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Abstract: We study the bispectrum in Lagrangian perturbation theory. Extending past
results for the power spectrum, we describe a method to efficiently compute the bispectrum
in LPT, focusing on the Zeldovich approximation, in which contributions due to linear
displacements are captured to all orders in a manifestly infrared (IR) safe way. We then
isolate the effects of these linear displacements on oscillatory components of the power
spectrum like baryon acoustic oscillations or inflationary primordial features and show that
the Eulerian perturbation theory (EPT) prescription wherein their effects are resummed
by a Gaussian damping of the oscillations arise as a saddle-point approximation of our
calculation. These two methods of IR resummation are in excellent agreement at 1-loop
in the bispectrum. At tree level, resummed EPT does less well to capture the nonlinear
damping of the oscillations, and the LPT calculation does not require an artificial split of
the power spectrum into smooth and oscillatory components, making the latter particularly
useful for modeling exotic features. We finish by extending our analysis of IR resummation
in LPT to N-point functions of arbitrary order.

Keywords: baryon acoustic oscillations, cosmological perturbation theory

ArXiv ePrint: 2406.00103

© 2024 The Author(s). Published by IOP Publishing
Ltd on behalf of Sissa Medialab. Original content from

this work may be used under the terms of the Creative Commons
Attribution 4.0 licence. Any further distribution of this work must
maintain attribution to the author(s) and the title of the work,
journal citation and DOI.

https://doi.org/10.1088/1475-7516/2024/11/012

https://orcid.org/0000-0002-5762-6405
https://orcid.org/0000-0002-9274-5768
https://orcid.org/0000-0001-9912-5070
mailto:sfschen@ias.edu
mailto:zvlah@irb.hr
mailto:mwhite@berkeley.edu
https://doi.org/10.48550/arXiv.2406.00103
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1088/1475-7516/2024/11/012


J
C
A
P
1
1
(
2
0
2
4
)
0
1
2

Contents

1 Introduction 2

2 The bispectrum in Lagrangian perturbation theory 3
2.1 Matter bispectrum in the Zeldovich approximation 5
2.2 Tree level 5

3 Direct IR-safe resummation of Zeldovich displacements 6
3.1 Preliminary steps: generalizing the Zeldovich power spectrum 7
3.2 An IR-safe integrand for the bispectrum 7
3.3 Numerical implementation 10

4 Infrared resummation of BAO and the saddle-point approximation 11
4.1 Review: resummation for the power spectrum 11
4.2 Saddle-point IR resummation of the bispectrum BAO 16
4.3 Numerical comparison of resummation schemes 21
4.4 Further IR-resummation schemes 25

5 IR resummation for N-point functions 27

6 Conclusions 28

A Numerical evaluation of E 31
A.1 Angular decomposition and fast evaluation using Hankel transforms 32
A.2 Recovering tree level results 34
A.3 Alternative angular decomposition 35

B IR cancellation and enhancement by BAO at 1-loop order 36
B.1 The 114 contribution 37
B.2 The 123 contribution 38
B.3 The 132 contribution 38
B.4 The 222 contribution 38
B.5 Enhancement by the BAO 39

C Corrections to saddle-point in power spectrum 40

D Angular integral in wiggle no-wiggle split 40

E Bispectrum of biased tracers 42

– 1 –



J
C
A
P
1
1
(
2
0
2
4
)
0
1
2

1 Introduction

The observed large-scale structure is thought to arise through the action of gravitational
instability in a cold dark matter dominated, expanding Universe from (very nearly) Gaussian
initial conditions [1]. The pattern of non-Gaussianity thus imparted is of a very particular
form, and the tower of cumulants of the density and velocity fields on large scales can be
systematically computed within perturbation theory [2]. While for a Gaussian field the
power spectrum is a sufficient statistic, and thus contains all of the primordial information,
once the field becomes non-Gaussian there is information to be gained about gravitational
interactions, cosmological parameters and bias relations from measurements beyond the power
spectrum. For a given set of galaxy bias parameters cosmological perturbation theory makes
consistent predictions for all of these n-point functions, which can be combined with the power
spectrum in data analyses to either improve power-spectrum-only constraints or access new
physical signals not present in the 2-point function. Recent years have in particular seen rapid
advances in the use of the 3-point bispectrum to measure primordial non-Gaussianity [3–5]
and tighten constraints on cosmological parameters [6]. N-point functions are particularly
appealing because, on scales where the non-Gaussianity is weak and well-controlled, the
available cosmological signal is predominantly at low N such that the tower of cumulants
can be truncated at some finite order. In fact, recent work suggests that measurement of the
low-order cumulants contains effectively all of the perturbative information that is present in
the galaxy density field if attention is restricted to the larger scales where the modeling is
most robust, unless the contributions of certain modes is accidentally parametrically large
compared to expectations at a given order in perturbation theory [5].

The presence of a feature in the linear theory power spectrum due to baryon acoustic
oscillations [7, 8] is one such complication in the perturbative calculation of N-point functions,
since it leads to a “small” parameter related to the large-scale displacements of galaxies that
is numerically quite large. In order to handle this it is necessary to sum a subset of the full
perturbative terms to high order, a procedure that goes by the name of “IR resummation.”
Since it fundamentally traces the advection of matter due to long-wavelength perturbations,
IR resummation is very naturally handled within the Lagrangian formulation of perturbation
theory (LPT; [9–16]), and indeed most implementations of IR resummation, including those
grounded in the Eulerian framework of fluid dynamics (EPT), use Lagrangian arguments at
some point in their formulation (see e.g. [17, 18] and the discussion in [19]).

Beyond the direct Lagrangian resummation of long-wavelength displacements it is also
possible to specifically isolate the BAO feature using a “wiggle no-wiggle split”, estimate the
effect of long-displacements on it, and resum only those particular effects. Since this procedure
resums the linear displacements only in the wiggle component we will call it RWiggle for
short throughout this paper. The result is effectively a Gaussian damping of BAO wiggles in
the linear power spectrum [20] and can be shown using a simple saddle-point approximation
of the full Lagrangian calculation [21] or by diagramatically selecting enhanced diagrams in
time-sliced perturbation theory (TSPT) [22]. The agreement between these two procedures
has been very well studied for the 2-point function, i.e. the power spectrum, and the level
of agreement of different schemes is well understood [23]. A similar study has not yet been
performed for cumulants beyond second order, with essentially all calculations to date using
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the Gaussian damping ansatz due in part to its simplicity compared to the full Lagrangian
calculation for statistics beyond the power spectrum.

Beyond the theoretical advantage of being able to compare different IR resummation
schemes, the full Lagrangian calculation also has the advantage that it does not require that
oscillatory features in the initial conditions be artificially separated. This separation is not
inherent to the underlying physical theory and, while well-studied in the case of the BAO, will
need to be done on a case-by-case basis if, for example, searching for oscillations in the power
spectrum due to exotic inflationary models. The IR resummation of the wiggles can still be
performed in this case [24], but depends on more conditions such as distinguishing between
smooth and oscillatory components when there is no single BAO-like scale in the problem,
making the out-of-the box nature of the Lagrangian calculation an appealing alternative.
This will be particularly useful for upcoming spectroscopic surveys, which will enable us
to place extremely tight bounds on these inflationary features [25–29], and for extending
the treatment of IR resummation to oscillations with complicated shapes in the bispectrum
to constrain e.g. interactions of the inflaton with massive particles with spin (also known
as the “cosmological collider”) [5, 30, 31].

The purpose of this paper is to investigate how the bispectrum and higher order functions
can be efficiently computed within LPT while fully resumming the effect of long-wavelength
displacements, and what we learn about IR resummation from considering the LPT bispectrum.
We are not the first to compute n-point functions in LPT for this purpose: ref. [32] for
example considered the configuration-space 3-point function in the Zeldovich approximation
by brute force, multi-dimensional integration while ref. [33] formulated the LPT bispectrum in
the spirit of integrated perturbation theory (iPT) [12]. However, we update upon earlier work
and extend the calculation of the 3-point function to Fourier space using fast FFTLog-based
numerical techniques and study the phenomenology of oscillations in the bispectrum in detail,
fully taking into account mode-coupling terms and elucidating the connection between the
full Lagrangian calculation and the RWiggle prescription. The structure of the paper is as
follows: after describing the general structure and expression for the bispectrum in LPT in
section 2, we show how it can be efficiently evaluated in an IR-safe way cancelling unwanted
divergences in section 3. In section 4 we describe the behavior of BAO wiggles in some detail,
comparing RWiggle with the direct Lagrangian calculation via numerical techniques derived
in the previous section, as well as making contact with other IR resummation schemes in the
literature. This discussion is extended to n-point functions of arbitrary order in section 5.
We conclude in section 6 and discuss the straightforward extension to nonlinear bias and
redshift-space distortions as well as an example calculation of the damping of inflationary
features with a logarithmic dependence on wavenumber. Various technical details are derived
in the appendices. Numerical calculations throughout this paper will be done assuming the
Planck 2018 best-fit flat ΛCDM cosmology [27] (Ωm = 0.3111, h = 0.6766, ωb = 0.02242,
ns = 0.9665, σ8 = 0.8102) at redshift z = 0 unless otherwise indicated.

2 The bispectrum in Lagrangian perturbation theory

Lagrangian perturbation theory (LPT; [9–15]) is by now well established and efficient codes
for numerical computation of power spectra exist [23]. We will not repeat all of the details
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here, instead referring the reader to the above-cited articles; briefly LPT models the growth
of structure by following the displacements of fluid elements from their initial, Lagrangian
positions (q) to their final, Eulerian positions (x) via a displacement: x = q + Ψ(q).
The displacement, Ψ, is then systematically expanded order by order in the initial density
perturbation. Biased tracers are modeled by introducing a functional, F , of the initial density,
velocity and tidal shear and their low-order derivatives. Within this formalism the galaxy
density δg(x) has a Fourier transform given by [12, 13]

δg(k) =
∫

d3q e−ik·q
(
F (q)e−ik·Ψ(q) − 1

)
, (2.1)

where F (q) indicates the bias functional evaluated at the Lagrangian coordinate q. For con-
venience we will ignore the −1 piece below, since it is nonzero only for vanishing wavenumbers
and is anyway trivial to evaluate. As cosmological perturbation theory is an effective theory
modeling the large-scale fluid limit of structure formation, both the bias functional F (q) and
the perturbative expansion of the displacement Ψ(q) have contributions whose sizes are free
parameters, allowing us to marginalize over unknown small scale effects like galaxy formation
(see e.g. [19, 34, 35]); since we focus on the role of long-wavelength linear displacements in
this work we will not further discuss this aspect of LPT, and PT in genereal, except where
relevant, leaving interested readers to consult the literature on this well-studied topic (see e.g.
refs. [36, 37] for thorough treatments of the matter bispectrum at 1- and 2-loops).

