spectrum observables in parameter searches. Such an efficient framework is especially
important in light of many upcoming surveys, taking data on large and intermediate scales
and at high signal-to-noise ratios. Moreover, effects due to the photon geodesic projections
(i.e., relativistic corrections) will be an important consideration for these surveys. The
addition of these effects goes beyond our current work; however, incorporating them into our
framework should be fairly straightforward. Moreover, and in line with the aforementioned
surveys, the cross-correlations of unequal-time narrow window functions are expected to play
an increasingly important role in the future cosmological analysis. Thus, our computational
framework offers a valuable and efficient means to analyse these upcoming data sets.

9https://github.com/GZCPhysics/BeyondLimber.git.
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A Full-sky angular power spectrum in real and redshift space

This appendix reviews the calculation of the full-sky angular power spectrum using the
FFTLog algorithm. First, we consider the projected density field without redshift-space
distortions (RSD) following ref. [21]. The full-sky angular power spectrum is given by eq. (2.6),
with the unequal-time angular power spectrum Cℓ given by eq. (2.7). After the FFTLog
expansion of the 3D power spectrum, we have

Cℓ = 4πDD′
∑

i

αi

∫
k2dk

2π2 kνijℓ(kχ)jℓ(kχ′) , (A.1)

where, for compactness, we use the notation D = D(χ) and D′ = D(χ′) for the linear growth
factors (and similarly for f , later, when we include redshift-space distortions). Introducing
the variables v ≡ kχ and t ≡ χ′/χ, the integral over k in eq. (A.1) becomes∫

k2dk

2π2 kνijℓ(kχ)jℓ(kχ′) = χ−νi−3
∫

dv

2π2 vνi+2jℓ(v)jℓ(vt) , (A.2)

which can be evaluated in terms of the hypergeometric function using

Iℓ,ℓ′ (ν, t) ≡
∫

dv vν+2jℓ(v)jℓ′(vt)

=
2ν+2πΓ

(
ℓ+ℓ′+ν+3

2

)
4Γ
(

ℓ−ℓ′−ν
2

)
Γ
(
ℓ′ + 3

2

) tℓ′
2F1

(
ν + 2 − ℓ + ℓ′

2 ,
ℓ + ℓ′ + ν + 3

2 ; ℓ′ + 3
2; t2

)
, (A.3)

assuming t ≤ 1 (i.e., χ′ ≤ χ). When encountering χ′ > χ, we instead use the variable
transformation v ≡ kχ′ and t ≡ χ/χ′. The full-sky angular power spectrum in eq. (2.6)
is therefore given by10

Cℓ = 2
π

∫
dχdχ′ (DW )(D′W ′)

(∑
i

αiχ
−νi−3Iℓ,ℓ (νi, t)

)
, (A.4)

where W = W (χ) and W ′ = W ′(χ′). We use this expression to compute our reference
full-sky results presented in section 3.

If we include RSD, the unequal-time angular power spectrum on the full sky is modified to

Cℓ

(
χ, χ′

)
= 4π

∫
k2dk

2π2 P (k; χ, χ′)
(
b jℓ(kχ) − fj

(2)
ℓ (kχ)

) (
b′ jℓ′(kχ′) − f ′j

(2)
ℓ′ (kχ′)

)
, (A.5)

where j
(2)
ℓ (kχ) is the second derivative of the spherical Bessel function evaluated at kχ. We

have included the galaxy bias, which depends on k and χ generally, although we have set
10This expression is symbolic as it does not account for the splitting up of the domain of integration

according to whether χ′ ≤ χ or χ′ > χ.
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it to unity in the rest of the paper. Recall, also, that f ≡ d ln D/d ln a is the logarithmic
growth rate. To deal with the derivatives of the spherical Bessel functions, ref. [21] made
use of integration by parts to reduce all integrals to the form in eq. (A.2). However, this
moves the derivatives onto the window functions (and growth factors and rates), which
may introduce complexities in the case of irregular window functions, which is often the
case for realistic surveys.

