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Abstract

Small GTPases of the Rho family play a central role in the regulation of cell motility by con-

trolling the remodeling of the actin cytoskeleton. In the amoeboid cells of Dictyostelium dis-

coideum, the active form of the Rho GTPase Rac1 regulates actin polymerases at the

leading edge and actin filament bundling proteins at the posterior cortex of polarized cells.

We monitored the spatiotemporal dynamics of Rac1 and its effector DGAP1 in vegetative

amoebae using specific fluorescent probes. We observed that plasma membrane domains

enriched in active Rac1 not only exhibited stable polarization, but also showed rotations and

oscillations, whereas DGAP1 was depleted from these regions. To simulate the observed

dynamics of the two proteins, we developed a mass-conserving reaction-diffusion model

based on the circulation of Rac1 between the membrane and the cytoplasm coupled with its

activation by GEFs, deactivation by GAPs and interaction with DGAP1. Our theoretical

model accurately reproduced the experimentally observed dynamic patterns, including the

predominant anti-correlation between active Rac1 and DGAP1. Significantly, the model pre-

dicted a new colocalization regime of these two proteins in polarized cells, which we con-

firmed experimentally. In summary, our results improve the understanding of Rac1

dynamics and reveal how the occurrence and transitions between different regimes depend

on biochemical reaction rates, protein levels and cell size. This study not only expands our

knowledge of the behavior of Rac1 GTPases in D. discoideum amoebae but also demon-

strates how specific modes of interaction between Rac1 and its effector DGAP1 lead to their

counterintuitively anti-correlated dynamics.

Author summary

Oscillations are widespread in biology and occur at the level of ecosystems, physiological

processes in organisms, organs and tissues as well as in individual cells. One example is

the occurrence of intracellular oscillations of small signaling proteins, the Rho GTPases,

which have been identified in a variety of different cell types and species, including yeast,

plants and mammals. We show that a protein from this group, Rac1, exhibits polarized

and oscillating intracellular patterns in free-living amoeboid cells of the protist
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Dictyostelium discoideum. The active form of Rac1 can either rotate along the cell mem-

brane or move repeatedly from one side of the cell to the other, with a typical period

between 2 and 5 minutes. We show by mathematical modeling that biochemical reactions

involving proteins that activate and deactivate Rac1 are sufficient to explain the observed

dynamics. The modeling shows that the cell size, the amount and the reaction kinetics of

the interacting proteins determine whether Rac1 remains homogeneously distributed,

polarizes, or oscillates. Since Rac1 is a master regulator of the actin cytoskeleton, our

results are important for the quantitative understanding of its role in regulating cell

motility.

Introduction

Cell migration controlled by the cortical actin cytoskeleton is the basis for important biological

processes such as embryonic morphogenesis, immune surveillance, wound healing and tumor

metastasis. In highly motile cells such as neutrophils, phagocytes and Dictyostelium discoideum
amoebae, local functional domains within the actin cytoskeleton are rapidly and continuously

assembled and disassembled [1,2]. These processes are coordinated spatially and temporally by

complex upstream signaling pathways. Understanding these signaling networks requires

studying the dynamics in vivo of their components, especially the small GTP hydrolases from

the Rho family, such as Rac, Rho and Cdc42, which are widely recognized as important regula-

tors of the actin cytoskeleton [3].

As molecular switches, the Rho GTPases cycle between an active GTP-bound state and an

inactive GDP-bound state. Activation is facilitated by guanine nucleotide exchange factors

(GEFs), and inactivation by GTPase-activating proteins (GAPs). In their active state, Rho

GTPases bind and activate effector proteins, including actin-binding proteins, actin polymer-

ases, and their direct regulators. For example, Rac interacts with formins and the Scar/WAVE

complex, while Rho regulates myosin II-driven contractility [4–6]. D. discoideum cells, which

share Rho GTPase-dependent signaling mechanisms with mammalian cells, are well suited for

the study of these pathways [7,8]. This is particularly true for the three Rac1 isoforms of D. dis-
coideum, which show more than 80% sequence identity with human Rac1 and have a 100%

identical nucleotide-binding domain [7]. In D. discoideum cells, Rac1 interacts with proteins

that play a role in shaping and regulating different structural regions of the actin cortex [7,9].

At the protruding leading edge of polarized motile cells and at the outer edge of circumferen-

tial protrusions associated with macroendocytosis, Rac1-GTP activates WASP family proteins

and promotes Arp2/3-mediated branched actin polymerization [10]. The non-protruding

regions of the cellular cortex are stabilized by proteins that cross-link and bundle actin fila-

ments, such as cortexillins I and II [11]. The bundling ability of cortexillins depends on the for-

mation of a complex with the IQGAP-related protein DGAP1—a process catalyzed by

activated Rac1 [12]. Rac1 is therefore of central importance in controlling antagonistic pro-

cesses that lead to the formation of different actin structures [13,14]. In addition to the WASP

and IQGAP protein families, Rac1 has been shown to interact with various other effectors,

such as formins, coronins, filamins, PAK kinases and other proteins involved in actin cytoskel-

eton remodeling [7].

Various imaging techniques have been used to study Rho GTPase activities and their effects

on cell polarization, morphology and migration. Most probes for active GTPases are based on

fluorescently labeled GTPase binding domains (GBDs) of effector proteins, either alone or

incorporated into FRET constructs that detect GTPase activation by RhoGEFs [15–17]. In
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some experiments, multiple probes were introduced into single cells to observe spatial and

temporal correlations between Rac, Rho and Cdc42 activities within protruding lamellipodia

[18]. In addition to the “passive” probes that effectively reflect the activity of endogenous

GTPases, there are also molecular tools developed for their selective photoactivation, mainly

by manipulating associated RhoGEFs [19–22]. In summary, these methods have elucidated the

intricate interplay between Rho GTPases and other proteins in actin-driven processes in a

range of experimental models and conditions [23,24].

Theoretical modeling has long complemented experimental work to understand the intra-

cellular dynamics of Rho GTPases [25]. In both budding and fission yeast, activated Cdc42

induces stable polarization by promoting actin polymerization and cell outgrowth [26]. Reac-

tion-diffusion models have successfully simulated this polarization by incorporating a positive

feedback loop between the activity of Cdc42 and the recruitment of its activating GEF, Cdc24

—a mechanism strongly supported by experimental evidence [27,28]. Similar models using

mass-conserving and wave-pinning approaches simulated stable polarization of Cdc42 and

Rac1 in neutrophils and macrophages [29,30]. Models with GEF-mediated negative feedback

have predicted bipolar and oscillatory Cdc42 distributions, in contrast to unipolar patterns in

models with only positive feedback [31].

In motile D. discoideum cells, actin and associated signaling proteins spontaneously form

traveling waves at the ventral cell border [32]. Analyzing these patterns, as well as patterns

induced by external stimuli, can facilitate the understanding of complex signaling networks

and form the basis for the development of advanced theoretical models [33,34]. In this study,

we show that active Rac1 and its effector DGAP1 spontaneously form oscillating and rotating

patterns in D. discoideum cell plasma membrane and switch between these dynamic patterns

and stationary or irregular distributions over time. To explain these observations, we con-

structed a reaction-diffusion model centered on the membrane binding and release of Rac1

mediated by the formation of complexes with the cognate GAP and with DGAP1. Our data-

driven model faithfully reproduced the experimentally observed dynamics of Rac1 and

DGAP1 as well as the correlations between the spatiotemporal patterns of the two proteins.

These results suggest that the shuttling of Rac1 between the membrane and the cytoplasm,

which is controlled by its interactions with regulatory proteins, adequately explains the

observed oscillations.

Results

Rac1-GTP shows a repertoire of regular dynamic patterns

To characterize the dynamics of Rac1 activity in D. discoideum, we used confocal microscopy

to observe vegetative cells expressing the recently developed fluorescent probe DPAKa(GBD)-

DYFP, which specifically binds to Rac1-GTP [35]. For simplicity, we refer to the fluorescent

signal corresponding to Rac1-GTP labeled with DPAKa(GBD)-DYFP as Rac1* in the follow-

ing text. Our observations revealed that Rac1* is mainly localized at the membrane and forms

patterns that are either random or ordered and usually persist for several minutes. Of the 85

cells expressing DPAKa(GBD)-DYFP that we observed, 26 showed ordered Rac1* patterns,

while the patterns in the remaining 59 cells were classified as random. The ordered patterns

can be categorized into three main types: traveling waves (rotations), standing waves (oscilla-

tions) and stationary inhomogeneous distributions (polarizations). Each pattern type has

either a single Rac1*-enriched membrane domain or two such domains. Based on this crite-

rion, we further classified the observed patterns into six distinct categories: rotating monopoles

(n = 14, Fig 1A and S1 Movie), rotating dipoles (n = 3, S1A Fig and S2 Movie), oscillating

monopoles (n = 5, Fig 1B and S3 Movie), oscillating dipoles (n = 2, S1B Fig and S4 Movie),

PLOS COMPUTATIONAL BIOLOGY Rac1 oscillations in Dictyostelium discoideum amoebae

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012025 December 9, 2024 3 / 42

https://doi.org/10.1371/journal.pcbi.1012025


stationary monopoles (n = 4, Fig 1C and S5 Movie) and stationary dipoles (n = 1, S1C Fig and

S6 Movie). In 21 cells exhibiting rotations and oscillations, we observed 57 distinct periods.

A typical Rac1* traveling wave manifests as a peak distribution that moves along the mem-

brane at a constant speed and has an approximately constant amplitude (Fig 1D). We deter-

mined the average cycle duration of these traveling waves to be 190±40 s (mean±std).

Conversely, a typical standing wave is characterized by the periodic transfer of Rac1* from one

side of the cell to the other. During this transfer, a portion of Rac1*moves along the mem-

brane in two separate sections moving in opposite directions, resulting in an intermediate

state characterized by two maxima (Fig 1E, time point 33 s). The average period of the standing

waves was 140±20 s. In polarized cells, the Rac1*-enriched membrane domain maintains its

position for several minutes, although the intensity profiles in this domain fluctuate on shorter

time scales (Fig 1F).

Rac1-GTP and DGAP1 show similar dynamic patterns that are

predominantly anti-correlated

It has been shown that the activated form of Rac1 binds specifically and directly to DGAP1,

establishing DGAP1 as a Rac1 effector [12]. To compare the dynamics of Rac1 and DGAP1,

we observed cells expressing both DPAKa(GBD)-DYFP (Rac1*) and mRFP-DGAP1, which

we refer to as DGAP1# in the remainder of the text. We found that both probes showed

Fig 1. Representative monopolar patterns of Rac1*-enriched cortical domains. (A) Rotating monopole. Selected

frames show the rotation of a Rac1*-enriched membrane domain (top). The corresponding drawing shows the

direction of the rotating domain, as indicated by arrows (bottom). (B) Oscillating monopole. Selected frames show the

periodic movement of the Rac1* domain from one side to the opposite side of the cell membrane (top). The

corresponding drawing shows the direction of movement of the active domain, marked by arrows (bottom). (C)

Stationary monopole. Selected frames show a Rac1* domain that remains stationary at the front of a stably polarized

migrating cell for several minutes (top). The corresponding drawing shows the direction of cell migration indicated by

arrows (bottom). (D-F) Diagrams showing Rac1* intensity as a function of position on the membrane at three

different time points, represented by different shades of gray: (D) Rotating monopole; (E) Oscillating monopole; (F)

Stationary monopole. Scale bars: 5 μm.

https://doi.org/10.1371/journal.pcbi.1012025.g001
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rotations (Fig 2A and S7 Movie), oscillations (S2 Fig and S8 Movie) and stable polarizations

(Figs 2B, 2C, S9 and S10 Movies). The data show that of the 93 cells observed expressing both

probes, 37 cells exhibited ordered patterns, while 56 cells showed random behavior. We

observed 20 rotations (12 monopoles and 8 dipoles), 9 oscillations (6 monopoles and 3

dipoles), 6 polarized cells in which the two probes were localized at opposite poles (4 mono-

poles and 2 dipoles), and 2 cells in which the probes were co-localized (1 monopole and 1

dipole). The average period of the travelling waves was 200±50 s, and that of the standing

Fig 2. Representative patterns of cortical domains enriched in Rac1* and DGAP1# and their mutual correlation. (A) Rotating monopole. An image

sequence showing a complete rotation of domains rich in Rac1* and DGAP1#. Top: Rac1* signal. Centre: DGAP1# signal. Bottom: a superposition of both

fluorescent domains. In areas where Rac1* predominates, the DGAP1# signal is attenuated and vice versa. (B) Stationary monopole with opposite localization.