From the above the bispectrum can then be written as

⟨δ(k1)δ(k2)δ(k3)⟩ =
∫

q1,q2,q3

e−ik1·q1−ik2·q2−ik3·q3
〈
F1F2F3 e−ik1·Ψ1−ik2·Ψ2−ik3·Ψ3

〉
,

where we have used the shorthand fn = f(qn).1 This expression can be simplified by noting
that the expectation value has to be translation invariant by statistical homogeneity, i.e. does
not depend on all three Lagrangian coordinates q1,2,3 independently. Adopting the coordinate
system (q, r, Q) = (q1 − q3, q2 − q3, q3), we can therefore eliminate the Q dependence in
the bracketed mean and write

⟨δ(k1)δ(k2)δ(k3)⟩ =
∫

q,r,Q
e−ik1·q−ik2·r−ik123·Q

〈
F (q)F (r)F (0) e−ik1·Ψ(q)−ik2·Ψ(r)−ik3·Ψ(0)

〉
= (2π)3δD(k123)

∫
q,r

e−ik1·q−ik2·r
〈
F1F2F3 e−ik1·Ψ1−ik2·Ψ2+i(k1+k2)·Ψ3

〉
,

where k123 = k1 + k2 + k3, and in the last line, we have used that this correlator is zero unless
k123 = 0. The bispectrum is defined to be this correlator without the δ-function, i.e. [33]

B(k1, k2) =
∫

q,r
e−ik1·q−ik2·r

〈
F1F2F3 e−ik1·∆13−ik2·∆23

〉
(q,r)=(q1−q3q2−q3)

, (2.2)

1For clarity of presentation, we will adopt the shorthands∫
qn

≡
∫

d3qn ,

∫
pn

≡
∫

d3pn

(2π)3 ,

for configuration and Fourier space integrals, respectively. We also label Lagrangian quantities by their
coordinates, e.g. Fn = F (qn).
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where the pairwise displacement is ∆nm = Ψn − Ψm. Importantly, the right-hand side of
equation (2.2) is invariant under uniform shifts of the displacement, i.e. satisfies Galilean
symmetry.

2.1 Matter bispectrum in the Zeldovich approximation

Let us start in the case of matter in the Zeldovich approximation [9], i.e. lowest order LPT.
Then Fn = 1 and Ψ = Ψ(1) with Ψ(1)(k) = i(k/k2)δlin. In the Zeldovich approximation
displacements are Gaussian, since they are first order in δlin, so the cumulant theorem
allows us to write〈

e−ik1·∆13−ik2·∆23
〉

= exp
{

−1
2
(
k1,ik1,j

〈
∆i

13∆j
13

〉
+k2,ik2,j

〈
∆i

23∆j
23

〉
+2k1,ik2,j

〈
∆i

13∆j
23

〉)}
.

The moments of the pairwise displacements can be written as functions of the pairwise
separations q, r by translation invariance [14]〈

∆i
13∆j

13

〉
= Aij(q) ,

〈
∆i

23∆j
23

〉
= Aij(r) ,

and can be decomposed into tensor comonents as Aij(q) = X(q)δij + Y (q)q̂iq̂j [12]. The
“mixed”, third term is slightly more complicated; it can be written as〈

∆i
13∆j

23

〉
=
〈
(Ψ1 − Ψ3)i(Ψ2 − Ψ3)j

〉
=
〈
Ψi

1Ψj
2

〉
−
〈
Ψi

1Ψj
3

〉
−
〈
Ψi

3Ψj
2

〉
+
〈
Ψi

3Ψj
3

〉
=
(〈

Ψi
1Ψj

2

〉
−
〈
ΨiΨj

〉)
+
(〈

ΨiΨj
〉

−
〈
Ψi

1Ψj
3

〉)
+
(〈

ΨiΨj
〉

−
〈
Ψi

3Ψj
2

〉)
= 1

2[Aij(r) + Aij(q) − Aij(q12)]; q12 = q1 − q2 = q − r (2.3)

where
〈
ΨiΨj

〉
is square displacement evaluated at a signle point. The full expectation value

can thus be written as〈
e−ik1·∆13−ik2·∆23

〉
= exp

{
− 1

2
(
k1,ik1,jAij(q) + k2,ik2,jAij(r) + k1,ik2,j

(
Aij(q) + Aij(r) − Aij(q − r)

))}
= exp

{1
2
(
k1,ik3,jAij(q) + k2,ik3,jAij(r) + k1,ik2,jAij(q − r)

)}
, (2.4)

where in the last line, we have used momentum conservation k1 + k2 + k3 = 0 to restore
the symmetry between the sides of the triangle. Note that this form is symmetric in both
the wavenumbers k1,2,3 and the three vertices of the triangle q1,2,3.

2.2 Tree level

It will be quite instructive to check equation (2.4) at the lowest order, i.e. tree level, in
such a way as to make contact with the more familiar Eulerian perturbation theory (EPT)
calculation. In the Zeldovich approximation, expanding order-by-order in the initial conditions,
the density can be written as

δ(k) =
∞∑

n=0

∫
p1,...,pn

Zn(p1, . . . , pn) δ0(p1) . . . δ0(pn) (2π)3δD(k − ptot) ,
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where [38]

Zn(p1, . . . , pn) = 1
n!

(ptot · p1
p2

1

)
· · ·
(ptot · pn

p2
n

)
. (2.5)

In particular, we have that

Z2(p1, p2) = 1
2

(
1 + p1 · p2

p2
1

)(
1 + p1 · p2

p2
2

)
, (2.6)

such that the tree-level bispectrum of the Zeldovich matter field is given by

Btree
Zel (k1, k2, k3) = 2 Z2(k1, k2) PL(k1)PL(k2) + 2 cycle . (2.7)

Let us compare this to equation (2.4). To get a nonzero Fourier transform, we have to start
at the second order term when Taylor expanding the exponential

Btree
Zel =

∫
q,r

e−ik1·q−ik2·r
[(1

2k1,ik3,jAij(q)
)(1

2k2,ik3,jAij(r)
)

(2.8)

+
(1

2k1,ik3,jAij(q)
)(1

2k1,ik2,jAij(q−r)
)

+
(1

2k2,ik3,jAij(r)
)(1

2k1,ik2,jAij(q−r)
)]

.

The quadratic terms shown here are symmetric under permutations of the triangle coordinates
in coordinate and Fourier space, so we need only look at the first term, which is the simplest
due to being factorizable in the coordinates we have chosen with q3 ‘at the origin’. In
fact, this first piece gives∫

q
e−ik1·q

(1
2k1,ik3,jAij(q)

)∫
r

e−ik2·r
(1

2k2,ik3,jAij(r)
)

= 2 Z2(k1, k2) PL(k1)PL(k2) , (2.9)

where in obtaining this result we have used that k3 = −(k1 + k2). Transforming the latter
two pieces of Btree

Zel give the cyclically permuted results so the full result is in agreement with
equation (2.7). Note that evaluating the Fourier transform above technically also incurs
terms that are linear in the power spectrum, e.g.∫

q,r
e−ik1·q−ik2·r

(1
2k1,i,k3,jAij(q)

)
=
(k1 · k3

k2
1

)
PL(k1)(2π)3δD(k2) ,

as well as a zeroth order term equal to two δ functions; this is because we have ignored the
−1 in equation (2.2) which cancels out these disconnected pieces.

3 Direct IR-safe resummation of Zeldovich displacements

While LPT and EPT agree order by order, as we showed in the previous section at tree level,
the nonlinear structure of the exponentiated displacements LPT has physical consequences
beyond this level, particularly for capturing the nonlinear damping of the BAO, which we
will return to in section 4. It is thus of great interest to develop efficient numerical techniques
to evaluate the double integral in equation (2.2).
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3.1 Preliminary steps: generalizing the Zeldovich power spectrum

Motivated by previously developed techniques to efficiently compute the power spectrum
within LPT, we introduce

E12(p) ≡ E(k1, k2, p) =
∫

q
e−ip·q e+ 1

2 k1,ik2,jAij(q) , i.e. e+ 1
2 k1,ik2,jAij(q) =

∫
p

eip·q E12(p) ,

(3.1)
which is equal to the Zeldovich power spectrum when p = k1 = −k2 (i.e. for k1 + k2 = 0).
Note the + sign in the exponent containing Aij . The objects Enm(p) are the Fourier transforms
of the three exponentiated factors that make up the cumulant in equation (2.4). Techniques
for evaluating this Fourier transform in that special case were developed in ref. [15], and we
extend them to allow for arbitrary k1,2 and p in Appedix A; roughly, while in the case of
the power spectrum all three vectors k1,2 and p were co-linear, here they can form arbitrary
spatial configurations, such that the result is a function of both the individual lengths k1, k2, p

as well as the angles between the vectors specified by their dot products k̂1 · k̂2, k̂1 · p̂, k̂2 · p̂. We
find that accounting for these new degrees of freedom, for a given bispectrum configuration
specified by k1,2, the integral can be performed for all p in terms of the product of two
matrices, one consisting of radial Hankel transforms, which can be efficiently computed using
the FFTLog algorithm [39], and another depending solely on angular polynomial coefficients.

An important point is that since the integrand in equation (3.1) does not asymptote to
zero as q → ∞, E will have both a finite part and one proportional to a δ-function, i.e.

E12(p) = Efin
12 (p) + (2π)3δD(p) e

1
2 (k1·k2)Σ2

, (3.2)

where 3Σ2 is the mean pairwise displacement of two points separated by q → ∞. While we
focus on computing the numerically tricky finite piece in appendix A, keeping track of both
pieces is important for the stability of the integral, as we will discuss below. A particularly
useful way to re-express equation (3.2) is

E12(p) = Efin
12 (p) +

(
1 −

∫
p′

Efin
12 (p′)

)
(2π)3δD(p) . (3.3)

This can be seen by noting that, since Aij(q → 0) = 0, the q = 0 Fourier transform of E
must be equal to unity and is again a consequence of Galilean invariance.

3.2 An IR-safe integrand for the bispectrum

Since the Zeldovich bispectrum is the Fourier transform of three exponentiated Aij ’s, it can
be written using equation (2.4) in terms of their Fourier transforms E as

B(k1, k2) =
∫

q1,q2

e−ik1·q1−ik2·q2
〈
e−ik1·∆1−ik2·∆2

〉
=
∫

p
E13(k1 − p)E23(k2 + p)E12(p) .

(3.4)

The configuration space integral above represents a double Fourier transform, which is difficult
to evaluate numerically and thus has represented an obstacle in any practical implementation
of bispectrum LPT results. Conversely, recasting it in the momentum space, the integral
becomes a straightforward convolution amenable to direct integration, given the techniques
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to compute E in the previous subsection. Indeed, by splitting up the finite and δ-function
pieces, we obtain∫

p
E13(k1 − p)E23(k2 + p)E12(p) = e

1
2 (k1·k2)Σ2Efin

13 (k1)Efin
23 (k2) + 2 cycle

+
∫

p
Efin

13 (k1 − p)Efin
23 (k2 + p)Efin

12 (p) , (3.5)

where we have dropped any disconnected pieces requiring one of the external momenta
ki to be zero. However, as we shall show now, it is possible to re-absorb these δ-funtion
contributions into the integral to obtain a numerically better-behaved integral.