We proceed, instead, by expressing the second derivative of the spherical Bessel function
as follows:

j
(2)
ℓ (kχ) = −

(
1 − ℓ(ℓ − 1)

k2χ2

)
jℓ(kχ) + 2

kχ
jℓ+1(kχ) . (A.6)

Using this expression in eq. (A.5) gives

Cℓ =
∫

k2dk

2π2 P (k; χ, χ′)
[(

b + f − f
ℓ(ℓ − 1)

k2χ2

)(
b + f ′ − f ′

ℓ(ℓ − 1)
k2χ′2

)
jℓ(kχ)jℓ(kχ′)

− 2f ′

kχ′

(
b + f − f

ℓ(ℓ − 1)
k2χ2

)
jℓ(kχ)jℓ+1(kχ′) − 2f

kχ

(
b + f ′ − f ′

ℓ(ℓ − 1)
k2χ′2

)
jℓ+1(kχ)jℓ(kχ′)

+ 4ff ′

k4χχ′
jℓ+1(kχ)jℓ+1(kχ′)

]
, (A.7)

which, after applying the decomposition of P (k; χ, χ′) as done in eq. (A.1), is fully determined
by the integrals given in eq. (A.3).

B Approximating the CMB lensing convergence

In section 3.3, we introduced the approximation of using the full 3D Laplacian rather than
its transverse part when computing the CMB lensing convergence. Here, we aim to provide
further insight into why this is very accurate, even on large scales.

We consider the full-sky case, so that eq. (3.18) becomes for the true convergence

κ = −1
2

∫
dχ WΨ(χ)χ2∇2

⊥Ψ , where ∇2
⊥Ψ = ∇2Ψ − 1

χ2
∂

∂χ

(
χ2 ∂Ψ

∂χ

)
. (B.1)

If instead we replace the transverse (i.e., angular) part of the 3D Laplacian, ∇2
⊥, with the

full Laplacian, ∇2, we introduce an error, ∆κ, involving the radial derivatives:

∆κ = 1
2

∫ χ∗

0
dχ WΨ(χ) ∂

∂χ

(
χ2 ∂Ψ

∂χ

)
(x; η0 − χ) . (B.2)

It is instructive to consider the case of an Einstein-de Sitter universe, where the potential
Ψ does not evolve in time. In that case, the radial derivatives in ∆κ can be replaced by
total derivatives along the line of sight. Integrating by parts and using the explicit form
for the lensing window function, eq. (3.12), we find

∆κ = − [Ψ]χ∗
0 , (B.3)
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i.e., boundary terms evaluated on the last-scattering surface and at the observer. The term at
the observer does not contribute for ℓ ≥ 1. The angular power spectrum of the approximated
convergence differs from that of the true convergence by

Cκκ, approx
ℓ − Cκκ

ℓ = C∆κ∆κ
ℓ − 2Cκ∆κ

ℓ . (B.4)

The angular power spectrum of ∆κ at low multipoles (ℓ ≪ keqχ∗) is

C∆κ∆κ
ℓ = 4π

∫
k2dk

2π2 PΨ(k; χ∗) j2
ℓ (kχ∗) ≈ 2π

9As
25ℓ(ℓ + 1) , (B.5)

where the approximation assumes a scale-invariant power spectrum of primordial curvature
perturbations with amplitude As. At ℓ = 2, C∆κ∆κ

2 ≈ 7.5 × 10−10 compared to Cκκ
2 ≈ 7.9 ×

10−8, so the error from the power spectrum of ∆κ is sub-percent. The error term −2Cκ∆κ
ℓ

from the cross-correlation between ∆κ and κ is also expected to be small, even on large
scales, since the potential fluctuations on the last-scattering surface are weakly correlated
with the fluctuations at lower χ that dominate the convergence.
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