Rac1* and DGAP1# are enriched at opposite positions. The image shown is representative of a sequence spanning 170 s. (C) Stationary monopole with co-
localization. Rac1* and DGAP1# signals are co-localized. The image shown is representative of a sequence extending over 100 s. Scale bars: 5 μm. (D)

Quantitative analysis of the correlation between Rac1* and DGAP1# signals. Scatter plots show the Pearson correlation coefficients calculated for the first

120-second interval of 29 cells showing rotating and oscillating patterns (left) and 8 cells showing polarized patterns (right). The overlaid box plots show

medians and interquartile ranges for the two cell populations, but the two polarized cells showing positive correlation between Rac1* and DGAP1# signals were

excluded from this calculation for polarized cells. (E) Temporal evolution of Pearson correlation coefficients for the three representative cells shown in panels

A, B, and C. The coefficients were calculated over sliding 10-seconds intervals throughout the observation period for each cell. The observation periods are

different between cells, resulting in unequal time scales of the three plots.

https://doi.org/10.1371/journal.pcbi.1012025.g002
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waves was 160±20 s. In 29 cells co-expressing Rac1* and DGAP1# probes we observed 53 peri-

ods of oscillations and rotations. Compared to the dynamics of DPAKa(GBD)-DYFP

expressed alone, these results also show that the expression of mRFP-DGAP1 does not signifi-

cantly affect the dynamics of Rac1*.
In order to analyze the correlation between Rac1* and DGAP1# signals, we calculated the

Pearson correlation coefficient (r) between the two signals for cells exhibiting ordered behav-

ior (Fig 2D and 2E). For 29 cells showing rotating and oscillating patterns we obtained r =

−0.30 [−0.43, −0.16] (median [Q1, Q3]), whereas for 6 polarized cells displaying opposite local-

ization of the two probes we obtained r = −0.48 [−0.58, −0.28]. Interestingly, the negative cor-

relation between Rac1* and DGAP1# signals was preserved also in 12 cells that displayed

random dynamics (r = −0.40 [−0.51, −0.32]), suggesting its independency of the large-scale

ordered patterns. For the two cells with co-localized signals, we obtained r = 0.44 and r = 0.60.

These rare cases of positive correlation align with our model’s prediction that Rac1* and

DGAP1# may co-localize under certain conditions, for example when the concentration of

DGAP1 is sufficiently high to saturate its interaction with Rac1. Taken together, our experi-

ments reveal generic, regular patterns in the membrane distribution of active Rac1 in unstimu-

lated vegetative D. discoideum cells and their close relationship to the corresponding,

predominantly anti-correlated patterns of the Rac1 effector DGAP1, which is consistent with

our previous results [13,14]. Regular patterns are particularly useful to uncover the processes

governing Rac1 dynamics, as they depend on the underlying biochemical reactions. We there-

fore decided to use these ordered patterns as a basis for investigating the key processes

involved in the regulation of Rac1 dynamics through computational modeling.

Computational model of Rac1 dynamics that takes into account the

interaction with its effector DGAP1

To explain the mechanisms underlying the observed spatio-temporal distributions of Rac1*
and DGAP1#, we propose a theoretical model based on current knowledge of the interactions

between Rho GTPases and their regulators and effectors. For practical purposes, we employ a

condensed version of the comprehensive model in our numerical simulations. This condensed

model was derived iteratively from the full model, aiming to capture the observed dynamics in

detail while minimizing the number of reaction terms. We emphasize that the results of the

condensed model are equivalent to those of the full model, using a slightly adjusted set of

parameter values. A detailed comparison between the two models is provided in Materials and

methods (Construction of the theoretical model), and we use the condensed version in the

remainder of the Results section.

The reactions involved are graphically represented as two cycles (cycle i and ii) to visually

separate the reactions of Rac1-GTP (Rac1T for short) with its regulator GAP from the reactions

with its effector DGAP1 (Fig 3). Both cycles in our proposed model involve the binding step of

Rac1-GDP (Rac1D for short) to the membrane, coupled with its conversion to Rac1T through

the action of a GEF [24,36,37]. In our model, this process also involves autocatalytic GEF-

mediated activation of Rac1, which has been experimentally demonstrated for Rho GTPases in

various cellular systems and is an established component of most theoretical models of Rho-

GTPase dynamics [26,38,39]. In D. discoideum, RacGEF1 has also been shown to be involved

in a positive feedback loop that promotes Rac1 activity [40].

Cycle (i) further describes the binding of cytoplasmic Rac1-specific GAP to membrane-

bound Rac1T, which promotes its conversion to Rac1D, coupled with the release of both pro-

teins into the cytoplasm (Fig 3, left-hand side). Equivalent recruitment of specific GAPs to the

cell membrane has also been proposed for active Cdc42 and Ras1 [41,42]. Consistent with this,
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the localization of D. discoideum RhoGAP Dd5P4 is largely cytosolic and Dd5P4 is only tran-

siently recruited to the membrane by interacting with activated Rac1 [43,44], in agreement with

data available for mammalian RhoGAPs [45,46]. Here we assume that only Rac1D and not

Rac1T is extracted from the membrane, so that the Rac1 cycle is unidirectional (there is no

branch that brings Rac1T back to the cytoplasm, which would short-circuit the cycle). It has

been proposed that tyrosine phosphorylation of membrane-bound Rac1 may facilitate its bind-

ing to RhoGDI [47], ensuring the unidirectionality of its GTPase cycle, similar to what has been

shown for Ras [48]. Indeed, the release of membrane-bound Rac1D into the cytoplasm has been

shown to be favored by an order of magnitude over Rac1T in both GDI-dependent and GDI-

independent extraction mechanisms [49,50]. Therefore, it is justified to neglect cytoplasmic

Rac1T in the model, even though some minor "leakage" into the cytoplasm might occur.

Cycle (ii) describes the interaction of Rac1T with its effector DGAP1. Our model assumes

that DGAP1, in contrast to GAP, first binds to the membrane and then interacts with Rac1T

(Fig 3, right-hand side). This assumption is supported by our previous finding that DGAP1

localizes to the cell membrane in cells with actin cytoskeleton disrupted by latrunculin A, in

which Rac1 is displaced from the membrane, suggesting a Rac1-independent mechanism for

DGAP1 membrane recruitment [14]. We propose two dissociation pathways for the Rac1T-

DGAP1 complex. The first describes the release of both components into the cytosol in con-

junction with the deactivation of Rac1. Several reports have shown that the DGAP1-related

protein IQGAP1 promotes the negative regulation of Rac1 activity mediated by RacGAP1

[51]. In addition to the dissociation of the Rac1T-DGAP1 complex, which leads to the release

Fig 3. Schematic representation of the protein interaction network. Cycle (i) is shown on the left. Cytoplasmic Rac1D

(represented by purple disks) converts to its active form, Rac1T, immediately after binding to the membrane. GAP proteins

(shown as brown triangles) can bind to active Rac1, leading to its deactivation and the breakdown of the Rac1T-GAP complex,

resulting in GAP and Rac1 returning to the cytoplasm. Cycle (ii) is shown on the right. DGAP1 proteins from the cytoplasm

(blue ovals) bind to the membrane where they form a complex with Rac1T. When the Rac1T-DGAP1 complex dissolves,

DGAP1 moves back into the cytoplasm, while Rac1 is either released into the cytoplasm or remains attached to the membrane.

https://doi.org/10.1371/journal.pcbi.1012025.g003
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of both components into the cytosol, we have introduced another complex dissociation path-

way in which Rac1T remains bound to the membrane. Biologically, this corresponds to the

possibility that a single Rac1 molecule sequentially binds multiple effectors before being

released into the cytoplasm. Other assumptions made during the construction of the con-

densed theoretical model are described in more detail in the corresponding section of Materi-

als and methods (Construction of the theoretical model).

Based on the described interaction scheme, we have created a mathematical model that

includes a series of reactions obeying the law of mass action. The results of computer simula-

tions suggest that pattern formation is based on the accumulation of Rac1 at the membrane

and its dissociation from the membrane stimulated by the interaction with GAP or DGAP1.

The model reproduces all observed types of Rac1 dynamics: rotations, oscillations and stably

polarized states, while preserving the phase relationships between the Rac1 and DGAP1 den-

sity profiles. The model is one-dimensional, where the position x represents a location at the

cell edge and lies within the interval (0, L), where the symbol L represents the cell perimeter

(Fig 3). This is an appropriate choice for cell geometry because active Rac1, which drives cell

motility, accumulates predominantly at the cell edge. For simplicity and to facilitate extensive

numerical simulations, we have also chosen the one-dimensional geometry for the cytoplasm.

However, we also tested a two-dimensional version of the left-hand side of the model that

includes the interaction between Rac1 and GAP (cycle i), and obtained qualitatively similar

results to those from the 1D version of the model, including traveling and standing wave solu-

tions. The details of this simulation and the obtained results are presented in the Materials and

methods section Two-dimensional computational model of Rac1 dynamics.

In our mean-field approach, we describe the distributions of proteins along the cell perimeter

by linear densities ρ, where the distributions for the membrane-bound active Rac1, DGAP1,

Rac1T-GAP complex and Rac1T-DGAP1 complex are labeled ρR,ρD,ρRG and ρRD, respectively. We

also describe the cytoplasmic distributions of inactive Rac1, GAP and DGAP1 by linear densities,

denoted by ρr,ρg and ρd, respectively. Since the positions x = 0 and x = L correspond to the same

physical point on the cell membrane, we impose a periodic boundary condition on all densities

and their first spatial derivatives, including those at the membrane and in the cytoplasm.

The cycle (i) is described by the following reaction-diffusion equations:

@rr

@t
¼ Dr

@2rr

@x2
þ k3arRG � rr 1 �

rR

rRmax

� �

k1 þ k11rR þ k12rRGð Þ þ k6brRD ð1Þ

@rR

@t
¼ k6arRD � k2rRrg � k5rRrD þ rr 1 �

rR

rRmax

� �

k1 þ k11rR þ k12rRGð Þ ð2Þ

@rg

@t
¼ Dg

@2rg

@x2
þ k3arRG � k2rRrg ð3Þ

@rRG

@t
¼ k2rRrg � k3arRG: ð4Þ

Here the reactions comprise several steps, with the symbol k indicating the reaction rate

constants: binding of cytoplasmic Rac1D to the membrane and its activation by GEF, k1, bind-

ing and activation stimulated by membrane-bound Rac1T, k11, and by the Rac1T-GAP com-

plex, k12; binding of cytoplasmic GAP to Rac1T, leading to the formation of the Rac1T-GAP

complex, k2; deactivation of Rac1 within the Rac1T-GAP complex and subsequent release of

both proteins into the cytoplasm, k3a. The model also includes the cytoplasmic diffusion of
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Rac1 and GAP; the corresponding diffusion constants are denoted by Dr and Dg, while diffu-

sion along the membrane is neglected. The term (1−ρR/ρRmax) in Eqs (1–2) ensures that the

membrane density of Rac1 cannot exceed a saturation value, ρRmax.

The cycle (ii) is described by the following reaction-diffusion equations:

@rd

@t
¼ Dd

@2rd

@x2
� rd 1 �

rD

rDmax

� �

k4 þ k41rR þ k42rRGð Þ þ k6a þ k6bð ÞrRD ð5Þ

@rD

@t
¼ rd 1 �

rD

rDmax

� �

k4 þ k41rR þ k42rRGð Þ � k5rRrD ð6Þ

@rRD

@t
¼ k5rRrD � k6a þ k6bð ÞrRD: ð7Þ

The reactions of this cycle include: attachment of cytoplasmic DGAP1 to the membrane, k4,

attachment stimulated by Rac1T, k41, and by the Rac1T-GAP complex, k42; formation of the

Rac1T-DGAP1 complex from membrane-bound DGAP1 and Rac1T, k5; dissociation of the

Rac1T-DGAP1 complex via two different pathways: release of DGAP1 into the cytoplasm, leav-

ing Rac1T at the membrane, k6a, or release of both proteins into the cytoplasm, k6b. We include

the diffusion of DGAP1 molecules in the cytoplasm with a diffusion constant Dd, while we

neglect their diffusion at the membrane. The term (1−ρD/ρDmax) in Eqs (5–6) prevents exces-

sive accumulation of DGAP1 molecules at the membrane with a saturation value of density,

ρDmax. Eqs (1)–(7) together represent the joint description of the dynamics of Rac1, GAP and

DGAP1.

Patterns generated by the model

To investigate the behavior of our system, we solved the model numerically for biologically rel-

evant parameters (see Materials and methods section Estimation of the values of parameters

used in the simulations). Our results show that after a transient phase, the system converges to

either a dynamic (traveling or standing waves) or a stationary regime (Fig 4A–4C). In the case

of traveling waves, all membrane-bound protein distributions are characterized by distinct

peaks moving at the same constant speed (cf. line profiles for 3 time points in Fig 4A). The pro-

files of Rac1T and the Rac1T-GAP complex form similar patterns, with Rac1T-GAP lagging

slightly behind. In contrast, Rac1T and DGAP1 are almost anti-correlated, with the minimum

of Rac1T near the maximum of DGAP1 and vice versa. Since the traveling waves occur along

the closed loop, they correspond to the rotational movement of protein distributions along the

cell membrane. For standing wave patterns, Rac1T and DGAP1 are again anti-correlated,

while the relationship between Rac1T and Rac1T-GAP is more complex than for traveling

wave patterns (Fig 4B). Typically, the appearance of a Rac1T density peak is accompanied by a

local minimum flanked by two maxima of the Rac1T-GAP complex distribution. The subse-

quent disappearance of the Rac1T peak is accompanied by the formation of a new peak at the

position shifted by L/2, which corresponds to the opposite side of the cell. Stationary patterns

are characterized by sharply separated areas with different protein densities. For Rac1T and the

Rac1T-GAP complex, there is a large difference in density between the two domains, whereas

the difference is smaller for DGAP1 (Fig 4C). Remarkably, the correlation between the distri-

butions of Rac1T and DGAP1 can be either positive or negative, depending on the total num-

ber of DGAP1 molecules. In both cases, Rac1T and Rac1T-GAP are co-localized.