The above integral, if implemented numerically as written, is rather sensitive to the
behavior of the integrand terms when the argument of E ’s approaches zero, where they have
a pole. As a particularly simple example, let us first look at the linearized result, where

E lin
12 (p) = −(k1 · p)(k2 · p)

p4 PL(p) +
(

1 + 1
2(k1 · k2)Σ2

)
(2π)3δD(p) , (3.6)

that has a pole at p = 0. In the long-wavelength (infrared) region where p < kIR ≪ k1,2
we get the contribution[

1 + k1,ik2,j

(
1
2Σ2δij −

∫
|p|<kIR

pipj

p4 PL(p)
)]

Elin(k1, k3, k1)Elin(k2, k3, k2) , (3.7)

where “1” piece is simply the tree level result derived in section 2.2. More interestingly,
in the parentheses we see that the infrared contribution to Zeldovich square displacement
Σ2 from the δ-function piece is exactly cancelled by the equivalent infrared contribution by
convolving the finite pieces, leading to no net effect. However, as written in equation (3.5), this
cancellation depends on the agreement between a convolution for the finite piece and direct
integration of the linear power spectrum for the δ-function piece, which is not guaranteed.
While the p integral in equation (3.7) is not formally divergent in ΛCDM, its contribution on
typical scales for LSS analyses typically has k2Σ2 ≳ 1, requiring us to rely on the cancellation
of two numbers in equation (3.5).

In order to build the infrared cancellation more explicitly into the bispectrum, it will
be convenient to slightly rearrange the arguments in equation (3.4). This is because the E ’s
in the integrand have arguments p, k1 − p, k2 + p, such that the integrand has “infrared”
regions about three points 0, k1 and −k2. However, much like in the case of the power
spectrum [40] and 1-loop bispectrum [36] it is possible to isolate each singularity in the
integrand and map them onto the origin to yield a more symmetric expression. Specifically,
we make use of the fact that the locus of points closest to each pole partitions the space
into three non-overlapping regions to split the integral as∫

p
=
∫

p < |k1−p|, |k2+p|
+
∫

|k1−p| < p, |k2+p|
+
∫

|k2+p| < |k1−p|, p

=
∫

p < |k1−p|, |k2+p|
+
∫

p′ < |k1−p′|, |k3+p′|
+
∫

p′′ < |p′′−k2|, |k3+p′′|
. (3.8)

In the second line we have for the latter two integrals performed the coordinate transformations
p′ = k1 − p and p′′ = k2 + p. As shown in figure 1, this corresponds to a Voronoi tessellation
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Figure 1. The bispectrum integral separated into three domains according to equation (3.8). Each
domain is defined to by proximity to one of the infrared poles of the integral 0, k1, −k2, such that they
are separated by the perpendicular bisectors of a triangle with sidelengths k1,2,3 in the plane formed
by the poles, and join at the circumcenter. By performing coordinate transformations separately in
each domain such that the pole is sent to the origin, we can rewrite the bispectrum as a sum of three
integrals, each with a domain defined by the k1,2,3 triangle shifted to a different position such that a
different vertex is at the origin. We see also that in addition to ±k1,2 some of these triangles also
develop poles at ±k3, restoring the permutation symmetry of the bispectrum.

of the poles in the integrand and can be extended also to higher N-point functions (section 5);
the above decomposition was also used in EPT by ref. [36] for the B222 contribution to
the 1-loop bispectrum.2 We see that each of the singularities in the bispectrum integrand
exists in one of these partitions, which we have mapped onto p, p′, p′′ = 0, such that in
each domain the closest singularity is the one at the origin. These domains have boundaries
set by the perpendicular bisectors formed by the triangle formed by the poles with side
lenghts k1,2,3 and meet at the circumcenter. Rewriting the above in terms of Heaviside Θ
functions, the bispectrum integral is now

B(k1, k2) =
∫

p
E12(p) E13(k1 − p) E23(k2 + p) Θ(|k1 − p| − p) Θ(|k2 + p| − p)

+ E12(k1 − p) E13(p) E23(−k3 − p) Θ(|k1 − p| − p) Θ(|k3 + p| − p)
+ E12(−k2 + p) E13(−k3 − p) E23(p) Θ(|k2 − p| − p) Θ(|k3 + p| − p) . (3.9)

This integral can be made manifestly symmetric in k1,2,3 by using that Enm is an even function
of p, but we will not perform this additional step here for the sake of brevity.

We can now write this integrand in an IR safe way by explicitly re-introducing the
δ-function piece. Plugging equation (3.3) back into the bispectrum integral (eq. (3.4)) we have

B(k1, k2) =
∫

p
Efin

12 (p)E13(k1 − p)E23(k2 + p) +
(

1 −
∫

p
Efin

12 (p)
)

E13(k1)E23(k2)

= E13(k1)E23(k2) +
∫

p
Efin

12 (p)(E13(k1 − p)E23(k2 + p) − E13(k1)E23(k2)) . (3.10)

Both pieces of the integral are now IR safe: the product in front is since it is derived purely
from pairwise displacements, while the integrand in the second piece vanishes as p → 0. From

2See also ref. [41] who use a slightly different domain decomposition to remove the same IR poles.
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Figure 2. Contributions to the 1-loop bispectrum. Each of the first three diagrams is required to
cancel the IR contribution to the fourth.

this we can see that the full bispectrum integrand is given by

B(k1, k2) = Efin
13 (k1)Efin

23 (k2) + Efin
13 (k3)Efin

12 (k2) + Efin
12 (k1)Efin

23 (k3)

+
∫

p

{
Efin

12 (p)Efin
13 (k1 − p)Efin

23 (k2 + p) Θ(|k1 − p| − p)Θ(|k2 + p| − p)

+ Efin
12 (k1 − p)Efin

13 (p)Efin
23 (−k3 − p) Θ(|k1 − p| − p)Θ(|k3 + p| − p)

+ Efin
12 (−k2 + p)Efin

13 (−k3 − p)Efin
23 (p) Θ(|k2 − p| − p)Θ(|k3 + p| − p)

− Efin
12 (p)Efin

13 (k1)Efin
23 (k2) − Efin

23 (p)Efin
13 (k3)Efin

12 (k2) − Efin
13 (p)Efin

12 (k1)Efin
23 (k3)

}
,

(3.11)

such that the poles in each region picked out by the Θ functions are explicitly cancelled
by the poles at the origin in the last line.

The above also enables us to write down an infrared-safe expression for the 1-loop
Zeldovich bispectrum. Splitting Efin = E(1) + E(2) + . . . into its O(P n

L ) contributions we have
that the tree level bispectrum is obtained by the replacement to the first line of equation (3.11)
with Btree ∼ E(1)E(1) while the 1-loop contributions are given by the contributions B1-loop ∼
E(1)E(2) and

∫
p E(1)E(1)E(1). Appendix A details how the order n contributions to E can

be isolated in numerical calculations and efficiently calculated. Since the infrared safety of
equation (3.11) holds order by order, the equivalent expressions here at 1-loop are manifestly
infrared safe as well. This is in contrast to the IR-safe integrands for the 1-loop EPT
bispectrum developed in refs. [36, 41] where the integrals of all the loop diagrams have
to be combined after different remappings to cancel IR divergences. In appendix B we
diagrammatically review the 1-loop contributions to the bispectrum, showing why unlike in
our method where each piece is individually IR safe each of the diagrams shown in figure 2
contain IR contributions which have to be combined together to cancel in an IR-safe way.

3.3 Numerical implementation

We are now in a position to numerically investigate the Zeldovich bispectrum. In order to do
so we have developed triceratops3 a Python code that computes the Zeldovich bispectrum

3https://github.com/sfschen/triceratops.
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in various approximations (tree-level, 1-loop, full resummation) using the methods described
in this section. triceratops computes E efficiently using the FFTLog algorithm [39] and
performs the convolution integral using a three-dimensional, spherical grid in p that is
logarithmically spaced in p and use Gaussian weights for θ and ϕ. As an additional check,
we also developed in parallel a Mathematica code to perform the same calculations using
both the in-built integration routines as well as the vegas algorithm [42] — while not as
fast as triceratops, the two codes are in excellent agreement, showing that the underlying
integrals are well-behaved.

Figures 3 and 4 show the bispectrum computed using the methods described above in
the squeezed and equilateral configurations. Reassuringly, both the full and 1-loop Zeldovich
calculations approach the leading-order tree-level calculation at low wavenumbers, while
differing at higher ones, with the 1-loop and full Zeldovich calculations agreeing with each
other to slightly higher wavenumbers than the tree-level ones.

Figure 4 also shows the full Zeldovich calculation using both the naive (eq. (3.5)) and IR
safe (eq. (3.11)) integrands. Both are in excellent agreement for the settings shown in the plot.
However, in order to compare their behavior when the sampling of small wavenumbers is
varied, we compute the 1-loop contribution to the bispectrum in figure 5 using both methods
— here it is quite clear that the IR-safe integrand is far less sensitive to the scales sampled,
recovering the correct result even when the smallest wavenumber sampled kmin is quite close
to the wavenumber arguments in the bispectrum itself. This is of course as expected since
the IR-safe integrand has explicitly vanishing contributions from long-wavelength modes.
Finally, we have also tested the sensitivity of our bispectrum calculation to the maximum
wavenumber kmax sampled in the integral, as well as the number of Hankel transforms required
when calculation E — we find that the algorithm is relatively lenient in these requirements,
since the dependence on E is not very spread out in Fourier space but rather localized to
physically-relevant wavenumbers. In particular, each E is sufficiently captured by including
up to five spherical-bessel transforms, much like is typically needed for the power spectrum
on perturbative scales, as long as the bispectrum is evaluated also on these scales.

4 Infrared resummation of BAO and the saddle-point approximation

4.1 Review: resummation for the power spectrum

In the preceding sections we developed the formalism to compute the bispectrum of galaxies
in Lagrangian perturbation theory with the linear displacements fully resummed. In practice,
it is often desirable to look specifically at the effect of these displacements on the BAO feature,
where their effects are most enhanced. In order to do so it is useful to isolate the BAO feature
in the linear spectrum by performing a “wiggle no-wiggle split” PL = P nw

L + fbP
w
L [20] where

fbP
w
L is a purely oscillatory component carrying the BAO while P nw

L is the smooth component
of the power spectrum. We have included the baryon fraction fb as a counting parameter
since we will be interested primarily in working at first order in the BAO, but we will keep it
only implicitly below, with the understanding that each superscript w carries a factor of fb.
The definition of P nw

L is inexact and many algorithms to compute it exist in the literature
with differing results (see e.g. [43] for a review of commonly used methods). Throughout
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Figure 3. The tree level, 1-loop Zeldovich and full Zeldovich matter bispectra for triangles with
longest sidelengths of k = 0.10 (left) and k = 0.20 h Mpc−1 (right) at z = 0. Each row shows the
logarithm of the tree level bispectrum in h−3 Mpc3 units (top) and the ratios of the 1-loop (middle)
and full Zeldovich (bottom) corrections (∆B = B − Btree) to the tree-level bispectrum.

the numerical portions of this work we will adopt the B-spline method in ref. [21], which
has the nice property that the total variance in linear displacements is preserved, though
we note that the exact choice is somewhat a matter of taste and an inherent systematic
of calculations involving this split.

The most prominent effect of the exponentiated linear displacements in the power
spectrum is to produce a roughly Gaussian damping of the BAO feature, which can therefore
be resummed by including this Gaussian factor whenever the wiggle piece of the power
spectrum appears (RWiggle). This effect has long been known empirically in the large-scale
structure literature [12, 20, 44] and was derived analytically in perturbation theory as an
infrared resummation of long-wavelength modes enhanced by the BAO by refs. [17, 18, 21, 22].
An equivalent derivation, presented in ref. [21], shows that this form can be simply derived
by performing a saddle-point approximation about the BAO in Lagrangian perturbation
theory, and we briefly review it below.
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Figure 4. The z = 0 matter Zeldovich bispectrum in the squeezed (left) and equilateral configurations
(right), computed using the methods described in section 3, as a function of side length. The solid
blue and orange dashed lines show the calculation performed using equation (3.5) and the IR-safe
equation (3.11), respectively, which are in excellent agreement when the numerics are properly
converged. The dashed line shows the 1-loop bispectrum, which agrees with the full Zeldovich
calculation at low k. The squeezed configuration is taken to be one where the short side is 5% that of
the longer sides.
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Figure 5. Numerical stability of the bispectrum calculation to the minimum wavenumber sampled
in the integral kmin, in the squeezed (left) and equilateral (right) configurations. Dashed and solid
lines show the 1-loop contribution to the Zeldovich bispectrum using the naive and IR-safe integrands,
respectively, with the latter converging to the correct result faster at higher kmin as expected.
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Using the wiggle no-wiggle split we can separate Aij = Anw
ij + Aw

ij into two pieces due
to the wiggle and no-wiggle power spectra

Aw,nw
ij (q) = 2

∫
k

(
1 − eik·q

)(kikj

k4

)
P w,nw

L (k) . (4.1)

The former will be strongly peaked at the BAO scale q = rs while the latter will be essentially
a smooth version of Aij without the BAO feature. Performing this split we have that the
Zeldovich matter power spectrum for matter, at first order in the wiggles, is

P w
Zel(k) = −1

2kikj

∫
q

eik·q− 1
2 kikjAnw

ij (q)Aw
ij(q)

≈ −1
2kikje− 1

2 k2Xs

∫
q

eik·q− 1
2 kikjYsq̂iq̂j Aw

ij(q)

≈ e− 1
2 k2Σ2

sP w
L (k), krs ≫ 1 . (4.2)

In going from the first to second lines, we have used the saddle-point4 approximation to
substitute the values of Xnw(q), Y nw(q) at the BAO scale rs, which we have denoted using
subscripts Xs, Ys, rather than integrate over their full q dependence. Corrections to this
approximation can be computed by expanding the smooth component about rs, i.e. by
Taylor expanding e− 1

2 kikjAnw
ij in ∆q = q − rs, with the correction scaling as powers of the

BAO width rD multiplying the mean square density contrast on BAO scales. We provide
further details in appendix C.

The remaining subtlety is the angular integral in the second line of equation (4.2). In
appendix D, we show that the angular integral in the penultimate line can be performed
exactly in the limit that krs ≫ 1 to yield the final expression with

Σ2
s = Xs + Ys =

∫
dk

3π2 PL(k) (1 − j0(krs) + 2j2(krs)) (4.3)

where the jℓ are spherical Bessel functions. At intermediate k this approximation breaks
down, leading to corrections to the simple exponential damping form. The 1 − j0 + 2j2 in
the parentheses cuts off contributions from modes with wavelengths longer than the BAO
scale, such that coherent displacements that move the BAO, i.e. act locally as a Galilean
transformation, cannot damp it. As shown in figure 6, RWiggle describes the wiggles in the
power spectrum almost perfectly even when everything else is kept to linear order. It is
important to note that the above is a description of the parametrically large effects of linear
displacements on the BAO feature — beyond them nonlinear effects and effective-theory
corrections, which do not have to be limited to the Gaussian form above, can also play a role.
These effects have been extensively studied in the perturbation-theory literature so we will
not describe them in any detail in what follows, except to emphasize that even a complete
model of the linear displacements does not fully specify the nonlinear shape of the wiggles.

4Here by saddle point we refer to the approximation where when integrating the product of two functions
f, g, if f is narrowly peaked at x0 we can have∫

dx f(x)g(x) = g(x0)
∫

dx f(x) + O(σ)

where σ is the width of f (appendix C).
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We can also connect the saddle-point calculation above to the resummation developed in
section 3. Specifically, we can rewrite the integral in the first line of equation (4.2) as

P w
Zel(k) =

∫
p

{
−1

2kikjÃw
ij(k − p) × FT

[
exp

(
−1

2kikjAnw
ij (q)

)]
(p)
}

=
∫

p

{
−1

2kikjÃw
ij(k − p) × Enw(k, −k, p)

}
= e− 1

2 k2Σ2
P w

L (k) +
∫

p

{
−1

2kikjÃw
ij(k − p) × Enw

fin (k, −k, p)
}

, (4.4)

where Enw is computed using the no-wiggle spectrum only and where in the last line we
have used the finite-infinite split in equation (3.2) as required when numerically evaluating
E . The first term looks superficially similar to the damping form derived in equation (4.2),
with Σ2 replacing Σ2

s. However, it would be incorrect and unphysical to assume that P w
Zel

is damped by the exponential in the δ-function piece, which is what we would get if we
dropped the finite piece.

It is instructive to recover the result for the dampened wiggle obtained in equation (4.2)
starting from the momentum space representation given in equation (4.4). We first note that
there are two potentially IR divergent contributions arising from the poles p → 0 and p → k.
The latter does not, in fact, contribute given that the wiggle power spectrum has no support
in that regime. Thus, only the p → 0 pole remains and we can simply regularise the integral

P w
Zel(k) = e− 1

2 k2Σ2
P w

L (k) + 1
2kikjÃw

ij(k)
∫

p
Enw

fin (k, −k, p)

− 1
2kikj

∫
p

(
Ãw

ij(k − p) − Ãw
ij(k)

)
Enw

fin (k, −k, p)

= P w
L (k) − 1

2kikj

∫
p

(
Ãw

ij(k − p) − Ãw
ij(k)

)
Enw

fin (k, −k, p) , (4.5)

where we used that
∫

p Enw
fin (k, −k, p) = 1 − exp

(
−k2Σ2). This allows us to write an IR safe

expression where we have explicitly cancelled the large bulk displacements, which do not
therefore affect the shape of the wiggle power spectrum, as is expected from the equivalence
principle and Galilean invariance. To derive the physical effect of long displacements on
wiggles, we use the fact that the BAO bump is localized in the configuration space and write

−1
2kikj

∫
p

(
Ãw

ij(k − p) − Ãw
ij(k)

)
Enw

fin (k, −k, p)

= −1
2kikj

∫
q,p

eik·q
(
eip·q − 1

)
Aw

ij(q)Enw
fin (k, −k, p) ≈

(
e− 1

2 k2Σ2
s − 1

)
P w

L (k) . (4.6)

In order to resum only IR modes, we could have also explicitly restricted the p integral, i.e.
modes for which we have p ≪ Λ ≲ k, which would have further restricted the contributions
to Σs. As can be seen in the configuration and Fourier-space derivations above, this is not
required at this stage to derive RWiggle for the power spectrum. However, these IR modes
come into play if we want to show that the resummation is under control and that the
subleading contributions can indeed be neglected (see appendices C and D).
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Figure 6. The wiggle component of the Zeldovich power spectrum, computed in full (blue), at linear
order (orange) and in the RWiggle scheme. The Zeldovich prediction is suppressed relative to the
linear one in a way that is very well described by a Gaussian damping.

4.2 Saddle-point IR resummation of the bispectrum BAO

Let us now extend the above analysis and extract the IR-resummed wiggle contributions
to the bispectrum (RWiggle). The final result shows that the largest effects, due to long
displacements, can be captured by linearized wiggle contributions to the linear power spectrum.
We can derive this result, as in the case of the 2-point function, using a saddle-point
approximation. We do so in two related ways, first (more restrictively) by focusing on the
contributions of strictly long-wavelength modes in configuration space and subsequently
relaxing this condition and showing how the full linear Zeldovich displacements can be
resummed and the residuals computed in an IR-safe way. Our result, up to the linear terms
in Pw, corresponds to the case where the effects of the long displacements are captured by
substituting the damped linear power spectrum (eq. (4.2)) for the linear power spectrum.
The latter result was derived diagrammatically by ref. [22] using time-sliced perturbation
theory (TSPT).

Let us begin, however, by considering the leading contribution expanding in the wiggle
power spectrum Pw to E . Since each Aij in equation (2.4), or each E in equation (3.4), can
have a power of Aw

ij expanded out, we have three distinct contributions in total proportional to
Pw(k1,2,3). In particular, we can use the same logic as in the previous section to write each as

Ew(k1, k2, p) =
∫

q
eip·q+ 1

2 k1,ik2,jAnw
ij (q)

(1
2k1,ik2,jAw

ij(q)
)

≈ e
1
2 (k1·k2)Σ2

sA(k1, k2, p)P w
L (p) ,

(4.7)
where we have defined the angular factor A(kn, km, p) = −(kn · p)(km · p)/p4. Note that the
damping of the BAO in E is itself IR safe, i.e. does not depend on displacements from modes
longer than the BAO radius, since it is defined from pairwise displacements.
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We can now proceed to consider BAO oscillations in the bispectrum itself. We will do
this in two ways — first, by considering explicitly the effect of long-wavelength modes in
(Lagrangian) configuration space and deriving the bispectrum version of RWiggle through a
saddle-point calculation therein, and then by using an IR-safe integrand in Fourier space to
extract the effect of all linear displacements and derive a convenient expression for evaluating
the residual term.

4.2.1 Infrared modes and configuration-space saddle point

We first consider the effect of purely infrared modes — that is, ones shorter than the
wavenumbers entering a given bispectrum configuration, starting from equation (3.11).
Specifically, in each of the three pieces of the integral we can extract contributions due
to p with p smaller than k1,2/2, k1,3/2 or k2,3/2. These regions are naturally set by the
angular bisectors defining the IR regions. Focusing on one of the three domains without
lack of generality, we have in the first one

(IR Region of k1,2) =
∫

|p|<k1,2/2
Efin

12 (p)
(
Efin

13 (k1 − p)Efin
23 (k2 + p) − Efin

13 (k1)Efin
23 (k2)

)
=
∫

q1,2

e−ik1·q1−ik2·q2
(
Ẽfin

12 (q1 − q2) − Ẽfin
12 (0)

)
IR

Ẽfin
13 (q1)Ẽfin

23 (q2)

=
∫

q1,2

e−ik1·q1−ik2·q2
(
e

1
2 k1,ik2,jAij(q1−q2) − 1

)
IR

Ẽfin
13 (q1)Ẽfin

23 (q2) , (4.8)

where the subscript denotes that all the non-IR modes are removed, and in going from the
second to third lines, we have used the integral relation in equation (3.3). We can now add
in the “tree-level” piece, which cancels the “minus one”:

Efin
13 (k1)Efin

23 (k2) + (IR Region of k1,2)

=
∫

q1,2

e−ik1·q1−ik2·q2
(
e

1
2 k1,ik2,jAij(q1−q2)

)
IR

Ẽfin
13 (q1)Ẽfin

23 (q2) . (4.9)

By construction, the BAO wiggle piece needs to come from the last two factors in the
integrand and not the infrared first piece; splitting the two E into a wiggle and no-wiggle
piece yields the tree level power spectrum contributions

Ew,fin
13 (k1)Enw,fin

23 (k2)+Enw,fin
13 (k1)Ew,fin

23 (k2)
= Z2(k1, k2)(P w

L (k1)P nw
L (k2) + P nw

L (k1)P w
L (k2)) + O(P 3

L) , (4.10)

yielding six total such contributions when all three IR domains of equation (3.11) are taken
into account.