The formation and propagation of waves are driven by the interplay of three key factors:

Rac1 activation at the front, its GAP-mediated deactivation at the rear, and diffusion of Rac1D
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through the cytoplasm (Fig 4D). Rac1 activation at the ρR wave front is triggered by a positive

feedback loop that involves binding of Rac1 to the membrane and the autocatalytic self-

recruitment of Rac1 mediated by GEF (k11 term). The activated Rac1T recruits GAP (k2 term),

leading to the formation of the Rac1-GAP complex. The peak of this complex is located at the

back of the Rac1T wave, creating a spatial offset that allows the GAP-mediated deactivation of

Rac1 to occur at the rear of the wave, while the front continues to advance through Rac1 acti-

vation. The Rac1-GAP complex facilitates the deactivation and release of Rac1 back to the

cytoplasm (k3a term). The recruitment and activation at the front of the wave deplete the local

cytoplasmic Rac1D pool, resulting in the lowest concentration of Rac1D at the front. Con-

versely, the deactivation and release of Rac1 at the rear of the wave replenish the cytoplasmic

Rac1D pool behind the wave. Together, these processes create a cytoplasmic gradient that pro-

pels Rac1 forward, driving the wave propagation and determining its speed. To quantitatively

assess the influence of model parameters on the wave characteristics, we performed a sensitiv-

ity analysis. We found that the rate constant for Rac1 deactivation and release, k3a, has the larg-

est impact on the wave speed (Table 1). This finding suggests that the GAP-mediated

deactivation and release of Rac1 back to the cytoplasm is a critical rate-limiting step in the

wave propagation mechanism. The rapid recycling of Rac1 through this process is essential for

maintaining the cytoplasmic Rac1 gradient and fueling the wave’s forward movement.

Fig 4. Dynamics of proteins and patterns generated by the model. (A-C) Traveling waves, standing waves and polarized patterns of

membrane-bound proteins obtained from simulations. For traveling and standing waves, the plots show the molecular density versus

position in space for three different time points. For the polarized patterns, the densities are shown for two different total copy numbers

of Rac1 and DGAP1 proteins. (D) Mechanism of wave propagation of the Rac1 activity. The plot shows linear density profiles of

cytoplasmic Rac1D (ρr, purple), membrane-bound Rac1T (ρR, magenta), and the Rac1T-GAP complex (ρRG, yellow) in a traveling wave

solution of the model. The wave propagates to the right, driven by interplay of three key processes: (1) Recruitment of Rac1D to the

membrane and its conversion to Rac1T at the front of the ρR wave, which is driven by the GEF-mediated nonlinear positive feedback and

depletes the cytoplasmic Rac1D pool. (2) Deactivation of Rac1T by GAP and replenishment of the cytoplasmic pool of Rac1D at the rear

of the ρR wave. (3) The combination of activation at the front and deactivation at the rear establishes a cytoplasmic gradient that drives

the forward diffusion of Rac1D in the cytoplasm. (E) A phase portrait of Rac1 activity. The plot shows the temporal evolution of linear

concentrations of the membrane-bound Rac1T (ρR) versus the Rac1T-GAP complex (ρRG) at a single point in space for the travelling

wave pattern. The system trajectory converges towards a stable limit cycle (shown in red). This limit cycle acts as an attractor for all

trajectories, regardless of initial conditions. All parameter values used in the simulations are listed in Table 2.

https://doi.org/10.1371/journal.pcbi.1012025.g004
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The travelling waves observed in our simulations represent a self-sustaining pattern that

emerges from the system’s dynamics. This pattern can be conceptualized as a stable limit cycle,

which serves as an attractor in the phase space of Rac1 activity (Fig 4E). The limit cycle depicts

the periodic variations of membrane-bound active Rac1T and the Rac1T-GAP complex con-

centrations at a fixed spatial location as the wave propagates. Irrespective of the starting condi-

tions, the system’s trajectory is drawn towards this limit cycle, highlighting its stability and its

role as an attractor that shapes the system’s behavior.

Stability and bifurcation analyses

To systematically investigate the parameter space, we performed a linear stability analysis of

our model. We used Fourier modes to describe the spatial perturbation of the steady state and

examined the stability of each mode individually. By varying the total number of Rac1 and

DGAP1 molecules (NRac1 and NDGAP1), we discovered two types of instabilities and the corre-

sponding regions in parameter space: Hopf instability (oscillatory) and Turing instability (sta-

tionary) (Fig 5A left). In the Hopf region, only the first Fourier mode is unstable, indicating

that the model can generate oscillatory monopoles under these conditions. Conversely, in the

stationary region, we observed areas where either only the first Fourier mode was unstable or

all Fourier modes were unstable. This overall instability of all Fourier modes can drive the sys-

tem into a multipolar state where the number of poles is directly influenced by the initial pro-

tein distribution. We then repeated the systematic exploration of the parameter space, but this

time using large-scale computer simulations instead of linear stability analysis. The patterns

Table 1. Local sensitivity analysis of the wave speed.

Parameter Baseline value Sensitivity, S
k3a 0.45 s−1 1.32

ρRmax 200 μm−1 −0.94

ρGtotal 30 0.77

Dg 8 μm2s−1 0.45

k4 0.24 s−1 −0.44

ρDtotal 40 −0.43

ρDmax 40 μm−1 −0.38

k2 0.22 μm/s −0.35

k6b 0.43 s−1 −0.3

k1 0.02 s−1 0.3

k6a 0.6 s−1 0.22

k12 6�10−3 μm/s −0.16

k42 3.6�10−3 μm/s 0.12

ρRtotal 130 0.11

k5 0.095 μm/s −0.10

k11 4�10−3 μm/s −0.09

Dr 30 μm2s−1 0.04

k41 0�8�10−3μm/s 0.03

Dd 12 μm2s−1 0.00

Normalized sensitivity coefficients (S) for all model parameters, quantifying their influence on the traveling wave

speed obtained from linear stability analysis. Positive S values indicate a positive correlation with wave speed, while

negative S values indicate a negative correlation. Parameters are listed in descending order of their absolute

sensitivity coefficients. Baseline values for each parameter, around which variations were made, are also included. For

the definition of sensitivity coefficients, see the Materials and methods section Sensitivity analysis.

https://doi.org/10.1371/journal.pcbi.1012025.t001
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resulting from these simulations were then plotted based on the total number of Rac1 and

DGAP1 molecules (Fig 5A right). The map derived from the simulation and the map from the

linear stability analysis showed significant similarity, except for the high NRac1 and high

NDGAP1 region, where the linear stability analysis predicted the formation of periodic patterns

but the simulations resulted in stationary patterns.

Linear stability analysis also provides valuable insights into the roles of GAP and DGAP1 in

determining the types of patterns that can emerge in our model. By varying the total concen-

trations of GAP and DGAP1, while keeping the total Rac1 concentration fixed, we have identi-

fied four distinct regions in the parameter space (Fig 5B and 5C): the region of stable steady

Fig 5. Stability analysis and the pattern formation. (A) Stability and dynamic states of the simulated system are presented as functions of

the total number of Rac1 and DGAP1 proteins. Left Diagram showing different types of instabilities as determined by linear stability analysis.

In the uncolored areas of the diagram, small perturbations decay and the system reaches a homogeneous steady state. The blue regions

represent the Turing regime, where real positive eigenvalues exist for some wavenumbers q, indicating the formation of stationary patterns.

The red regions represents the Hopf regime, where complex eigenvalues with positive real parts occur for some wavenumbers q, indicating

the formation of oscillatory patterns. The intersections of stable, Turing, and Hopf regions mark "co-dimension 2" Turing-Hopf bifurcations.

Right Diagram of the different dynamic states as a function of the total number of Rac1 and DGAP1 molecules, as determined by examining

the final patterns obtained in computer simulations. The uncolored sections of the diagram correspond to the homogeneous states. In both

left and right diagrams, the number of GAP molecules is fixed to NGAP = 1200. The parameter values used in the simulations are listed in

Table 2. (B) Diagram showing stability states as a function of the total number of GAP and DGAP1 molecules. The colored regions are

defined as in panel A, with an additional Turing-Hopf region (green) where both real and complex eigenvalues with positive real parts coexist

for different wavenumbers, suggesting the simultaneous occurrence of stationary and oscillatory patterns. The diagram indicates that GAP is

necessary for the occurrence of oscillatory patterns, as evidenced by the absence of Hopf regions along the DGAP1 axis. Conversely, DGAP1

appears to be essential for the occurrence of stationary patterns, shown by the lack of Turing regions along the GAP axis. The number of Rac1

molecules is fixed to NRac1 = 5200. (C) Representative solutions of the Rac1T dynamics obtained from the model simulations with the total

number of GAP molecules fixed at NGAP = 960 and with NDAGP1 corresponding to different stability regions as indicated by the crosses in the

panel B. Left A stationary Turing pattern obtained with NDGAP1 = 2800. Middle An oscillatory Hopf pattern obtained with NDGAP1 = 1200.

Right A superimposition of stationary and oscillatory patterns belonging to the Turing-Hopf region obtained with NDGAP1 = 2200. The

kymographs show the calculated linear Rac1T concentration, ρR, along the angular position on the cell perimeter (ϕ) versus time (t).

https://doi.org/10.1371/journal.pcbi.1012025.g005
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states (no patterns), the region of Turing instabilities (stationary patterns), the region of Hopf

instabilities (oscillatory patterns), and the region of Turing-Hopf instabilities (coexistence of

stationary and oscillatory patterns). Interestingly, when the total GAP concentration is set to

zero, the system only exhibits stable steady states and Turing instabilities, suggesting that GAP

is essential for the generation of oscillatory patterns. Conversely, when the total DGAP1 con-

centration is set to zero, the system only displays stable steady states and Hopf instabilities

(and, in some cases, Turing-Hopf instabilities at lower total Rac1 concentrations), indicating

that DGAP1 is necessary for the formation of stationary Turing patterns. These findings sug-

gest that the relative abundances of GAP and DGAP1 in the simulated system play a crucial

role in determining the type of pattern that emerges. Our theoretical model consists of two dis-

tinct interaction cycles: the Rac1-GAP cycle, where cytoplasmic GAP directly binds to the

membrane-bound Rac1T, and the Rac1-DGAP1 cycle, where DGAP1 first binds to the mem-

brane and then interacts with Rac1T. Distinct topologies of these two interaction cycles likely

underlie their differential effects on pattern formation. The Rac1-GAP cycle, with its direct

negative feedback, may be more conducive to temporal oscillations, whereas the Rac1-DGAP1

cycle, with its membrane-localized interactions, may be more suitable for generating stable

spatial patterns.

To explore the impact of the cytoplasmic diffusion of Rac1D and GAP on the pattern forma-

tion, we analyzed the stability of steady states for different values of Rac1D and GAP diffusion

coefficients by conducting a linear stability analysis on a simplified model focusing on the

Rac1-GAP interaction (S3 Fig). Our analysis revealed that Turing patterns emerge even with

extremely low Rac1D diffusion coefficients (tested down to Dr = 10−6 μm2s−1) and zero GAP

diffusion. Although this effect is a direct consequence of the postulated immobility of the

membrane-bound Rac1T in our model, it demonstrates that even such small difference in dif-

fusion coefficients suffices to break symmetry and enable pattern formation. As GAP diffusion

increases (Dr~0.02 μm2s−1), we observe a transition through a narrow Turing-Hopf region to a

more extensive Hopf region (1.5<Dg<20 μm2s−1), indicating that increased GAP mobility

introduces temporal oscillations. At high diffusion coefficients (Dg>20 μm2s−1), only uniform

stable steady states persist. This plateau effect results from a rapid GAP traversal across the

domain, leading to Rac1 deactivation and preventing pattern formation.

Spatio-temporal dynamics of Rac1 activity: a comparison between

experimental and modeled results

To compare the patterns obtained experimentally and theoretically, we juxtaposed kymo-

graphs of the measured Rac1* signal in the membrane and the linear concentration of Rac1T

calculated by the model for three typical cases (Fig 6). In addition to kymographs, we also gen-

erated corresponding autocorrelograms to facilitate pattern recognition (Figs 6A, 6B and

S4A). In the kymographs and autocorrelograms, the traveling waves of the Rac1T distribution

are represented as parallel stripes whose slope reflects the wave velocity (Fig 6A). Oscillations

lead to regular patterns of patches, while stationary patterns appear as vertical stripes (Fig 6B

and 6C). The model reproduces major characteristics of experimentally observed patterns of

Rac1 activity. We found that with an appropriate choice of parameter values, the model repro-

duces the typically measured velocities and wavelengths of traveling waves, the periods of oscil-

lation of monopolar standing waves, and the contrast between and relative widths of active

and inactive domains in stationary monopolar patterns. In addition to reproducing the typi-

cally observed patterns, we have also successfully simulated less frequently occurring patterns,

such as oscillating dipoles (S4A Fig), rotating dipoles (S4B Fig) and stationary dipoles (S4C

Fig). In order to make experimentally testable predictions, we investigated how the oscillation
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patterns depend on the cell perimeter L. Linear stability analysis predicts that higher Fourier

modes become unstable with increasing L (S5A Fig). We tested this prediction by measuring

the perimeters of cells that exhibited monopolar and bipolar patterns. Our results showed that

monopolar patterns occurred predominantly in small cells, while bipolar patterns occurred in

larger cells (S5B Fig).