We now consider the BAO saddle-point of equation (4.9). Expanding to first order in
the wiggles, we see that the oscillatory contribution from Ew

13(q1), which has support sharply
peaked around q1 = rd, picks out the pieces of the integral looking like the configuration shown
in figure 7. In particular, while one edge of the triangle corresponding to the Lagrangian
separation q1 has length fixed to the BAO scale, the length of the other two edges q2 and
q1 − q2 are free. This corresponds to the three-point function configuration where two of
three galaxies are separated by the BAO scale. Unlike in the power spectrum case, which
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<latexit sha1_base64="K725eGLx+I2Kfz3jBxCUEHb5YZw="></latexit>

Ẽfin
13 (q1)

Figure 7. Triangle configuration relevant for the IR resummation of the BAO feature in Lagrangian
space: two points (black and blue), or galaxies, are constrained to be separated by q1 with q1 = rd

equal to the BAO radius, due to the localized BAO peak in Ẽfin
13 (q1), while the third point (red dot) is

unconstrained. The leading effect of long-wavelength modes on the BAO due to this additional degree
of freedom can be obtained by expanding this third point about the origin.

only involved separations of two galaxies at a fixed distance, we have to contend with the
exponential factor in equation (4.9) having an extra degree of freedom in q2 − q1, which
will in general induce additional dynamical corrections to the observed BAO along k1 (q1);
nonetheless, if we fix q2 = 0 in the infrared piece, we get

Enw,fin
23 (k2)

∫
q1

e−ik1·q1
(
e

1
2 k1,ik2,jAij(q1)

)
IR

Ẽw,fin
13 (q1) ≈ e

1
2 (k1·k2)Σ2

sEw,fin
13 (k1)Enw,fin

23 (k2)

≈ e− 1
2 k2

1Σ2
sA(k1, k2, p)P w

L (p)Enw,fin
23 (k2) ,

(4.11)

i.e. that the tree-level bispectrum is damped by IR displacements in a Gaussian way depending
only on the wavenumber of the BAO wiggle itself.

The corrections due to this approximation come from the statistics of the other legs of
the 3-point function triangle and can be computed as terms in a Taylor series∫

q2

e−ik2·q2(q2,i1 . . .q2,in
)Ẽnw,fin

23 (q2)
∫

q1

e−ik1·q1

(
∂n

∂q1,i1 . . .∂q1,in

)(
e

1
2 k1,ik2,jAij(q1)

)
IR

Ẽw,fin
13 (q1) ,

where the first factor is simply the k2 derivative of Enw,fin
23 . The second factor involves

derivatives evaluated about q1 = rd; these take the form(
∂n

∂q1,i1 . . . ∂q1,in

)(
e

1
2 k1,ik2,jAij(q1)

)
q1=rd

∼ 1
2k1,ik2,j

∫
p, p<1/rd

pipjpi1 . . . pin

p4 PL(p) . (4.12)

In a power-law universe where PL = Apns it is easy to see that this integral scales as r−n
d

with n, such that the nth order contribution is suppressed by (k2rd)−n. We thus see that the
damping can be captured by a simple damping of the input linear power spectrum, with
perturbatively small corrections due to modes with wavelengths on the BAO scale.
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4.2.2 Fourier space resummation of linear displacements

Here, we show that the equivalent result as derived above can be obtained from the Fourier
space representation of the bispectrum, allowing us to relax the requirement of restricting to
the modes smaller than k1,2/2. We thus start with the expression for the bispectrum (still
working in Zeldovich approximation) given in equation (3.4). Since we are free to shift the
integration variable, we can recover any relevant momenta combination by considering only
the case when the wiggle contribution of Ew appears as

∫
p

Enw
13 (k1 − p)Enw

23 (k2 + p)Ew
12(p) . (4.13)

Given that the remaining two contributions can be recovered by transforming p → −k2 + p,
and p → k1 − p, we can write the linearized wiggle contribution to the bispectrum as

Bw =
∫

p
Enw

13 (k1 − p)Enw
23 (k2 + p)Ew

12(p) + (2 cycle)

= e
1
2 (k3·k1)Σ2(Enw,fin

32 (k3)E12(k1) + Ew
32(k3)Enw,fin

12 (k1)
)

+
∫

p
Enw,fin

12 (k1 − p)Enw,fin
23 (k2 + p)Ew(k1, k2, p) + (2 cycle)

= Enw,fin
32 (k3)Ew

12(k1) + Enw,fin
23 (k2)Ew

13(k1)

+
∫

p,IR
Enw,fin

13 (k1 − p)Enw,fin
23 (k2 + p)Ew

12(p) + (2 cycle) , (4.14)

where we have again used that
∫

p Efin
12 (p) = 1 − exp

(
1
2(k1 · k2) Σ2

)
. In the above we also

introduced the IR-regularized mode coupling integral

∫
p,IR

Enw,fin
13 (k1−p)Enw,fin

23 (k2+p)Ew
12(p) (4.15)

≡
∫

p
Enw,fin

23 (p)
(
Enw,fin

31 (k3+p)Ew
21(k2−p)Θ(|k3+p|−p)−Enw,fin

31 (k3)Ew
21(k2)

)
+(k1 ↔ k2) .

In the above regularization we used the fact that we can split the integral domain into two
parts, each characterized by the poles at p → −k2 and p → k1, such that we can write

∫
p

Enw,fin
13 (k1 − p)Enw,fin

23 (k2 + p)Ew
12(p) =

∫
|k1−p|<|k2+p|

+
∫

|k1−p|>|k2+p|
. (4.16)

Furthermore, each contribution can be rewritten as

∫
|k1−p|<|k2+p|

Enw,fin
13 (k1 − p)Enw,fin

23 (k2 + p)Ew
12(p)

=
∫

p<|k3+p|
Enw,fin

13 (p)Enw,fin
32 (k3 + p)Ew

12(k1 − p) . (4.17)
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At this point there are still remaining IR contributions arising from taking p → k3. We can
further extract these IR modes by isolating the p < k3 region from the integral above so that∫

p,IR
Enw,fin

13 (k1 − p)Enw,fin
23 (k2 + p)Ew

12(p)

=
∫

p
Enw,fin

23 (p)
(
Enw,fin

31 (k3 + p)Θ(|k3 + p| − p) − Enw,fin
31 (k3)

)
Ew

21(k2 − p)

+ Enw,fin
31 (k3)

∫
p

Enw,fin
23 (p)

(
Ew

21(k2 − p) − Ew
21(k2)

)
+ (k1 ↔ k2)

≈
∫

p
Enw,fin

23 (p)
(
Enw,fin

31 (k3 + p)Θ(|k3 + p| − p) − Enw,fin
31 (k3)

)
Ew

21(k2 − p)

+ Enw,fin
31 (k3)

(
e

1
2 (k1·k2)Σ2

s − e− 1
2 k2

2Σ2
s

)(k1 · k2)
k2

2
P w

L (k2) + (k1 ↔ k2) . (4.18)

In the second line above, we used the approximation that the wiggles are localized in the
configuration space, corresponding to the configuration-space saddle point, i.e.∫

p
Enw,fin

23 (p)
(
Ew

21(k2 − p) − Ew
21(k2)

)
= e

1
2 k1,ik2,jAnw

ij (q∗) 1
2k1,ik2,j

∫
q

q e−ik2·qAw
ij(q)

∫
p

Enw,fin
23 (p)

(
eip·q − 1

)
= e

1
2 k1,ik2,jAnw

ij (q∗)
(
e

1
2 k2,ik3,jAnw

ij (q∗) − 1
)

1
2k1,ik2,j

∫
d3q e−ik2·q Aw

ij(q)

≈ −
(
e− 1

2 k2,ik2,jAnw
ij (q∗) − e

1
2 k1,ik2,jAnw

ij (q∗)
)(k1 · k2)

k2
2

P w
L (k2)

≈
(
e

1
2 (k1·k2)Σ2

s − e− 1
2 k2

2Σ2
s

)(k1 · k2)
k2

2
P w

L (k2) . (4.19)

We see that we obtain two exponential contributions, one containing the angular dependence
of the two modes k1 · k2 and the second one depending only on k2

2. One might wonder if
the first piece can give rise to bispectrum configurations where the wiggles are enhanced.
However, this does not happen as these contributions are exactly equal in magnitude but
opposite in sign from the ones in the tree level part of equation (4.14). Thus, combining
all these results and cancelling all isolated IR contributions, we get

Bw = −
(
Enw,fin

32 (k3)(k1 · k2) + Enw,fin
23 (k2)(k1 · k3)

)
e− 1

2 k2
1Σ2

sP w
L (k1)/k2

1

+
∫

p
Enw,fin

23 (p)
(
Enw,fin

31 (k3 + p)Θ(|k3 + p| − p) − Enw,fin
31 (k3)

)
Ew

21(k2 − p) + (k1 ↔ k2)

+ (2cycle) . (4.20)

We have thus obtained the wiggle bispectrum in an explicitly IR-safe form, with the resummed
long displacements acting on the linearized wiggle contribution. The mode coupling integral
above can also be rewritten in terms of the k1 and k2 modes as∫

p
Enw,fin

23 (p)
(
Enw,fin

31 (k3 + p)Θ(|k3 + p| − p) − Enw,fin
31 (k3)

)
Ew

21(k2 − p) (4.21)

=
∫

p
Enw,fin

23 (k2 + p)
(
Enw,fin

13 (k1 − p)Θ(|k1 − p| − |k2 + p|) − Enw,fin
31 (k3)

)
Ew

12(p) .
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Let us consider the possible corrections to this IR resummed result. As stated above,
we have linearized the result in P w

L , and one can, of course, extend the analysis to include
quadratic and higher-order contributions. Moreover, the localized-wiggle (saddle-point)
approximation, used in equation (4.18), gives rise to correction terms discussed in appendix C.
On top of these, however, we can also consider the residual contributions of the IR modes
in the mode coupling integral in equation (4.20). Isolating the modes p < Λ < k2,3/2 we
can expand the integrand in the IR-safe mode coupling integral to obtain the correction
due to these modes∫

p
Enw,fin

23 (p)
(
Enw,fin

31 (k3 + p) − Enw,fin
31 (k3)

)
Ew

21(k2 − p)

=
∞∑

n=1

1
n!∇

n
i1...in

Enw,fin
31 (k3)

∫
p

pi1 . . . pin
Enw,fin

23 (p) Ew
21(k2 − p)

=
∞∑

n=1

1
n!∇

n
i1...in

Enw,fin
31 (k3)

∫
q

e−ik2·q
(

∂nẼnw,fin
23 (q)

∂qi1 . . . ∂qin

)
Ẽw

12(q)

≈
∞∑

n=1

1
n!∇

n
i1...in

Enw,fin
31 (k3)

∫
q

e−ik2·q
(

∂nẼnw,fin
23 (q)

∂qi1 . . . ∂qin

)
q=rs

Ẽw
12(q) , (4.22)

where the ∇ derivatives are with respect to k3. Already in the second line we see that the
smoothness of the no-wiggle component leads to a suppresssion, since the ∇ derivatives
multiplied by the integral over pi lead to a supppression of (Λ/k3)n at each order in the
Taylor series. However, the final correction is even further suppressed than this estimate,
since by re-writing the correction as the Fourier transform in the final line we can see that the
correction can again be evaluated using a saddle-point approximation owing to the localization
of the wiggles in configuration space. In Fourier-space this corresponds to the wiggle at
k2 − p losing coherence with k2 for p wider than the wavelength of the oscillation. This leads
to a correction of the form in equation (4.12) due to modes at the BAO scale, which is indeed
not surprising since the two derivations use the same IR domain in different spaces. In the
next subsection, where we explicitly show and compare various IR resummation schemes, we
also explicitly evaluate the residual IR and UV corrections due to the mode coupling integral
in equation (4.20), showing that the latter are numerically highly suppressed as argued here.

4.3 Numerical comparison of resummation schemes

We can now numerically investigate the BAO signal in the bispectrum as predicted by various
perturbation theory schemes at tree-level and 1-loop, pre- and post-IR resummation, using
the full Zeldovich calculation as a benchmark where all the effects of long-wavelength linear
displacements are manifestly taken into account. In order to do so it is convenient to extract
the wiggle and no-wiggle components of bispectra as

Bw = B[PL = P nw
L + P w

L ] − B[P nw
L ], Bnw = B[P nw

L ] , (4.23)

where the bispectra on the right-hand side are evaluated assuming the linear power spectra
in the square brackets. This numerical definition includes contributions O(f2

b ) not consid-
ered in our derivations above whose interactions with nonlinearities should, however, be
quite negligible.
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Figure 8. As in figure 3 but with the BAO wiggle component isolated and normalized by the no-wiggle
tree-level prediction. Deviations in the wiggle phase and amplitude are evident in the k = 0.20 h Mpc−1

triangles — for example, the BAO feature in the upper right (equilateral) corner along the right
triangle edge of the Zeldovich panel is in-phase, i.e. has the same sign (color) as the tree-level case,
while the same region in the 1-loop panel has a flipped sign, mirroring the equilateral panel in figure 9.

Figures 8 and 9 show the BAO components of the tree level, 1-loop and full Zeldovich
bispectra, so defined, for bispectra of various side lengths and geometries. The 1-loop and full
Zeldovich power spectra begin to behave quite differently at large wavenumbers, with the latter
remaining mostly in phase with the tree-level predictions while the former veers off significantly
and even changes sign.5 This is as expected because the damping effect by long displacements
is controlled by a rather larger parameter k2Σ2

s and its effects become rather non-perturbative
at the higher wavenumbers show in these plots. The enhancement of this large parameter at
1-loop in perturbation theory is described explicitly at the end of appendix B.

5We note that we have not adjusted for potential broadband differences between the curves shown in figure 9
or other similar plots in this paper, since in the Zeldovich case our Pnw seems to do a sufficiently good job
isolating broadband changes due to nonlinearities, and it is evident by eye that the difference between the
1-loop and Zeldovich curves in figure 9 cannot be described by a smooth function of k.
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Figure 9. As in figure 4, BAO in the squeezed (left) and equilateral (right) bispectrum configurations.
The full Zeldovich calculation (blue) approaches the 1-loop (orange) and tree-level (dotted) predictions
towards low k but exhibit dramatically different oscillatory behavior towards smaller scales. The
Zeldovich prediction is well approximated by an exponential damping of BAO wiggles in the linear
power spectrum, particularly in the squeezed configuration.

In comparison to the Zeldovich 1-loop prediction, the dashed lines in figure 9 show the
prediction of the resummed tree-level bispectrum using the RWiggle scheme. Evidently, this
scheme captures the damping of the BAO component quite well, with particularly excellent
agreement in the case of the squeezed configuration, though it slightly underpredicts the
damping in the equilateral triangle. The agreement in the former case can be understood
by noting that in the squeezed configuration the contribution due to the integral piece is
quite small, so that the wiggles are essentially due to the EE terms for which RWiggle
works almost perfectly.

We can also compare the prediction of the Zeldovich calculation to the RWiggle at 1-loop
order. In this case we adopt the scheme from ref. [22] (see also section 5)

B
RWiggle
1-loop = Btree

[
P nw

L +
(

1 + 1
2k2Σ2

s

)
e− 1

2 k2Σ2
sP w

L

]
+ Bloop

[
P nw

L + e− 1
2 k2Σ2

sP w
L

]
, (4.24)

where the brackets indicate the bispectrum evaluated substituting the argument for the linear
power spectrum. This comparison is shown in figure 10: we see that the 1-loop corrections
to RWiggle almost entirely corrects for the discrepancy with the full Zeldovich calculation,
including the small phase-shift visible in the squeezed configuration and the underpredicted
damping in the equilateral one. This was not entirely unexpected; as shown in section 4.2
corrections to RWiggle are due to parametrically small density modes at the BAO scale,
whose contributions are expected to be perturbative.

To further check this intuition, figure 11 shows the correction to RWiggle derived in
equation (4.20) split into contributions from large and small wavenumbers. Here we have
evaluated the E in the mode-coupling integrals at tree-level for simplicity, since this captures
the leading 1-loop corrections to the tree-level wiggles. The full mode-coupling integral is
shown as a black-dashed line and is evidently composed almost entirely of the IR contribution
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Figure 10. The 1-loop bispectrum resummed using the RWiggle scheme (orange), compared to the
full Zeldovich bispectrum (black dashed) and the resummed tree-level bispectrum (blue). All three are
in reasonably good agreement in squeeed triangles (left) other than a slight phase shift not captured
by the tree-level spectrum, but the tree-level RWiggle visibly underestimates the damping of the
equilateral configuration even above 0.05 h Mpc−1.
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Figure 11. Contributions to the mode coupling integral when resumming the effects of linear
displacements on the wiggle component in equation (4.20). Contributions are split into IR and UV
regions longer and shorter than the sides of the equilateral triangle, with the effect on the resummed
wiggles almost entirely due to the IR modes.
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(blue). The UV portion (orange), while nonzero, is close to an order of magnitude smaller
than the IR one and out-of-phase with the tree-level oscillations. This numerically validates
the argument in section 4.2.1 and 4.2.2 that only specific IR modes close to the BAO scale
contribute correcting the saddle-point approximation. Both contributions are in addition
very small (≈ 20x) compared to the tree-level prediction, showing that RWiggle captures
the dominant effect of the linear displacements.

4.4 Further IR-resummation schemes

In addition to the direct Zeldovich calculation and RWiggle a few other schemes for IR
resummation exist in the literature, particularly as applied to the power spectrum [17, 45].
The goal of this subsection is to briefly sketch their relation to our calculations and how
they may be extended to the case of the bispectrum.

Ref. [17] constructed an IR resummation scheme of the two-point function with the
goal of IR resummation operating on the usual EPT loop terms. This ensures that the IR
resummed theory has approximately the same UV properties (counterterm structure and
values) as the canonical, un-resummed, EPT. We follow the presentation from appendix B of
ref. [19], which re-derived this result starting from the canonical Zeldovich power spectrum.
By defining Aij(q) = ⟨∆i∆j⟩ = Σ2δK

ij − 2ηij(q), we can write

Efin
12 (p) =

∫
q

eip·q
(
e

1
2 k1ik2jAij(q) − e

1
2 k1ik2jAij(∞)

)
=
∫

q
eip·q e

1
2 k1ik2jAij(q)

(
1 − ek1ik2jηij

)
= −

∞∑
n=1

1
n!

∫
q

eip·q K12(q)(k1ik2jηij)n , (4.25)

where we introduce the Gaussian kernel K12(q) = exp
{

1
2k1ik2jAij(q)

}
. On the other hand,

Efin can also be expanded in the conventional EPT fashion in powers of linear power spectra.
This leads to the form

Efin
12 (p) =

∞∑
n=0

E(n)−loop
12 (p) , (4.26)

where for n = 0 we have the linear theory results, while the higher n give us higher loop results

E(n)−loop
12 (p) = 1

(n + 1)!

n+1∑
m=1

(−1)m

(
n + 1

m

){(1
2(k1 · k2)Σ2

)n−m+1(
k1ik2jηij

)m}
FT

. (4.27)

Up to one-loop order, this gives us

E lin
12 = −

{
k1ik2jηij

}
FT

,

E1−loop
12 = 1

2
{

(k1ik2jηij)2
}

FT
− 1

2
(
k1 · k2Σ2){k1ik2jηij

}
FT

, (4.28)

where in the one-loop term we recognise the familiar P22 +P13 structure. Also, note that these
are different from the usual power spectrum loops (in the Zeldovich approximation) since
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they depend on three wave vectors k1, k2 and p. However, aligning these as k1 = −k2 = p
reproduces the power spectrum results, as was noted below equation (3.1).

Utilising this EPT style expansion, it can be shown that equation (4.25) can be rewritten as

−
∞∑

n=1

1
n! (k1ik2jηij)n =

∞∑
n=0

n∑
m=0

[
K−1

12

]
n−m

{
E(m)−loop

12

}
FT

(4.29)

where we have introduced the inverse of the K kernel and its expansion

K−1
12 (q) = exp

{
−1

2k1ik2jAij(q)
}

,[
K−1

12

]
n
(q) = 1

n!

(
k1ik2jηij − 1

2(k1 · k2)Σ2
)n

. (4.30)

Combining these results, we can write

Efin
12 (p) =

∞∑
n=0

n∑
m=0

∫
p′

M(n−m)
12

(
p − p′)E(m)−loop

12 (p′) , (4.31)

where the momentum space kernel M contains only effects of the long displacements

M(n)
12 (k) =

∫
q

eik·q K12(q)
[
K−1

12

]
n
(q) . (4.32)

Note that, strictly speaking, even in the ordinary power spectrum case, the integral above is
not a simple convolution of M(n) kernels with the EPT loops, given that there are always
external modes present in the loops of E12. Nonetheless, it is easy to see that this result
reduces to EPT in the case that M(0) is a delta function and the rest of M(m) vanish.
Moreover, ref. [17] shows that a good approximation of this result can also be achieved when
the external k1,2,3 and internal p modes in E12 are identified, and thus the latter term indeed
corresponds to the EPT result. This analysis can be extended to the bispectrum, for example,
using equation (3.4), or by generalizing K12(q) to the bispectrum exponent in equation (2.4).

Another related method to resum Zeldovich displacements was described in ref. [45]
using the so-called shifted operators

Õ(k) =
∫

d3q e−ik·(q+Ψ(q)) O(q). (4.33)

In this scheme the matter clustering (F (q) = 1) term in LPT (eq. (2.2)) is re-written in
terms of bias operators, such that for example the Zeldovich matter density is given by [45]

δZel(k) =
∫

d3q e−ik·(q+Ψ)
{

δ(q) + 1
2

(
s2(q) − 2

3δ2(q)
)

+ . . .

}
≡ δ̃(k) + 1

2 G̃2(k) + . . .

(4.34)

up to quadratic order, where s2 is the square of the traceless shear field. The shifted operator
basis is an intermediate between Lagrangian and Eulerian perturbation theory, almost keeping
the form of the latter but with bulk displacements kept to arbitrary order in the exponent
rather than expanded perturbatively. A useful fact is that both the nonlinear matter and
galaxy density fields can be written in terms of the shifted operators above with varying
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coefficients and, conveniently, the bispectrum for the shifted operators up to the order shown
above can be expressed in terms of generalizations of E , as we describe in more detail in
appendix E. While the numerical evaluation of the two alternative schemes discussed above
is beyond the scope of this work, their mathematical structure is rather similar to the
direct Zeldovich calculation presented in this work, and we outline the steps towards these
extensions in the aforementioned appendix.