In our experiments, we not only observed transitions between ordered and random pat-

terns, but also transitions between different ordered patterns. For example, we observed a tran-

sition from oscillation to rotation, as well as a transition from clockwise to counterclockwise

rotation (Fig 7). These results prompted us to investigate whether such transitions can also

Fig 6. Comparison of the experimentally observed patterns of Rac1* with the patterns of Rac1T concentration

(ρR) derived from computer simulations. In panels A-B, the patterns are shown as kymographs (using the MATLAB

colormap: parula) next to the corresponding autocorrelograms (MATLAB colormap: jet). Only kymographs are shown

in panel C. The experimental kymographs show the fluorescence intensity measured along the cell perimeter (angular

position, ϕ) versus time (t). Equivalent maps of the calculated linear Rac1T concentration, ρR, are shown in the

theoretical kymographs. Autocorrelograms represent the self-product of appropriately normalized kymographs that

are shifted in both time (Δt) and space (Δϕ). A precise definition can be found in the Material and methods section.

The patterns displayed correspond to the dynamics types shown in Fig 1: (A) Rotating monopole, (B) Oscillating
monopole and (C) Stationary monopole. The parameter values used in the simulations are listed in Table 2.

https://doi.org/10.1371/journal.pcbi.1012025.g006
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occur in simulations. Our numerical simulations show that oscillations can transition to rota-

tions and that the duration of these transitions is on the time scale of one period (Fig 7A). In

addition, our simulations also show transitions from clockwise to counterclockwise rotations

on a similar time scale for different parameter values (Fig 7B). The occurrence of transitions

does not strongly depend on the initial conditions, provided they are not in the immediate

vicinity of the final stable pattern. We observe transitions even when starting from a slightly

perturbed steady state (e.g., with white Gaussian noise and a signal-to-noise ratio of 30 dB).

This suggests that the transitions are an intrinsic feature of the system’s dynamics rather than a

result of specific initial conditions.

While we do observe transitions from ordered to random patterns of Rac1 activity, the pre-

cise role of noise in driving these transitions remains unclear. Several potential sources of dis-

ruptive noise could be involved, including stochastic fluctuations due to the low number of

molecules, mechanical perturbations caused by changes in cell shape, or extrinsic noise from

the cellular environment. Our cross-correlation analysis of Rac1* and DGAP1# signals

Fig 7. Transitions between different dynamic regimes. (A) An experimentally observed transition between the

oscillation and the rotation of a single Rac1* domain/monopole (left), and the corresponding theoretical simulation of

ρR (right). (B) An experimentally observed transition between the clockwise and counterclockwise rotation of a single

Rac1* domain/monopole (left) and the corresponding theoretical simulation of ρR (right). In this scenario, some

parameter values were significantly adjusted from their original estimates to bring the period of the traveling waves in

line with the observed experimental data (see Table 2). Kymographs and autocorrelograms are defined as described in

Fig 6.

https://doi.org/10.1371/journal.pcbi.1012025.g007
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revealed that the anti-correlation between these signals remains robust even in cells that

exhibit random behavior. This finding suggests that the local interactions between Rac1 and

DGAP1 are largely independent of the large-scale organization of the cell and points to the

dominance of noise at small spatial frequencies in the system. To further explore this result, we

performed a power spectrum analysis of the Rac1* signal and observed the dominance of

noise power at low spatial frequencies in both ordered and randomly behaving cells (S6 Fig).

This result indicates that low-frequency noise is responsible for the disruption of large-scale

Rac1* pattern organization, while the small-scale, molecular-level interactions between Rac1

and its regulators remain unaffected.

Phase relationships between Rac1T and its effector DGAP1

Since both DPAKa(GBD)-DYFP and mRFP-DGAP1 interact with active Rac1, it is counterin-

tuitive to observe their fluorescence signals on opposite sides of the cell (Fig 2). To contrast the

experimentally observed negative correlation with our theoretical model, we compared kymo-

graphs of Rac1* and DGAP1# from microscopy with our theoretical predictions. We empha-

size that we compare the experimental distribution of DGAP1#, which corresponds to the sum

of the free (D) and complexed (RD) forms of DGAP1, to the sum of the model variables ρD

and ρRD. Both the experimental and theoretical data showed primarily anti-correlated distribu-

tions between Rac1 and DGAP1 in oscillating patterns (Fig 8A). To further investigate the rela-

tionship between Rac1* and DGAP1# during rotation, we analyzed time series corresponding

to specific locations at the cell edge. However, analyzing fluorescence from a single spatial

point proved impractical due to excessive noise in the data series. Therefore, we decided to use

averaged time series obtained from the data of all spatial points in a single experiment. First,

we had to align all time series corresponding to the different locations on the circumference to

account for their mutual phase shifts. For this matching, we used principal component analysis

(see the corresponding section of Materials and methods). After obtaining the characteristic

temporal fluorescence intensity profiles for Rac1* and DGAP1#, we compared them to the

model simulation (Fig 8B). The calculated profiles agreed remarkably well with the experimen-

tal data in terms of periodicity, asymmetry, relative intensities and the phase relationship

between the two waves. Using the same experimental data sets, we created a phase portrait

showing the counterclockwise evolution along a crescent-shaped trajectory (Fig 8C, left). The

phase portrait derived from our model simulations mirrors that of the experimental data (Fig

8C, right). To capture the correct counterclockwise evolution in the phase portrait, we

included the cooperative binding of DGAP1 to the membrane, which is described in the

model equations by terms with constants k41 and k42. Without these terms, the system always

evolved in a clockwise direction, regardless of the choice of other parameter values.

Dynamics of Rac1-GTP in cells lacking DGAP1

The computed dependence of the emerging Rac1* patterns on the abundance of GAP and

DGAP1 (Fig 5B) suggests that, in the absence of DGAP1, the system should only display

homogenous stable steady states and oscillations. To test this prediction experimentally, we

expressed the Rac1* probe and monitored Rac1 activity in double knock-out mutants lacking

both DGAP1 and the closely related protein GAPA. We found that Rac1* also displays wave-

like dynamics in these cells (S7 Fig). In 15 DGAP1/GAPA knockout cells expressing the Rac1*
probe, we observed 32 periods of oscillations and rotations. This finding is in agreement with

the model’s prediction that DGAP1 is dispensable for the occurrence of oscillations and rota-

tions of Rac1* domains. However, we also observed DGAP1/GAPA knockout cells with polar-

ized distributions of Rac1* at the leading edge. This result suggests that other membrane-
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bound proteins in these cells may take over the role of DGAP1 in the negative regulation of

Rac1 activity.

Discussion

Our study reveals intricate spatiotemporal dynamics of Rac1 activity in D. discoideum, com-

prising periodic and irregular patterns as well as transitions between them (Figs 1 and 7). The

observed oscillation patterns exhibit periodicities typically between 2 and 5 minutes. Compa-

rable intracellular oscillations of small Rho family GTPases have been observed in a whole

spectrum of eukaryotic organisms, from yeast to humans [52]. In budding yeast, clusters of

active Cdc42 oscillate with a characteristic period of 4–5 minutes [53]. In fission yeast cells,

which grow bipolar, active Cdc42 oscillates between the polarized cell tips with an average

period of 5 minutes [54]. In human NK cells, Cdc42 activity oscillates with a periodicity of 5 to

Fig 8. Relationship between the travelling waves of Rac1 and DGAP1. (A) Experimentally observed rotational

patterns of Rac1* and DGAP1# are displayed next to the corresponding patterns of the linear densities of Rac1T (ρR

and DGAP1 (ρD+ρRD) derived from computer simulations. (B) Left The average fluorescence intensities of Rac1* and

DGAP1#, as obtained by principal component analysis of travelling waves, plotted as functions of time. Right The time

series of ρR and ρD+ρRD at a fixed spatial point as derived from numerical simulations. (C) Phase portraits created

using the data points from (B). The phase portrait derived from the simulated data represents a rotation period (limit

cycle). In both experiment and theory, the system moves counterclockwise along a crescent-shaped trajectory. The

time course is represented by color coding. The parameters correspond to the values given in Table 2.

https://doi.org/10.1371/journal.pcbi.1012025.g008
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6 minutes [55]. In developing Xenopus embryos, active Rho forms waves, while in reconsti-

tuted Xenopus cortices it organizes in oscillating patches with characteristic periodicities of 1

to 3 minutes [56,57]. Similarly, in plants, the active GTPase Rop1 undergoes oscillatory accu-

mulation and spreading at the tips of growing pollen tubes with a periodicity between 1 and 3

minutes [58]. These consistent periodicities in different organisms suggest that common regu-

latory mechanisms control the dynamics of Rho GTPases.

Early studies found that the shape changes during locomotion of D. discoideum cells are not

random [59,60]. Quantitative analyses revealed elongations, rotations and oscillations in the

shape of both vegetative and starved D. discoideum cells and showed a correlation with the

dynamics of F-actin [61]. The periodicity of the observed rotations and oscillations was

between 2.5 and 3.5 minutes, which is consistent with our results. Each type of recurrent pat-

tern lasted 10 to 20 minutes, and the patterns occasionally transitioned spontaneously. How-

ever, no bipolar oscillations or rotations of F-actin were detected. Our work and others link

Rac activation to actin-driven protrusions in D. discoideum and other cells [14,22,35,62].

Therefore, it is highly plausible that the dynamic phenomena observed by Maeda and col-

leagues are related to those described in this study. However, while transitions between differ-

ent periodic F-actin patterns were hypothesized to occur stochastically, here we show that

transitions in active Rac1 patterns can occur within the deterministic framework of our model

(Fig 7).

In mutant D. discoideum cells lacking enzymes that regulate the interconversion of phos-

phoinositides (PIs), such as PI3-kinase and phosphatase PTEN, the periodic changes in cell

shape and the fluid uptake were significantly reduced [61,63]. Subsequently, oscillations in the

PI signaling system were observed using fluorescently labeled probe for PIP3 and PTEN in

cells immobilized with latrunculin A and treated with caffeine [64]. These studies revealed that

the observed oscillations and rotations of membrane domains differentially enriched with

PTEN or PIP3 exhibit the properties of a relaxation oscillator [64,65]. Links between PI and

Rho GTPase signaling and their oscillations have been suggested in various cellular systems.

For example, in neutrophils, PIP3 and active Rac promote actin polymerization, which in turn

drives PIP3 and Rac activity through reciprocal positive feedback mechanisms [66–69]. In nat-

ural killer cells that form immunological synapses with target cells, the p85a subunit of the

PI3-kinase was required to maintain oscillations in Cdc42 activity [55]. Given the striking sim-

ilarity between the oscillations of PIP3 and Rac1 in D. discoideum, the question arises whether

the established pattern of the former might serve as a template for the spatiotemporal distribu-

tion of the latter [70]. Direct experimental testing of this proposition in D. discoideum is chal-

lenging, as the PIP3 waves were observed in immobilized cells treated with latrunculin A and

caffeine, a treatment that abolishes the F-actin-dependent cortical localization of Rac1 [14,35].

However, our theoretical studies suggest that the autonomous signaling system, which involves

the activation and inactivation of Rac1 and its switching between the membrane and the cyto-

sol, is capable of generating different oscillatory patterns independently of other signaling

systems.

Rho GTPases play a crucial role in coordinating the timing, location and nature of supra-

molecular actin assemblies in motile cells [36,71]. Interestingly, a single Rho GTPase can regu-

late different cytoskeletal activities by selectively interacting with different downstream

effectors [72]. It has been shown that Rac1 in mammals and the related Rac1 in D. discoideum
control the protrusion of lamellipodia and pseudopodia [14,22,35,73], which is facilitated by

Rac1-dependent activation of actin polymerases [2,6,7,74]. Besides migration, Rac1 is also

involved in the regulation of macroendocytosis, and some of the oscillating domains observed

in our experiments clearly represent confocal cross-sections through macropinocytic cups

(e.g. S4 Movie) [75,76]. These data indicate that the oscillations might be involved in a periodic
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sampling of the environment for nutrients and for chemical clues that may trigger chemotaxis

[77,78]. However, Rac1 also regulates non-protrusive and contractile areas of the actin cortex,

albeit apparently to a lesser extent [13,79–81]. Our study contrasts the dynamics of a Rac1

effector, DGAP1, involved in actin filament entanglement in the posterior and lateral cortex,

with the cortical distribution of Rac1*. We confirmed that cortical regions enriched in DGAP1

mostly do not overlap with those enriched in Rac1* [13]. Surprisingly, however, we also

observed rare domains enriched in both proteins in polarized cells (Fig 2C), a feature sup-

ported by our theoretical model (Fig 5A).

To investigate the observed dynamics from a theoretical perspective, we constructed a reac-

tion-diffusion model based on the generally known interactions between Rac1, its associated

regulators from the GAP, GEF and GDI families, and its effector DGAP1. To keep the model

manageable, we only explicitly considered the distributions and mutual interactions between

Rac1, GAP and DGAP1 (Fig 3), while the activities of the other regulators were indirectly

included in the interaction cycle of Rac1. The model contains several nonlinear terms describ-

ing feedback mechanisms that facilitate the recruitment of Rac1 and DGAP1 to the membrane.

It successfully replicates the spatiotemporal distributions of active Rac1 and DGAP1 in rota-

tional, oscillatory and polar states, transitions between the observed dynamic regimes, and the

relative abundances and phase relationships between active Rac1 and DGAP1 on the mem-

brane. Thus, our computational model provides an explanation for the experimentally

observed negative correlation between the concentration peaks of active Rac1 and its effector

DGAP1 [13,14]. The model predicts that DGAP1 flux is primarily driven by unassisted mem-

brane binding and Rac1-dependent dissociation from the membrane. Consequently, DGAP1

is abundant on the membrane except in regions enriched in Rac1T, which binds DGAP1 and

releases it into the cytoplasm. The model also predicts a tight coupling between the dynamics

of active Rac1 and GAP, a hypothesis that could be explored in future experimental research

on RacGAP candidates in D. discoideum.

Whereas we observed periodic Rac1* patterns in cells devoid of DGAP1, as predicted by

the model, the occurrence of polarized Rac1* distributions in these cells suggests that other

proteins participate in the negative regulation of Rac1 activity at the membrane of D. discoi-
deum cells. Since DGAP1 in our model can bind to the plasma membrane independently of

Rac1, we expect such auxiliary proteins to share this property. A likely candidate is a recently

described RhoGAP CARMIL-GAP, which functions as a GAP for Rac1A in D. discoideum
[43]. Importantly, CARMIL-GAP harbors a pleckstrin homology domain, which can bind

phosphatidylinositol lipids within biological membranes, at its N-terminus. While in this

report we studied the consequences of DGAP1 removal on the dynamics of Rac1, future inves-

tigations could explore analogous effects by altering the abundance of Rac1 itself. Given the

presence of three Rac1 isoforms in D. discoideum, creating single and double Rac1 knock-out

mutants could potentially allow for experimental probing of the stability diagram shown in

Fig 5A.

In our model, we explicitly considered the interaction of Rac1 with only one of its many

effectors [7]. However, the model accounts for positive cooperativity in the binding of Rac1 to

the plasma membrane in conjunction with its activation. The underlying mechanism likely

involves the interaction of Rac1 with other effectors that promote actin polymerization [40]. It

is known that some effectors of Rho GTPases can directly modulate their activity within multi-

protein complexes [24]. In general, autocatalytic, GEF-mediated and effector-assisted activa-

tion is a universal feature of Rho GTPase regulation in a variety of eukaryotic cells [28,38].

RacGEF1 has also been shown to mediate a positive feedback loop between F-actin and Rac

activity in D. discoideum, although the details of the underlying mechanism are still unclear

[40]. Other Rac1-binding proteins such as CIRY can negatively regulate its abundance by
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acting as Rac1T sequestrators [82]. CIRY proteins, and other Rac1 effectors, probably affect the

Rac1 dynamics by influencing the number or free Rac1T molecules locally. Even more impor-

tantly, the balance between the number of Rac1T molecules that bind to the Scar/WAVE com-

plex and to the CIRY proteins will influence the dynamics of actin polymerization and

feedback loops that depend on F-actin, for instance those that include RacGEF1.

Early models that attempted to explain the symmetry breaking in the distribution of Rho

GTPases were inspired by the polarized clustering of Cdc42 in S. cerevisiae [27,83]. In these

seminal studies, it was recognized that autocatalytic GEF-mediated activation is crucial for the

polarization of Cdc42 [26]. A little later, active Cdc42 was found to oscillate between transient

foci in S. cerevisiae and between incipient poles in S. pombe [53,54]. It is often assumed that

oscillatory behavior in biological systems requires the presence of a delayed negative feedback

loop [84]. Therefore, the oscillations of Cdc42 between the two poles in fission yeast cells were

modeled under the assumption that Cdc42 triggers its own elimination through a generic

delayed negative feedback mechanism [54]. In budding yeast, negative feedback mechanisms

have been proposed to act through Cdc42-mediated activation of a Cdc42-driven GAP or

through inhibitory phosphorylation of the Cdc42-specific GEF Cdc24 by the Cdc42 effector

Pak1 [53,85–88]. A similar role for Cdc42-specific GEFs and GAPs in the regulation of oscilla-

tions by negative feedback was investigated in S. pombe [41,89]. In our model, Rac1 is nega-

tively regulated through the standard activity of a GAP and a pathway for its detachment from

the membrane, mediated by DGAP1.

Our model shares three important features that are essential for the formation of the

observed patterns with the conceptual Brusselator model [90]. 1) Autocatalysis In both models,

autocatalytic steps are crucial for generating oscillations. In our model, a positive feedback

loop involving Rac1 recruitment plays a key role in the formation of both stationary and oscil-

latory patterns. 2) Substrate depletion While the Brusselator model, in its original formulation,

is not mass-conserving globally due to the constant inflow of substrate and outflow of product,

it still relies on the local substrate depletion to generate patterns [90]. Similarly, the local deple-

tion of cytoplasmic Rac1 at the wavefront is crucial for the wave propagation and the forma-

tion of spatial patterns. 3) Diffusion-driven instability In the Brusselator model, pattern

formation arises when the activator diffuses slowly compared to the substrate. Similarly, the

membrane-bound active Rac1 (which acts as the activator) is essentially non-diffusible, while

the cytoplasmic Rac1 (the substrate) diffuses rapidly, fulfilling the necessary condition for dif-

fusion-driven instability. Moreover, our Rac1 signaling model exhibits a codimension-2

Turing-Hopf bifurcation, similar to what is observed in the Brusselator model. The interplay

between Rac1-GAP and Rac1-DGAP1 interaction cycles in our model mirrors the Brussela-

tor’s ability to generate a variety of spatiotemporal patterns, such as polarizations, traveling

waves, and standing waves.

It is instructive to compare our theoretical model with the recently published model of Rac

and Rho oscillatory dynamics in MDA-MB-231 breast cancer cells [79]. That model includes

two GTPases, Rac and Rho, and three other effector/regulator proteins, ROCK, DIA and PAK,

that connect them into an interconnected interaction network. Similar to our model, the

Bolado-Carrancio model predicts several distinct dynamic regimes, including travelling waves,

which depend on the abundances of the effector proteins. However, in contrast to our model,

they model the cell as a one-dimensional domain representing the longitudinal axis of the cell

and postulate spatially heterogeneous concentration profiles of ROCK and DIA along that axis

based on experimental observations. In our model, we do not impose any pre-patterning of

GAP or DGAP1 distributions. Instead, the spatial heterogeneity emerges solely from the self-

organizing properties of the Rac1-GAP-DGAP1 network.

PLOS COMPUTATIONAL BIOLOGY Rac1 oscillations in Dictyostelium discoideum amoebae

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012025 December 9, 2024 20 / 42

https://doi.org/10.1371/journal.pcbi.1012025


In summary, our experimental results support the idea that the activities of small Rho

GTPases are prone to autonomous, constitutive spatiotemporal oscillations in eukaryotic cells.

Our theoretical model for Rac1 dynamics in D. discoideum cells contributes to the understand-

ing of Rac1 regulation and membrane localization. It supports the idea that regulation of Rho-

GTPase signaling activities by GEFs and GAPs can lead to oscillatory dynamics [91]. Future

research should investigate the impact of the integrity of the PI-centered signaling network on

Rac1 oscillations as well as the contribution of effectors beyond DGAP1 to Rac1 dynamics.

Furthermore, our current model does not yet take into account the mechanical forces caused

by actin polymerization and membrane deformation [25,92–94]. The functional significance

of Rho GTPase oscillations in general remains a controversial topic. Some propose that they

represent an exploratory behavior typical of self-organizing biological systems [54,95], while

others suggest that the oscillations may be a by-product of the topology of the interaction net-

work [52,96]. In D. discoideum cells and other related systems, Rac1 oscillations could facilitate

the rapid adaptation of cytoskeletal activities to environmental changes [97]. Future studies

should investigate the effects of stochasticity on the extent of the different dynamic regimes

and the transitions between them. Considering that regulatory and signaling mechanisms

involving small Rho GTPases are largely conserved in eukaryotes [7,8,98], we hypothesize that

our model is potentially applicable to Rac polarization and oscillations in other systems as

well.

Materials and methods

Expression vectors and D. discoideum cell lines

Dictyostelium discoideum cells were cultivated in polystyrene culture dishes at 22˚C in axenic

HL5 medium (Formedium), with the addition of 18 g/l maltose, 50 μg/ml ampicillin and

40 μg/ml streptomycin. We used AX2 cells stably expressing the DPAKa(GBD)-DYFP probe

constructed as previously described [14]. DPAKa(GBD)-DYFP probe was also expressed in

DGAP1/GAPA double knock-out cells [12]. For the co-expression of DPAKa(GBD)-DYFP

and mRFP-DGAP1, AX2 cells stably expressing mRFP-DGAP1 were transfected with the

pDEX-DPAKa(GBD)-DYFP vector [14]. Cell transfection by electroporation and clonal selec-

tion was performed as described [99].

Confocal laser scanning fluorescence microscopy

Fluorescence microscopy was performed using a Leica TCS SP8 X microscope equipped with a

supercontinuum excitation laser (Leica Microsystems). The excitation wavelengths and detec-

tion ranges used for imaging were: (1) 511 nm and 520–565 nm for DYFP, and (2) 575 nm

and 585–630 nm for mRFP. The hybrid HyD detectors were operated in gated mode to sup-

press the parasite reflection from the coverslip surface, and the delay time between excitation

and detection was set to 0.3 ns. Only an approximately 1 μm thick section of typically 5–10 μm

thick cells was imaged, corresponding to the depth of field of the imaging setup. In total, we

observed 85 randomly selected cells expressing DPAKa(GBD)-DYFP and 93 cells co-express-

ing DPAKa(GBD)-DYFP and mRFP-DGAP1. After selecting a cell that expressed fluorescent

probe(s) at moderate levels, it was recorded for at least 10 minutes, and if no obvious patterns

were visible, the cell was categorized as having no spatially structured dynamics. Otherwise,

the observed pattern was further analyzed. Of the 85 monitored cells expressing DPAKa

(GBD)-DYFP, the dynamics in 59 cells were classified as random. Of the 93 monitored cells

co-expressing DPAKa(GBD)-DYFP and mRFP-DGAP1, the dynamics were classified as ran-

dom in 59 cells. In the following analyses of DPAKa(GBD)-DYFP dynamics, the results of

both cell types were combined.
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Image processing and correlation analysis

QuimP, a set of plugins for ImageJ (NIH), was used to analyze the intensities of the fluores-

cent probes on the cell cortex [100]. To remove excess noise from the data, we loaded the

output intensities into MATLAB (MathWorks) and processed the data with the smoothing

spline function ’csaps’. The resulting variable I(F,t) was then color-coded and plotted

against the angle F, which represents the position on the cell membrane, and time t. To

facilitate the detection of repetitive patterns reflecting protein dynamics, we calculated the

autocorrelation function of I(F,t). We define the autocorrelation function of fluorescence

intensity I as

A DF;Dtð Þ ¼
hdIðFþ DF; t þ DtÞ � dIðF; tÞiF;t

hdI2ðF; tÞiF;t

where dIðF; tÞ ¼ IðF; tÞ � hIðF; tÞi
F

, and h iF,t denotes the average over the angle and time.

The Pearson correlation coefficient (r) between the Rac1* and DGAP1# signals for each

cell was computed by applying the MATLAB function ’corr2’ to the first 120 seconds of

each recorded time series (Fig 2D). To examine the temporal evolution of the correlation, r
was computed over sliding 10-seconds intervals throughout the observation period by

applying ’corr2’ to successive 10-second portions of the IRac1* and IDGAP1
# intensity matrices

(Fig 2E).

Numerical methods

For the numerical calculations, the spatial domain was discretized into 100 uniformly distrib-

uted points given by the vector x = (x1,. . .,x100), where each component has a value xi = (i−1)�

h, with index i = 1,. . .,100 and distance between adjacent spatial points h = L/100. In this case,

the spatial derivatives have an approximate value:

@2r

@x2
xi; tð Þ ¼

riþ1ðtÞ � 2riðtÞ þ ri� 1ðtÞ
h2

for i ¼ 2; . . . ; 99

@2r

@x2
x1; tð Þ ¼

r2ðtÞ � 2r1ðtÞ þ r100ðtÞ
h2

@2r

@x2
x100; tð Þ ¼

r1ðtÞ � 2r100ðtÞ þ r99ðtÞ
h2

:

Here, the vector r ¼ ðrr; rR; rg; rRG; rd; rD; rRDÞ
T

represents the densities of the protein

species. The periodic boundary condition used in this study is included in the equations for

the boundaries at i = 1 and i = 100. Consequently, each partial differential equation was

replaced by a system of 100 coupled ordinary differential equations. We solve such a system

using MATLAB solver ’ode15s’, a variable-step, variable-order method based on backward dif-

ference formulas.