5 IR resummation for N-point functions

We can also extend our analysis to the IR resummation of n-point functions beyond the
bispectrum. To do so, we need to consider the generalised version of the cumulant in
equation (2.4)

〈
e−i

∑N

n=1 kn,iΨ(1)
i (qi)

〉
ktot=0

= exp
{

1
2

N∑
n=1

∑
m>n

kn,ikm,jAij(qnm)
}

. (5.1)

Here, the sum runs over all distinct pairs (n, m), and we have used the identity equation (2.3).
In the above we have defined qnm = qn − qm. As before it is useful to shift to a coordinate
system qi<N → qi<N − Q, with Q = qN , such that the expectation values can be written
independently of Q by translation invariance. The Fourier-space N-point function is then
given by

CN (k1, . . . , kN−1) =
(

N−1∏
a=1

∫
qa

e−ika·qa

)
exp

1
2
∑

n̸=m

kn,ikm,jAij(qnm)

 fN (q1, . . . , qN−1) ,

(5.2)
where we have used “n ̸= m” as the shorthand for the sum over distinct pairs. Here, fN

captures terms due to galaxy bias and higher-order displacements and is equal to unity for
matter in the Zeldovich approximation. We can equivalently express the above in terms of E as

C(k1, . . . , kN−1) =
∏

n̸=m

∫
pnm

E(kn, km, pnm)
N−1∏
a=1

(2π)3δD

(
ka −

∑
n>a

pan +
∑
n<a

pna

)
, (5.3)

where the momentum conservation comes from integrating over the vertices qa, and we
remind the reader that there is no sum over the Nth vertex. Note that the bispectrum and
power spectrum are special cases in that there is only one fewer vertex (2 and 1) than pairwise
separations qnm (3 and 2), leading to a reduction in the number of integrals in Fourier space.
With the trispectrum, for example, one has to do an equal number of integrals in each space.
For higher N-point functions there is a rapid scaling in the number of internal momenta pnm

with N , though the Fourier space integral still has the advantage of being smooth compared
to the Fourier transforms required in configuration space.

Separating the contributions to the above integral via a wiggle-no wiggle split it is easy
to work out the effect of long-wavelenght displacements from on BAO wiggles in the N-point
functions. In particular, expanding the wiggles to linear order we will have contributions
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that are, schematically,

Cw ∼
(

N−1∏
m=2

∫
qm

e−ikm·qm

)
exp

1
2

n̸=m∑
n,m>1

kn,ikm,jAij(qnm)


×
∫

q1

e−ik1·q1 exp

1
2
∑
m ̸=1

k1,ikm,jAij(q1m)

ξw(q1) . (5.4)

Here we have chosen a BAO features in the q1 = q1N leg of the N-point function fN in
Lagrangian space but, since the final expression is invariant under permutations of the vertices
we can do so without loss of generality. The top line of equation (5.4) is smooth in q1 so
we can ignore it. If we make the same approximation q1m → q as in the bispectrum in the
previous section then the exponent in the second line becomes at the saddle point

1
2k1,i

∑
m ̸=n

km,j

Aij(qs) = −1
2k2

1Σ2
s , (5.5)

by momentum conservation. This implies that the effects of long-wavelength displacements
on wiggles in N-point functions can be well-described, at leading order in the wiggles, by
the substitution

Pw(k) → e− 1
2 k2Σ2

sPw(k) . (5.6)

This prescription is a consequence of translation invariance and momentum conservation; it is
interesting to observe that this condition is also satisfied for N-point functions with collapsed
legs, such that the loops can be computed with this substitution as well to approximate
the effects of IR displacements.

6 Conclusions

The presence of sharp, localized features in the linear correlation function — or, oscillatory
“wiggles” in the power spectrum — lead large-scale structure observables to be sensitive to
the bulk motion of matter on the large-scales at which these features reside. In ΛCDM
universes close to our own, the contributions of these infrared (IR) modes to galaxy N-point
statistics can be numerically quite large, such that they need to be resummed in order for
perturbative calculations to be well-behaved. Indeed, this is the case both for features that
are the bread and butter of modern galaxy surveys, i.e. the baryon acoustic oscillations
standard ruler, and proposed targets of future experiments, e.g. features in the primordial
power spectrum that probe the particular shape of the inflaton potential. A natural way
to formulate this procedure, known as IR resummation, is within the Lagrangian picture
of fluid mechanics, wherein fluids are described via the displacements of individual fluid
elements which give rise to these bulk flows on large scales. Within Lagrangian perturbation
theory (LPT), the effect of the bulk displacements can be understood as the smearing of
the correlation function due to pairwise displacements of fluid elements separated by the
scale of the feature (e.g. the BAO radius rd).
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In this paper, we build on previous works on the galaxy 2-point function to study the
galaxy 3-point function, or bispectrum, in Lagrangian perturbation theory. In the first part,
we extend past techniques used to efficiently compute the resummed LPT power spectrum
to the resummed bispectrum, focusing specifically on the case of the bispectrum within
the Zeldovich approximation which contains all the long-wavelength displacements we wish
to include. Our method involves computing the Fourier transform of the variance of the
pairwise displacement, projected along arbitrary wavenumbers, and convolving the resulting
kernels in Fourier space. These kernels contain an IR pole when the wavenumber p = 0
whose effects cancel in the full calculation, and in order to properly treat their convolution
numerically we split the integral into Voronoi regions closest to each pole and re-organize
the expression for the integrand in each such that IR divergences explicitly vanish. This is a
generalization of the so-called IR-safe integrands in Eulerian perturbation theory, with the
effects of bulk displacements now carried to arbitrary order. We make the code to perform
these calculations, triceratops, publicly available.

In the second part of the paper, we focus on computing the effect of the resummed
displacements on features in the linear 2-point function, taking the BAO peak as a particular
example. In the 2-point function, the presence of such a feature allows for a simple saddle-point
approximation of these displacements at the peak, leading to a simple Gaussian damping
of the power spectrum wiggles in Fourier space. The situation in the 3-point function is
not so simple: here, requiring that two points in a triangle be separated by the BAO radius
nonetheless leaves substantial freedom for the remaining point and two legs of the triangle
to move around. However, we can nonetheless perform a saddle point approximation of the
Zeldovich displacements in the bispectrum — we show that this leads to the familiar form
where the effect of the displacements is a Gaussian smoothing of the linear power spectrum
in each leg k, which we call RWiggle, with corrections from the extra degrees of freedom due
to perturbatively small density modes on the BAO scale, suppressed by inverse powers of krd.
This conclusion holds for arbitrary N -point functions due to momentum conservation. We
numerically compare the wiggle component computed in this approximation to that in the
full Lagrangian calculation, finding close agreement, especially at 1-loop order after the IR
resummation of the wiggle component. We also make contact with other IR resummation
schemes in the literature, deriving an extension of the scheme developed for the power
spectrum in ref. [17] from the Lagrangian calculation and showing how the bispctrum in
the shifted-operator formalism developed for field-level analyses in ref. [45] can be computed
uinsg the techniques in this paper.

We have thus established that resummed 1-loop perturbation theory very-well captures
the effect of long-wavelength displacements on the BAO signal in cosmological N-point
functions. However, it is worth noting that the direct Lagrangian treatment has distinct
advantages over the RWiggle prescription, in that the wiggle (feature) component does not
have to be distinctly treated. One advantage of this is that in the Lagrangian method one
does not need to perform the wiggle/no-wiggle split, which is somewhat arbitrary, since there
is no clear criterion that the smooth and wiggle components must satisfy, and indeed likely
need to be adapted individually for each inflationary model treated. Moreover, features in
the linear power spectrum beyond the BAO, e.g. inflationary signatures in the primordial
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Figure 12. Squeezed (left) and equilateral (right) Zeldovich bispectra when the linear power spectrum
has logarithmic wiggles on top of our fiducial ΛCDM one. The dotted and dashed lines show the
tree level and RWiggle predictions — the latter captures some of the damping due to the linear
displacements, as in the case of the BAO, but with still clearly visible differences in the amplitude.

spectrum, may have nonlinear dispersion relations not localized to any particular scale in
configuration space — such a case is handled out-of-the-box in LPT but needs to be handled
on a case-by-case basis in RWiggle, since each frequency in Fourier space corresponds to a
distinct IR scale. This makes the Lagrangian treatment indispensable for future spectroscopic
searches for exotic physics.

As a simple example let us consider oscillations in the bispectrum due to logarithmic
oscillations in the primordial power spectrum

PL(k) = P ΛCDM
L (k)

(
1 + A sin

(
ω log k

k∗

)
e−(krd)2/2

)
, (6.1)

which can appear in certain models of inflation [28, 46]. Previous works [24, 47] have shown
that, in the limit of large log frequency, these logarithmic oscillations are approximately
damped in a wavenumber-dependent fashion6 by Σ2(k) = X(q(k)) + Y (q(k)), where q(k) =
ω/k while also exactly computed in the full LPT calculation of the power spectrum. Using
the results in this paper, we can straightforwardly extend these calculations to the bispectrum,
as we have done in figure 12. Here we have followed ref. [47] and chosen A = 0.05, ω = 10,
k∗ = 0.05 h Mpc−1 and rd = 2.5 h−1Mpc. As in the case of the BAO the RWiggle prescription
at tree level qualitatively describes the damping of the wiggles, though unlike there deviations
can be seen even in the squeezed configuration. For current and future surveys, the galaxy

6In LPT this corresponds to the limit in which the oscillations can be locally well-approximated by a Taylor
expansion

ϕ(k) = ωf(k) = ωf(k0) + ωf ′(k0)(k − k0) + . . .

Around k0 the oscillations correspond to a physical scale of q(k) = ωf ′(k0) = ω/k0 for logarithmic oscillations,
though we note that this analysis in principle applies to any nonlinear dispersions.
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bispectrum carries substantial promise as a probe of primordial features on a comparable
footing with the power spectrum [48]; however, since searches for primordial features need to
recover or constrain not just the frequency but the amplitude of power spectrum oscillations
it will be important to consider these differences in IR resummation schemes when using the
bispectrum as a probe of inflationary features. For that, a full treatment of the bispectrum
in Lagrangian perturbation theory beyond what was developed here, or Eulerian calculations
at 1-loop order, will be essential.