Linear stability analysis

To investigate the nature of the solutions in larger parts of the parameter space, we performed

a linear stability analysis. The original reaction-diffusion system, given by Eqs (1)–(7), can be

expressed in a compact form

@tr ¼ D@2

xrþ f ðrÞ; ðM1Þ
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where f:R7!R7 is a nonlinear function given by:

f ¼

f1
f2
f3
f4
f5
f6
f7

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

¼

k3arRG � rrð1 � rR=rRmaxÞðk1 þ k11rR þ k12rRGÞ þ k6brRD

k6arRD � k2rRrg � k5rRrD þ rrð1 � rR=rRmaxÞðk1 þ k11rR þ k12rRGÞ

k3arRG � k2rRrg

k2rRrg � k3arRG

� rdð1 � rD=rDmaxÞðk4 þ k41rR þ k42rRGÞ þ ðk6a þ k6bÞrRD

Drdð1 � rD=rDmaxÞðk4 þ k41rR þ k42rRGÞ � k5rRrD

k5rRrD � ðk6a þ k6bÞrRD

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

;

and D is 7×7 diagonal matrix containing diffusion constants,

D ¼

Dr

0 0

Dg

0

Dd

0 0

0

0

B
B
B
B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
C
C
C
A

:

We have first determined a fixed point of the system, which is referred to as ρ*. For the spa-

tially homogeneous fixed point, Eq (M1) reduces to f(ρ*) = 0. These seven equations are line-

arly dependent, with four of them being independent:

k3ar
∗
RG � r

∗
r ð1 � r

∗
R=rRmaxÞðk1 þ k11r

∗
R þ k12r

∗
RGÞ þ k6br

∗
RD ¼ 0

k3ar
∗
RG � k2r

∗
Rr

∗
g ¼ 0

� r∗dð1 � r
∗
D=rDmaxÞðk4 þ k41r

∗
R þ k42r

∗
RGÞ þ ðk6a þ k6bÞr

∗
RD ¼ 0

k5r
∗
Rr

∗
D � ðk6a þ k6bÞr

∗
RD ¼ 0

Furthermore, the total number of molecules of each protein remains constant, regardless of

whether these molecules are in a complex or free:

r∗r þ r
∗
R þ r

∗
RG þ r

∗
RD ¼ NRac1=L

r∗g þ r
∗
RG ¼ NGAP=L

r∗d þ r
∗
D þ r

∗
RD ¼ NDGAP1=L:

Here, the symbols NRac1,NGAP, and NDGAP1 represent the total number of Rac1, GAP, and

DGAP1 molecules, respectively. For a given set of parameter values, these equations have a

unique solution, which we have calculated using MATLAB.

To assess the stability of the steady state, we have considered the linearized system

@tdr ¼ D@2

xdrþ J dr; ðM2Þ
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where δρ = ρ−ρ* represents the deviation from the steady state, and J denotes the Jacobian

matrix of f, which is defined as

J ¼ j
@f
@rr

� � �
@f
@rRD

� �

jr¼r∗ :

The linearized Eq (M2) can be solved using the ansatz drq / esqtþiqx. The stability of the

steady state depends on the growth rate σq, whereby a positive value of the real part indicates

an unstable state. The symbol q stands for the wavenumber, whose possible values are limited

by the boundary conditions. For periodic boundary conditions, the wavenumbers are

expressed as q = 2nπ/L, where n2{0,±1,±2,. . .}. By inserting the ansatz into the linearized sys-

tem, a connection between the values of σq and q is established:

sqdrq ¼ ðJ � q2DÞdrq

For a given wavenumber, the values of σq are therefore the eigenvalues of the matrix

Mq ¼ J � q2D. If the real part, Reσq, becomes positive when a control parameter is changed

and the imaginary part, Imσq, is not equal to zero, an oscillatory or Hopf bifurcation occurs. If

Imσq = 0, however, the instability is described as stationary (Turing).

Construction of the theoretical model

The condensed theoretical model we use to simulate the joint dynamics of Rac1* and DGAP1#

(Eqs 1–7) was derived from an extensive theoretical model described by the following system

of equations:

@rr

@t
¼ Dr

@2rr

@x2
þ k3arRG � rr 1 �

rR

rRmax

� �

k1 þ k11rR þ k12rRGð Þ þ k6b þ k6dð ÞrRD þ k� 1rm ðM3Þ

@rR

@t
¼ k6a þ k6cð ÞrRD þ kactrm � k2rRrg � k5rRrD ðM4Þ

@rg

@t
¼ Dg

@2rg

@x2
þ k3a þ k3bð ÞrRG � k2rRrg ðM5Þ

@rRG

@t
¼ k2rRrg � k3a þ k3bð ÞrRG ðM6Þ

@rd

@t
¼ Dd

@2rd

@x2
� rd 1 �

rD

rDmax

� �

k4 þ k41rR þ k42rRGð Þ þ k6a þ k6bð ÞrRD þ k� 4rD ðM7Þ

@rD

@t
¼ rd 1 �

rD

rDmax

� �

k4 þ k41rR þ k42rRGð Þ þ k6c þ k6dð ÞrRD � k5rRrD � k� 4rD ðM8Þ

@rRD

@t
¼ k5rRrD � k6a þ k6b þ k6c þ k6dð ÞrRD ðM9Þ

@rm

@t
¼ rr 1 �

rR

rRmax

� �

k1 þ k11rR þ k12rRGð Þ þ k3brRG � kactrm � k� 1rm ðM10Þ
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In comparison to the condensed model described by Eqs (1–7), the extensive model con-

tains an additional species, the membrane-bound inactive Rac1 (represented by the linear den-

sity ρm), along with several additional reactions. The binding of Rac1D to the membrane and

its subsequent activation are treated as distinct kinetic processes. The binding rate is described,

as before, by the expression rrð1 � rR=rRmaxÞðk1 þ k11rr þ k12rRGÞ, while the activation rate is

described by the linear term kactρm. Additionally, the reverse process, in which Rac1D is

released back to the cytoplasm, is governed by k−1. A term describing dissociation of DGAP1

from the membrane (k−4) is also included. Two additional pathways for the dissociation of the

Rac1-DGAP1 complex are included: one in which both Rac1 and DGAP1 remain on the mem-

brane, k6c, and another where Rac1 is released to the cytoplasm while DGAP1 stays on the

membrane, k6d. Finally, an alternative dissociation pathway for the Rac1-GAP complex is

included where Rac1 is deactivated but remains membrane-bound, thus generating ρm (k3b).

In order to facilitate the computationally demanding exploration of the parameter space, we

introduced several approximations to simplify the extensive model (M3-M10), as detailed

below.

Coupling of the membrane recruitment and activation of Rac1 One of the simplifications is

the assumption that Rac1 exists in only two states: active when bound to the membrane and

inactive when in the cytoplasm [101]. The latter assumption is supported by evidence suggest-

ing that the release of membrane-bound Rac1D into the cytoplasm is favored over Rac1T by an

order of magnitude [49,50,102]. To test the implications of the first assumption—that Rac1 is

bound to the membrane exclusively in its active form—we compared the behavior of the

extensive model with a modified version in which membrane-bound Rac1D (ρm) was removed.

Consequently, the terms contributing to the production and removal of ρm are absent in the

reduced model. In this reduced model, rather than treating Rac1D membrane binding and

activation as separate kinetic processes, these steps were simplified into a single lumped pro-

cess. Our analysis of the reduced model showed that the system’s behavior remains preserved

as long as the timescale of the lumped process approximated the combined timescale of bind-

ing and activation (calculated as the sum of the individual reciprocal rates). This condition can

be achieved by adjusting binding rate constants (k1,k11, and k12) or the total number of Rac1

molecules. Consequently, this simplification does not lead to qualitative changes in system

behavior, as the reduced model still produces the same travelling waves, standing waves, and

stationary patterns, while preserving the Rac1-DGAP1 relationship. Since the kinetics of GEF-

mediated Rac1 activation in our system are unknown and subject to significant variation and

modulation [103], we opted to use in the condensed model a lumped process that captures the

essential dynamics of the system while requiring fewer reaction terms, parameters, and molec-

ular species.

Dissociation of the Rac1-DGAP1 complex There are four possible pathways for dissociation

of the Rac1T-DGAP1 complex (RD) in the extensive model: RD! Rþ dðk6aÞ; RD!
rþ dðk6bÞ; RD! Rþ Dðk6cÞ, and RD!r+D (k6d). Numerical simulations showed that

including the first two pathways (k6a and k6b), which return DGAP1 to the cytoplasm, was nec-

essary to reproduce the experimentally observed anticorrelation between Rac1* and DGAP1#.

On the other hand, including only the pathways that retain DGAP1 at the membrane (k6c and

k6d), did not yield results consistent with experimental observations. We therefore retained

only the first two reactions in the condensed model to streamline time-intensive numerical

simulations.

Dissociation of DGAP1 from the membrane In the extensive model, the binding of DGAP1

to the membrane (k4) is followed either by the formation of the Rac1T-DGAP1 complex (k5) or

by the direct dissociation of DGAP1 from the membrane (k−4). By varying the values of k5 and

k−4, we determined that contribution of direct dissociation to the total DGAP1 flux must be
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less than 5% to preserve the experimentally observed anti-correlation between Rac1* and

DGAP1# signals (cf. Fig 8B). Based on this comparison between experimental and theoretical

results, we predict that the vast majority of DGAP1 molecules will interact with Rac1T before

being released to the cytoplasm. Consequently, we chose to omit the direct dissociation of

DGAP1 from the membrane in the condensed computational model to reduce its complexity.

In addition to the nonlinear term describing the autocatalytic GEF-mediated recruitment

of Rac1D to the membrane facilitated by Rac1T anchored in the membrane (k11), we also

included a term which describes the cooperative recruitment of cytoplasmic Rac1D by the

membrane-bound Rac1T-GAP complex (k12). We found that the relative magnitudes of k11

and k12 regulate the shape of the wave profile and the inclusion of k12 term was necessary to

reproduce the precise shape of Rac1T waves, particularly their width. The nonlinear terms

characterized by the rate constants k41 and k42 describe the cooperative recruitment of cyto-

plasmic DGAP1 to the membrane by the membrane-bound Rac1T and the Rac1-GAP com-

plex. These terms were introduced to capture the correct counterclockwise evolution in the

phase portrait of Rac1* and DGAP1# (Fig 8C). Without these terms, the system always evolved

in a clockwise direction, regardless of the choice of other parameter values. Whereas the Rac1--

GAP complex can recruit DGAP1 to the membrane (k42), there is no corresponding term for

the recruitment of GAP by the Rac1-DGAP1 complex. This asymmetry arises because in our

model, in contrast to DGAP1, GAP cannot bind to the membrane independently but is

recruited only through its interaction with the membrane-bound Rac1T. We emphasize that

the terms involving constants k12 and k42 describe cooperative binding of DGAP1 and Rac1D

to the membrane at the sites where the Rac1T-GAP complex is present and do not imply for-

mation of tripartite complexes. We acknowledge that the introduction of these cooperative

binding terms is not based on established biological mechanisms but was driven by the need to

replicate the experimentally observed phase portrait behavior and wave profile shapes. How-

ever, the hypothetical recruiting capacity of the Rac1-GAP complex could be mediated by the

multi-domain structure of GAPs that can act as scaffolds to promote indirect recruitment of

Rac1 and DGAP1 [24,45]. Additionally, three D. discoideum proteins are known to integrate

RhoGEF and RhoGAP domains within the same molecule [9].

To restrict maximal densities of Rac1 and DGAP1 at the membrane, the model uses satura-

tion terms 1−ρR/ρRmax and 1−ρD/ρDmax introduced to capture the effect of steric repulsion and

space filling by membrane-bound proteins. Our choice to model Rac1 and DGAP1 with sepa-

rate density constraints rather than summing membrane concentrations of all species stems

from significant differences in their molecular sizes (approximately 21 kDa for Rac1 and 95

kDa for DGAP1) and the distinct crowding effects they are likely to experience. This approach

is supported by recent findings [104], which demonstrate that the crowding effects on mem-

brane proteins can vary substantially depending on the physical properties of proteins, such as

size, shape and charge. Moreover, during the model development process, we explored an

alternative approach in which the concentrations of both proteins were summed to represent

the total protein density on the membrane. However, we found that this formulation was

unable to reproduce certain aspects of the observed Rac1 and DGAP1 dynamics, particularly

their mutual correlation. The constants ρRmax and ρDmax were not derived from experimental

measurements but were instead treated as free model parameters.

Estimation of the values of parameters used in the simulations

We estimated the average membrane length of the observed cells to be about 40 μm. Small

GTPases typically have a molecular mass that varies between 20 and 25 kDa [105], the mass of

DGAP1 is 95 kDa [106], and the mass of a RhoGAP protein from D. discoideum, DRG, is 150
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kDa [107]. Using the diffusion coefficient of GFP (27 kDa) measured in the cytoplasm of D.

discoideum cells (27 μm2s-1) as a reference [108], the value of the Rac1D diffusion coefficient

was set to Dr = 30 μm2s−1. The Einstein-Stokes equation predicts that the diffusion coefficient

of a globular protein should be inversely proportional to its molecular mass (D ~ M−1/3). How-

ever, due to the effects of crowding and the irregular shape of non-spherical proteins, smaller

proteins have been found to follow the relationship D~M−2, while the diffusion coefficient for

larger proteins (M>100 kDa) can become almost independent of M[109]. Therefore, we set

the values of DGAP1 and GAP diffusion coefficients to Dd = 12 μm2s−1 and Dg = 8 μm2s−1.

To estimate the total number of molecules for each protein in our one-dimensional system,

we need to convert the available information about 3D concentrations into 1D concentrations.

Since the molecules usually have greater freedom of movement in the horizontal xy-plane

because the cells often lie flat on a surface, the observed protein dynamics tend to be largely

independent of the z-position within the cell. For this reason, we chose a 100 nm thick hori-

zontal layer to represent the entire cell. Although the choice of layer thickness is somewhat

arbitrary, it directly influences the total amounts of protein used in the simulations. Given a

concentration of cellular Rac1 of 1 μM [110] and a typical cell radius of 6 μm, we estimate the

total number of Rac1 molecules in a slice to be approximately 7000. We did not adjust this

value significantly for our simulations, although the spatial domain in our simulations is ring-

shaped rather than disk-shaped. We scaled the total number of DGAP1 and GAP proteins

according to their size, as we assume that the abundance of a particular protein type is

inversely proportional to its size [111].

The dissociation rate constants of the Rac1-containing complexes, k3a,k6a and k6b, were ini-

tially set to 0.5 s−1, as described in the literature [89,112]. These values were only slightly

adjusted in our simulations. To avoid unrealistic concentrations of membrane-bound pro-

teins, we set biologically plausible upper limits for the densities of membrane binding sites for

Rac1T (ρRmax) and DGAP1 (ρDmax). Next, we set the membrane binding constant for Rac1, k1,

to match the flux of Rac1 from the cytoplasm to the membrane to values commonly cited in

the literature [50]. Similarly, we fitted the nonlinear rate constants k11 and k12 considering the

steady-state concentrations of Rac1T (of the order of 10 μm−1) and Rac1D (of the order of 102

μm−1). Similarly, we estimated the initial values for the rate constants that determine the mem-

brane binding of DGAP1, k4,k41 and k42.

We then determined the rate constants for the binding reactions of Rac1T to GAP, k2, and

to DGAP1, k5, to obtain rates of the order of 1 s−1 at steady state [113]. Based on these prelimi-

nary estimates, we adjusted all reaction constants to successfully replicate the measured

dynamical properties of the system, such as wave profiles, periods, and the phase relationship

between the Rac1T and DGAP1 signals. The numerical values for all parameters used in the

simulations are listed in Table 2.

Two-dimensional computational model of Rac1 dynamics

To verify whether the wave-like solutions from our one-dimensional (1D) computational

model are also generated by an analogous two-dimensional (2D) model, we performed numer-

ical simulations of the left-hand side of the model (Eqs 1–4) using a finite difference method

applied to a 2D disk to model reaction and diffusion processes. The disk is segmented into n
concentric rings (radial segments) and each ring is further divided into m angular segments

(Fig 9A). The radial positions inside the disk are given by ri = (2i−1)/h/2 for i = 1,. . .,n, where

h denotes the distance between two adjacent radial positions. Angular positions are φj = (2j−1)

Δφ/2 for j = 1,. . .,m. The continuous function ρ(r,φ,t) representing 2D cytoplasmic concentra-

tion is approximated at discrete points (ri,φj) as ρi,j(t), which is also the average concentration

PLOS COMPUTATIONAL BIOLOGY Rac1 oscillations in Dictyostelium discoideum amoebae

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1012025 December 9, 2024 27 / 42

https://doi.org/10.1371/journal.pcbi.1012025


within the entire ij-th segment. The membrane is represented by the outermost ring at the

radial position nh. The 1D membrane concentration is approximated at points (nh,φj) as ρj(t).

Central difference approximation

To model the diffusion of molecules within the cytoplasm, we apply the Laplace operator to

the concentration field ρ in polar coordinates. In the continuous form, the Laplace operator

Table 2. Numerical values of parameters used in numerical simulations.

Parameter Initial

values

Values used in individual figures (without physical units)

ρRmax 200 μm−1 −
ρDmax 40 μm−1 (7B) 70

Dr 30 μm2s−1 (7B) 70

Dg 8 μm2s−1 (7B) 40

Dd 12 μm2s−1 (7B) 30

k1 2�10−2s−1 (S4B) 4.8�10−2; (7A) 3�10−2; (7B) 1.57�10−2

k2 0.22 μm/s (S4B) 0.33; (7A) 0.25; (7B) 0.72

k3a 0.45 s−1 (6A) 0.77; (6B) 0.65; (S4A) 0.42; (S4B) 0.57; (7A) 0.7; (7B) 0.71; (8B) 0.39

k11 4�10−3 μm/s (S4B) 6�10−3; (7A) 4.6�10−3; (7B) 6.6�10−3; (8B) 3�10−3

k12 6�10−3 μm/s (7A) 5.6�10−3; (7B) 7�9−3; (8B) 5�10−3

k5 0.095 μm/s (7B) 0.126

k6a 0.6 s−1 (7B) 0.393

k6b 0.43 s−1 (7B) 0.157

k4 0.24 s−1 (7B) 0.11

k41 0.8�10−3 μm/

s

(7B) 0.22; (8B) 0.4�10−3

k42 3.6�10−3 μm/

s

(7B) 1�10−3; (8B) 2�10−3

L 40 μm (S4A) 60; (S4B) 60

NRac1 5200 (4A) 4500; (4B) 5000; (6A) 7000; (6B) 6000; (6C) 6200; (S4A) 8580; (S4B) 8100; (S4C)

6000; (7A) 7300; (7B) 6340; (8B) 5400

NGAP 1200 (6A) 1000; (S4A) 2040; (S4B) 1380; (S4C) 1100; (7A) 1600; (7B) 1360; (8B) 1440

NDGAP1 1600 (4A) 800; (4B) 800; (6A) 900; (6B) 900; (6C) 3400; (S4A) 1320; (S4B) 1440; (S4C) 4400;

(7A) 1100; (7B) 1530; (8B) 1460

Additional parameters in extensive model

k−1 0.85 s−1

kact 1 s−1

k−4 0.05 s−1

k6c 0.3 s−1

k6d 0.3 s−1

k3b 0.25 s−1

First column: parameter symbols. Second column: initial estimates of parameter values. Third column: adjusted

values corresponding to specific patterns. Each value refers to the corresponding figure label, e.g. (S4B) corresponds

to S4B Fig. If a figure label is not quoted in the table, this means that the pattern for that figure was determined using

the initial estimate from the second column. Parameters specific to the extensive model, required to account for

reverse reactions and alternative dissociation pathways, are listed under ’Additional parameters in extensive model,’

with values provided for each. Also, the following parameter values were used in numerical simulations of the

extensive model to obtain the solutions equivalent to the solutions obtained by the reduced model using initial

parameter values: NRac1 ¼ 9200; NGAP ¼ 880; NDGAP1 ¼ 1500, and k11 = 5�10−3 μm/s.

https://doi.org/10.1371/journal.pcbi.1012025.t002
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r2 applied to ρ is given by:

r2r ¼
@2r

@r2
þ

1

r
@r

@r
þ

1

r2

@2r

@φ2
:

For the radial part, the approximation of the 2nd derivative is:

@2r

@r2
jri;φj �

1

h2
riþ1;j � 2ri;j þ ri� 1;j

� �
;

and the approximation of the 1st derivative is:

@r

@r
jri ;φj
�

1

2h
riþ1;j � ri� 1;j

� �
:

For the angular part:

@2r

@φ2
jri ;φj ¼

1

Dφ2
ri;jþ1 � 2ri;j þ ri;j� 1

� �
:

Fig 9. 2D simulation of Rac1 dynamics on a disk. (A) Disk segmentation. (B) Radial diffusion flow between neighbouring segments. (C) Results of

simulations: Left Travelling waves with NRac1 = 7600; Right Standing waves with NRac1 = 6900. All other parameter values are the same in both simulations:

ρRmax = 200, k0
1
¼ 1:6 � 10� 2, k0

2
¼ 2:5, k3 ¼ 0:3, k0

11
¼ 3:2 � 10� 3, k0

12
¼ 4:8 � 10� 3, R = 6, Dr = 30, Dg = 8, NGAP = 2000.

https://doi.org/10.1371/journal.pcbi.1012025.g009
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Combining the above terms, the discretized Laplace operator (Ld) can be expressed as:

@2r

@r2
þ

1

r
@r

@r
þ
@2r

@φ2

� �

jri ;φj

�
1

h2
riþ1;j � 2ri;j þ ri� 1;j

� �
þ

1

2rih
riþ1;j � ri� 1;j

� �
þ

1

r2
i Dφ2

ri;jþ1 � 2ri;j þ ri;j� 1

� �

¼
1

rih2
½riþ1=2ðriþ1;j � ri;jÞ � ri� 1=2ðri;j � ri� 1;jÞ� þ

1

r2
i Dφ2

ri;jþ1 � 2ri;j þ ri;j� 1

� �
¼ Ldri;j;

where ri−1/2 = ri−h/2 represents the position of the radial segment’s inner boundary, and ri+1/2

= ri+h/2 represents the position of the radial segment’s outer boundary. Therefore, the change

of the concentration ρi,j due to diffusion is:

@ri;j

@t
¼ DLdri;j:

Formulation in terms of radial fluxes

Radial diffusion fluxes through the ij-th segment are (Fig 9B):

Ji� 1=2;j ¼ �
D
h

ri;j � ri� 1;j

� �
;

Jiþ1=2;j ¼ �
D
h

riþ1;j � ri;j

� �
;

where Ji−1/2,j is the flux through the segment’s inner boundary and Ji+1/2,j is the flux through

the segment’s outer boundary.

The radial part of the diffusion equation can now be written in terms of radial fluxes:

D
rih2
½riþ1=2ðriþ1;j � ri;jÞ � ri� 1=2ðri;j � ri� 1;jÞ� ¼

1

rih
ri� 1=2Ji� 1=2;j � riþ1=2Jiþ1=2;j

� �

¼
Dφ
Ai

ri� 1=2Ji� 1=2 � riþ1=2Jiþ1=2

� �
¼

1

Ai
Dli� 1=2Ji� 1=2;j � Dliþ1=2Jiþ1=2;j

� �
;

where Ai = rihΔφ denotes the area of the ij-th segment, Δli−1/2 = ri−1/2Δφ is the length of the seg-

ment’s inner boundary, and Δli+1/2 = ri+1/2Δφ is the length of the segment’s outer boundary.

Consequently, beginning with the discrete Laplace operator, we arrive at the expected result

that the change in concentration in a particular segment due to diffusion in the radial direction

is equal to the total radial flow of molecules through that segment divided by its area. This

flux-based approach generalizes the Laplace operator and simplifies modeling the behavior at

the cytoplasm-membrane interface, where the outermost cytoplasmic segment’s flux Jn+1/2

arises from interactions of molecules with the membrane rather than diffusion. For example,

the interaction of cytoplasmic Rac1 molecules with the membrane generates flux in the nj-th

segment equal to:

JRac1nþ1=2;j ¼ ðrrÞn;j 1 �
ðrRÞj

rRmax

� �

k0
1
þ k0

11
ðrRÞj þ k0

12
ðrRGÞj

h i
� k3aðrRGÞj � k6bðrRDÞj:

In this case, instead of the 1D concentration (ρr)j from the 1D model, we consider the 2D

concentration (ρr)n,j, which necessitates different rate constants denoted with primed symbols.

To establish the relationship between the constants in the 2D and 1D models, we can equate
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the corresponding fluxes:

ðrrÞn;j 1 �
ðrRÞj

rRmax

� �

k0
1
þ k0

11
ðrRÞj þ k0

12
ðrRGÞj

h i
� k3aðrRGÞj � k6bðrRDÞj

¼ ðrrÞj 1 �
ðrRÞj

rRmax

� �

k1 þ k11ðrRÞj þ k12ðrRGÞj

h i
� k3aðrRGÞj � k6bðrRDÞj:

This relationship implies that the primed constants are related to the original constants as

follows:

k0 ¼ k
ðrrÞj

ðrrÞn;j
:

Complete finite-difference scheme

For i = 1,. . .,n−1:

@ri;j

@t
¼

D
rih2
½riþ1=2ðriþ1;j � ri;jÞ � ri� 1=2ðri;j � ri� 1;jÞ� þ D

1

r2
i Dφ2

ri;jþ1 � 2ri;j þ ri;j� 1

� �
:

For i = n:

@rn;j

@t
¼ �

D
rnh2

rn� 1=2 rn;j � rn� 1;j

� �
�

1

rnh
rnþ1=2Jnþ1=2;j þ D

1

r2
nDφ2

rn;jþ1 � 2rn;j þ rn;j� 1

� �
:

At the membrane (without membrane diffusion):

@rj

@t
¼ Jnþ1=2;j:

Simulation results

For simplicity, we simulated only the part of our model that includes the interaction between

Rac1 and GAP, and obtained qualitatively similar results for the Rac1 dynamics to those from

the 1D version of the model, including traveling and standing wave solutions (Fig 9C). This

result supports the 1D model’s ability to capture the dynamics of the simulated system while

significantly reducing computational complexity.

Sensitivity analysis

The influence of model parameters on the ρR traveling wave speed, v, was assessed by conduct-

ing a local sensitivity analysis using the normalized sensitivity coefficient S. This coefficient

measures the relative change in wave speed with respect to the relative change in the parameter

value:

Sv ¼ ðDv=v0Þ=ðDp=p0Þ;

where Δv = v−v0 represent the change in wave speed, v0 is the reference wave speed (at the

baseline parameter value), and Δp = p−p0 denotes the change in the parameter value relative to

the baseline parameter value p0. Note: Varying ρRmax, which represents the maximum concen-

tration of binding sites for the species Rac1T, needs to be accompanied by corresponding

changes in the parameters k1,k11, and k12. This is because these rate constants are scaled with

ρRmax. For example, k1 is defined as k1 ¼ k0
1
rRmax, where k0

1
represents the intrinsic rate con-

stant, which is independent of the binding site concentration. By scaling the rate constants
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with ρRmax, we ensure that the model accurately captures the relationship between the binding

site availability and the overall reaction rates. Similar holds for ρDmax.

The wave speed was determined using linear stability analysis. The perturbation ansatz

drðx; tÞ / esqtþiqx was equated with the travelling wave ansatz δρ(z)/eiqz, where z = x−vt repre-

sents spatial coordinate in a moving reference frame (moving along with the wave). Thus:

estþiqx ¼ eiqz ¼ eiqðx� vtÞ;

from which follows:

s ¼ � iqv:

Considering that σq is a complex number, it can be written as:

Res þ iIms ¼ � iqv:

To determine the wave speed, it is necessary to find a wave number qm for which the real

part of the growth rate, Reσ(qm), equals zero. This specific wave number is referred to as the

marginally stable wave number. By setting Reσ(qm) = 0, we derive the expression for the wave

speed: v = Imσ(qm)/qm. Consequently, linear stability analysis predicts that the speed of the

traveling wave is governed by the marginally stable mode.

Principal component analysis

To compare complicated phase relationships between the observed waves of active Rac1 and

DGAP1, we simplified the complexity of the raw fluorescence intensity data using principal

component analysis (PCA). This allowed us to determine the average temporal evolution of

the fluorescence signals for DPAKa(GBD)-DYFP and mRFP-DGAP1, which we then used to

generate phase portraits. For PCA, we designated IRac1* and IDGAP1
# as the fluorescence inten-

sity matrices for Rac1* and DGAP1# probes, respectively. These two n×m matrices, where n is

the number of time points and m is the number of spatial points sampled along the cell mem-

brane, were concatenated vertically to form a 2n×m matrix X. In PCA, we consider each col-

umn vector within the matrix X as a data point in a 2n-dimensional space. We then

standardize the data, i.e. we calculate the distance of each data point from the mean in terms of

the standard deviation. The rows of the standardized data matrix Z are given by:

Zi;∗ ¼
Xi;∗ � mðXi;∗Þ

sðXi;∗Þ

where the subscript i,* denotes the ith row of a matrix; μ stands for the mean value and σ for

the standard deviation.

Next, we determine the principal components of the standardized data matrix Z using the

MATLAB function ’pca’. The input of the function ’pca’ is the matrix Z, and the output is a

2n×2n matrix C, where each column contains the coefficients for one principal component.

These columns are sorted in descending order according to the variance of the components as

shown in a representative example of the percentage of variation accounted for by the first 10

principal components (Fig 10A). It can be clearly seen that the majority of the information

about the dynamics of the Rac1* and DGAP1# probes is contained in the first two principal

component axes. We, therefore, reduce the dimensionality of the data by projecting each data

point onto a plane defined by the first two principal component axes. The calculations of these

projections are performed as follows:

c1;j ¼ Z∗;j � C∗;1 and c2;j ¼ Z∗;j � C∗;2;
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where c1,j and c2,j are the projections of the jth data point onto the first and second principal

component axes, respectively. By examining the projected data, it is clear that PCA not only

preserves the periodicity of the Rac1T and DGAP1 dynamics, but also elucidates the phase rela-

tionships for all points in the data set (Fig 10B). We can use this information to shift all data

points to create a new aligned dataset. From this dataset, we can derive the average temporal

evolution of the system. The time shift for the jth point is given as follows:

Dtj ¼ � Tφj=2p;

where φj represents the phase angle and T symbolizes the period. To estimate T, we use the

coefficients of the first principal component. We interpret the vector v1 = (C1,1,. . .,Cn,1) as a

time series of the DPAKa(GBD)-DYFP fluorescence intensity values and the vector v2 = (Cn+-

1,1,. . .,C2n,1) as a time series of the mRFP-DGAP1 fluorescence intensity values (Fig 10C). Both

v1 and v2 obviously show oscillatory behavior, so we use them to calculate the period T. The

aligned data sets with thick lines indicating the average dynamics are shown in Fig 10D.

Noise analysis of the Rac1* signal

To analyze the noise characteristics and the spatial dynamics of the Rac1 activity, we used the

intensity matrix IRac1*. Unlike in other sections where smoothing was applied, here no smooth-

ing was performed on the data. Instead, the original Rac1* intensity data, which were sampled

at irregularly spaced points on the membrane, were interpolated onto a regular grid of spatial

Fig 10. Example of the application of principal component analysis to a traveling wave pattern. (A) The

contributions of the first 10 principal components to the total variance of the data set are given in percent. The first two

components account for more than 50% of the variance; therefore, we use them to characterize the dynamics of

DPAKa(GBD)-DYFP and mRFP-DGAP1. (B) The projection of the matrix Z onto the first two principal components,

denoted as (PC1, PC2), shows the phase relationships between all data points. By shifting each point cj by an angle of

−φj, we obtain an aligned data set. (C) The coefficients of the first principal component are shown as time series for

DPAKa(GBD)-DYFP (v1) and mRFP-DGAP1 (v2). (D) The aligned time series of fluorescence intensities for DPAKa

(GBD)-DYFP (left) and mRFP-DGAP1 (right). Each color corresponds to a time series associated with a specific point

on the membrane. The thick lines represent the average temporal evolution of the signal.

https://doi.org/10.1371/journal.pcbi.1012025.g010
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points to standardize the spatial resolution across time. The analysis of noise included three

steps:

1) Preprocessing and variance-stabilizing transformation. The intensity matrix IRac1*
was first preprocessed to account for potential intensity-dependent noise. Specifically, the

square root of the raw intensity values was taken:

IsqrtRac1∗ ¼
ffiffiffiffiffiffiffiffiffi
IRac1∗

p
:

This transformation reduces the heteroscedasticity commonly present in fluorescence data,

particularly in regions with high fluorescence intensity.

2) High-pass filtering. To isolate the noise from low-frequency spatial patterns, we

applied a high-pass Butterworth filter to the transformed intensity matrix. The filter was

designed using MATLAB’s ’butter’ function, which returns the filter coefficients b (numerator)

and a (denominator). A 4th order high-pass Butterworth filter was used, with a cutoff fre-

quency fc = 0.15 cycles per unit length. This cutoff frequency was chosen to remove low-fre-

quency patterns while preserving high-frequency noise. The filter was applied using

MATLAB’s ’filtfilt’ function, which performs zero-phase filtering by running the filter forward

and backward across the data to avoid phase distortion. The filtering was applied to each time

point in the matrix using the following equation:

IfilteredRac1∗ ðt; xÞ ¼ f iltf iltðb; a; IsqrtRac1∗Þ;

where t represents time and x represents the spatial position across the cell membrane.

3) Power spectral density calculation. The filtered intensity matrix If ilteredRac1∗ was then sub-

jected to spectral analysis using the Fast Fourier Transform (FFT) to compute the Power Spec-

tral Density (PSD). For each time point, the spatial frequency content of the Rac1 activity was

calculated, and the single-sided PSD was obtained by averaging across all time points. The

PSD allowed for the characterization of noise in the system across different spatial frequencies:

PSDRac1∗ fð Þ ¼
2

N
jFFTðIf ilteredRac1∗ Þj

2
;

where f is the spatial frequency and N is the number of spatial points.

Supporting information

S1 Fig. Representative bipolar patterns of cortical domains enriched in Rac1*. (A) Rotating
dipole. Rotation of two different domains. (B) Oscillating dipole. Two domains located on

opposite sides and periodically changing their orientation. (C) Stationary dipole. Two domains

located on opposite sides remain stationary for several minutes. Scale bars: 5 μm.

(PDF)

S2 Fig. A representative oscillating dipole in a double-labeled cell. The sequence shown

encompasses a complete oscillatory cycle. Top: two domains enriched in Rac1*. Bottom: two

complementary domains enriched in DGAP1#. Scale bar: 5 μm.

(PDF)

S3 Fig. Impact of diffusion coefficients on pattern formation in the Rac1-GAP system. Sta-

bility diagram shows different dynamic regimes as a function of diffusion coefficients of Rac1D

(Dr) and GAP (Dg). Turing region is shown in blue, Hopf region in red, Turing-Hopf region

in green, and stable homogeneous states in white. All other parameters were held constant and

their values are listed in Table 2.

(PDF)
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S4 Fig. Comparison of the experimentally observed patterns of Rac1* with the patterns of

Rac1T derived from computer simulations. In panel A, the patterns are shown as kymo-

graphs (top) and the corresponding autocorrelograms (bottom). In panels B-C only the kymo-

graphs are shown. Kymographs and autocorrelograms are defined as described in Fig 4. The

patterns shown correspond to the dynamics types shown in S1 Fig: (A) Oscillating dipole, (B)

Rotating dipole, and (C) Stationary dipole. The parameter values used in the simulations are

listed in Table 2.

(PDF)

S5 Fig. Effect of circumference size on pattern formation. (A) The growth rate has positive

values for wavenumbers within the interval (0,qm), implying that these modes are unstable.

Since the wavenumber is a function of L, represented as q = 2nπ/L, the value qm defines the

minimum length, Lmin
n ¼ 2np=qm, at which the nth Fourier mode becomes unstable. Using the

parameter values in Table 2, we have determined Lmin
1
� 20 mm; Lmin

2
� 40 mm, and so on. As

L increases (which means q decreases), the type of instability changes from oscillatory to sta-

tionary, as indicated by the kink in the growth curve. For all L > Lmin
1

, however, the result of

the simulations is an oscillating pattern. (B) A comparison of the measured perimeters of cells

showing first-order oscillatory patterns (Osc m1), second-order oscillatory patterns (Osc m2),

and first-order stationary patterns (Pol m1). The red lines denote the respective median values:

L(Osc_m1) = 38 (36 to 41) μm, n = 31; L(Osc_m2) = 48 (42 to 51) μm, n = 15; L(Pol_m1) = 43

(40 to 45) μm, n = 9, (median, interquartile range); *means P<0.01, while n.s. means not sig-

nificant.

(PDF)

S6 Fig. Representative power spectral density of the Rac1 activity. The plot shows the aver-

age power spectral density (PSD) of the filtered Rac1* intensity matrix (IRac1*) across spatial

frequencies for one typical cell, chosen to represent the general behavior observed across mul-

tiple cells. The y-axis represents the power per unit frequency, in the units of (a.u.)2/cycles per

micrometer. The x-axis denotes the spatial frequency in cycles per micrometer. The concentra-

tion of power at low spatial frequencies suggests that noise in the system is dominated by

large-scale spatial fluctuations. Higher spatial frequencies show a rapid decay in power, indi-

cating reduced noise at smaller spatial scales. For the details of calculation, see Materials and

methods section Noise analysis of the Rac1* signal.

(PDF)

S7 Fig. Monopolar patterns of Rac1* in DGAP1/GAPA knock-out cells. (A) Rotating mono-
pole Selected frames show the rotation of a membrane domain enriched in Rac1*. (B) Oscillat-
ing monopole Selected frames show the periodic movement of a Rac1* domain from one to the

opposite side of the cell. These observations show that the absence of DGAP1 and the closely

related protein GAPA does not prevent the formation of rotating and oscillating patterns of

Rac1 activity. Scale bars: 5 μm.

(PDF)

S1 Movie. Representative rotating monopole. A Rac1*-enriched domain travels along the

cell membrane (corresponds to Fig 1A).

(AVI)

S2 Movie. Representative rotating dipole. Two distinct Rac1*-enriched domains travel along

the cell membrane (corresponds to S1A Fig).

(AVI)
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S3 Movie. Representative oscillating monopole. A Rac1*-enriched domain periodically relo-

cates from one side of the cell to the opposite side (corresponds to Fig 1B).

(AVI)

S4 Movie. Representative oscillating dipole. Two distinct Rac1*-enriched domains periodi-

cally undergo 90-degree orientation shifts (corresponds to S1B Fig).

(AVI)

S5 Movie. Representative stationary monopole. A Rac1*-enriched domain remains on one

side of a migrating cell (corresponds to Fig 1C).

(AVI)

S6 Movie. Representative stationary dipole. Two distinct Rac1*-enriched domains located

on opposite sides of the cell maintain their positions (corresponds to S1C Fig).

(AVI)

S7 Movie. Representative rotating monopoles. Rac1* and DGAP1#-enriched domains,

located on opposite sides of the cell, travel along the cell membrane (corresponds to Fig 2A).

(AVI)

S8 Movie. Representative oscillating dipoles. Two distinct Rac1*-enriched domains and

oppositely localized DGAP1#-enriched domains periodically shift their orientation by 90

degrees (corresponds to S2 Fig).

(AVI)

S9 Movie. Representative stationary monopoles out of phase. Rac1*-enriched domain and

oppositely localized DGAP1#-enriched domain maintain their positions (corresponds to Fig 2B).

(AVI)

S10 Movie. Representative stationary monopoles in phase. Rac1*-enriched and DGAP1#-

enriched domains are co-localized, maintaining their position on the cell membrane (corre-

sponds to Fig 2C).

(AVI)
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