Indeed, while we have focused mostly on the matter power spectrum in the Zeldovich
approximation in this work, our calculations have immediate implications for galaxy n-point
functions in real and redshift space. Extending to redshift-space is a simple matter of
coordinate transformations. The linear displacements are converted to their redshfit-space
counterparts via a matrix transformation boosting the line-of-sight (n̂) components, Ψ(1)

s,i =
RijΨ(1)

j , where Rij = δij + f(z)n̂in̂j where f(z) is the linear growth rate. This is equivalent
to a remapping of the wavenumbers, since displacements always appear in the combination
kiΨs,i = (R.k)iΨi. In RWiggle this is equivalent to setting k2Σ2

s → k2(1 + f(2 + f)µ2)Σ2
s,

where µ = n̂ · k̂. The extension to biased tracers can be similarly accomplished by letting the
bias functionals in equation (2.2) depend on local observables like the tidal tensor. Since this
extension is not expected to change any conclusions about the role of infrared displacements,
which instead live in the exponent of equation (2.2), we will leave detailed calculations to
future work. The interested reader is, however, directed to appendix E for expressions in
real-space up to quadratic order in the bias expansion.
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A Numerical evaluation of E

In section 3 we introduced a generalized version of the Zeldovich power spectrum, the
function E(k1, k2, p), through which the effects of large linear displacements can be captured.
The goal in this appendix is to develop numerical techniques to efficiently evaluate this
function. In section A.1 we outline one way to perform this calculation by performing an
angular decomposition of the integral into parts that can be rapidly computed by Hankel
transform. Section A.2 shows how the first few terms of this decomposition reduce to linear
theory at leading order. Finally, section A.3 presents an alternative method to perform
this calculation whose form will also be useful in computing the angular structure of the
BAO resummation in section D.
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A.1 Angular decomposition and fast evaluation using Hankel transforms

Let us now examine E in more detail. By symmetry, we have the angular dependence

E(k1, k2, p) = E
(
k1, k2, p, k̂1 · k̂2, k̂1 · p̂, k̂2 · p̂

)
=
∫

d3q e−ip·qe+ 1
2 k1,ik2,jAij(q) , (A.1)

where Aij = XδK
ij + Y q̂iq̂j [14]. This gives us

1
2k1,ik2,jAij = 1

2k1k2
[
k̂1 · k̂2X(q) + (k̂1 · q̂)(k̂2 · q̂)Y (q)

]
, (A.2)

and thus

E
(
k1, k2, p, k̂1 · k̂2, k̂1 · p̂, k̂2 · p̂

)
=
∫

q2dq e
1
2 (k1·k2)[X(q)+Y (q)]I

(
qp, 1

2k1k2Y (q), k̂1 · k̂2, k̂1 · p̂, k̂2 · p̂
)

. (A.3)

We are thus faced with solving integrals of type

I
(
α, β, k̂1 · k̂2, k̂1 · p̂, k̂2 · p̂

)
=
∫

dΩq̂ e−iαp̂·q̂+βk̂1,ik̂2,j(q̂iq̂j−δK
ij ) =

∞∑
n=0

βn

n! In . (A.4)

The key part to compute is the integral

In =
∫

dΩq̂

[
k̂1,ik̂2,j

(
q̂iq̂j − δK

ij

)]n
eiαp̂·q̂ . (A.5)

We can be a bit more general by replacing p̂ with p. We thus have

In =
∫

dΩq̂

[
k̂1,ik̂2,j

(
q̂iq̂j − δK

ij

)]n
eiαp·q̂ . (A.6)

Notice that these integrals form the recursion

In+1 = −k̂1,ik̂2,j

(
1

α2
∂2

∂pi∂pj
+ δK

ij

)
In . (A.7)

For n = 0 we have

I0 = 4πj0(αp) , (A.8)

and thus

In = 4π

[
−k̂1,ik̂2,j

(
1

α2
∂2

∂pi∂pj
+ δK

ij

)]n

j0(αp) . (A.9)

We note that in case when k̂1 = −k̂2 = p̂ we have

In = 4π
(
1 + ∂2

αp

)n
j0(αp) = 4π n!

( 2
αp

)n

jn(αp) , (A.10)

recovering the results for the power spectrum in ref. [15].
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In order to find a closed expression of the solution we try the ansatz

In = (−1)n4π

(
Fn(a, b, c, αp)jn(αp)

(αp)n
+ (αp)2Gn(a, b, c, αp)jn+1(αp)

(αp)n+1

)
, (A.11)

with a = k̂1 · k̂2, b = k̂2 · p̂ and c = k̂1 · p̂. This gives us the following recursive solutions

Fn+1 = k̂1,ik̂2,j

(
(2Gn,j − Fn,j)pi + (i ↔ j) + (2n + 3)Fn,ij

α2 + (αp)2 Gn,ij

α2

)
(A.12)

+ 2a(n + 1)Fn +
(
2a − (αp)2(bc − a)

)
Gn ,

Gn+1 = k̂1,ik̂2,j

(
− Fn,ij

α2 − Gn,jpi + (i ↔ j)
)

+ (bc − a)Fn +
(
(2n + 1)bc − a

)
Gn ,

where ,i ≡ ∂/∂pi. Given that F0 = 1 and G0 = 0 we can run the recursion and get for
the first few orders

F1 = 2a , (A.13)
G1 = bc − a ,

and

F2 = 1 + 7a2 − (αp)2(bc − a)2 , (A.14)
G2 = −a2 − b2 − c2 − 4abc + 7b2c2 .

This motivates the further ansatz

Fn(a, b, c, z) =
⌊n/2⌋∑
m=0

(−1)mfn,m(a, b, c)z2m , (A.15)

Gn(a, b, c, z) =
⌊(n−1)/2⌋∑

m=0
(−1)mgn,m(a, b, c)z2m .

Introducing operators

Ô1(m) = (a−bc)∂b+
(
1−c2

)
∂c+2mc, (A.16)

Ô2(m) =
(
1−b2

)
∂b+(a−bc)∂c+2mb,

Ô12(m) = (a−bc)
(
1−b2

)
∂2

b +(a−bc)
(
1−c2

)
∂2

c +
((

1−c2
)(

1−b2
)

+(a−bc)2
)
∂b∂c

+
(
2m(c+ab−2b2c)+3b2c−2ab−c

)
∂b+

(
2m(b+ac−2bc2)+3bc2−2ac−b

)
∂c

+2m
(
a+2(m−1)cb

)
,

and since Ô12(0)f̃n,0 = 0 we end up with recursion relations

fn+1,m =
(
2cÔ2(m)+2bÔ1(m)+Ô12(m)+2a

)
gn,m (A.17)

+
(
−cÔ2(m)−bÔ1(m)+2a(n+1)

)
fn,m−(2n+3)Ô12(m+1)fn,m+1+(bc−a)gn,m−1 ,

gn+1,m = Ô12(m+1)fn,m+1+(bc−a)fn,m+
(

−cÔ2(m)−bÔ1(m)+(2n+1)bc−a
)
gn,m .
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These reproduce the same results as obtained before. One can imagine pushing the recursion
one layer further, assuming a polynomial form for fn,m(a, b, c) and gn,m(a, b, c). However,
this does not seem practical, given that the resulting expression for coefficients requires three
additional indices for powers of a, b and c.

We can use the form above to factor out the p dependence of these integrals.

E = 4π
∑

n

(−1)n

n!

∫
dq q2e

1
2 (k1·k2)(X+Y )βn(pq)−n

(
Fn−(pq)2

(
nΘn>0

β

)
Gn−1

)
jn(pq)

=
∑
n,m

4π
(−1)n+m

n!

∫
dq q2e

1
2 (k1·k2)(X+Y )βn(pq)2m−n

(
fn,m+

(
nΘn>0,m>0

β

)
gn−1,m−1

)
jn(pq)

≡
∑
n,m

(−1)n+m

n! p2m−nϵn,m(p) (A.18)

where as a reminder Fn and Gn are functions of a, b, c and pq. In the above we have defined

ϵn,m(p) = 4π

∫
dq q2 e

1
2 (k1·k2)(X+Y )βnq2m−n

(
fn,m +

(
nΘn>0,m>0

β

)
gn−1,m−1

)
jn(pq)

which can be computed once for all p via Hankel transform. Furthermore, since the only
dependence on p̂ comes in via the fn,m, gn,m we can precompute the scale dependence of
these integrals as

ϵn,m(p) = fn,mΓn,m + ngn−1,m−1Γ(−)
n,m

where we have defined

Γn,m = 4π

∫
dq q2 e

1
2 (k1·k2)(X+Y )βnq2m−njn(pq) (A.19)

Γ(−)
n,m = 4πΘn>0,m>0

∫
dq q2 e

1
2 (k1·k2)(X+Y )βn−1q2m−njn(pq). (A.20)

For any given triangle k1,2,3 these components can be pre-computed for all p such that for a
given p evaluating E(k1, k2, p) reduces to simple matrix multiplication.

A.2 Recovering tree level results

The various kernels and infinite sums in the above being somewhat opaque, in this section we
show how to recover the expected results at tree level by evaluating the first few summands
at lowest order. We can begin by writing

E = 4π
∑

n

(−1)n

n!

∫
dq q2

(
1 + k1 · k2

2 (X + Y )
)(

k1k2Y

2

)n

(pq)−n
(

Fn − 2nΘn>0
k1k2Y

(pq)2Gn−1

)
jn(pq) + O(P 2

L). (A.21)

Since each X, Y carries one power of PL, we can stop the sum at n = 2 in order to recover
linear theory:

Elin = 4π

∫
dq q2

{(k1 · k2
2

)
(X + Y ) F0 j0(pq)

× −(pq)−1
(

k1k2Y

2

)
F1 j1(pq) + (pq)−2

(
k1k2Y

2

)2(
− 4

k1k2Y
G1(pq)2

)
j2(pq)

}
.
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Using the definitions of Fn, Gn and X and Y as well as the identity j1(x)/x = (j0 + j2)/3
it is straightforward to recover

Efin
lin (k1, k2, p) = −(k1 · p)(k2 · p)

p4 PL(p). (A.22)

It is interesting to note that unlike in the case of the Zeldovich power spectrum, where
k1 = −k2, recovering linear theory requires going to n = 2. In general, in order to isolate
contributions to Efin at a given order we note that we can write

Γ(−)
n,m =

∑
r

4π

r!

∫
dq q2

(1
2(k1 · k2)(X + Y )

)r

βn(−1)q2m−njn(pq)

such that the order-N contributions to Γ(−1)
n,m come from N = r+n(−1), and the corresponding

contributions to E come from setting all other terms in the sum to zero.
We can now proceed to obtain the tree-level bispectrum in our numerical implementation.

Pluggin in the linear contribution to E as derived above into equation (3.11) we get to
leading order

Btree(k1, k2) = Efin
lin (k1, k1 + k2, −k1 − p)Efin

lin (k2, k1 + k2, −k2 − p) + . . .

=
(

1 + k1 · k2
k2

1

)(
1 + k1 · k2

k2
2

)
PL(k1)PL(k2) + cycl. (A.23)

as expected.

A.3 Alternative angular decomposition

It is also possible to perform the angular integral in E by directly Taylor-expanding the
angular dependence in Y (q). In this case we have∫

d3q e−ip·q+ 1
2 k1,ik2,jAij(q)

=
∫

d3q e−ip·q+ 1
2 ((k1·k2)X(q)+(k1·q̂)(k2·q̂)Y (q))

=
∞∑

n=0

1
n!

∫
d3q e−ip·q+ 1

2 (k1·k2)X(q)k1,i1 . . . k1,ink2,j1 . . . k2,jn

(
Y (q)

2

)n

q̂i1 . . . q̂jn

=
∞∑

n=0

1
n!

∫
d3q e−ip·q+ 1

2 (k1·k2)X(q)k1,i1 . . . k1,ink2,j1 . . . k2,jn

(
Y (q)

2

)n n∑
m=0

Cn,m[L2m(q̂)]i1...jn

=
∞∑

n=0

n∑
m=0

4π(k1,i1 . . . k1,ink2,j1 . . . k2,jn [L2m(p̂)]i1...jn)(−1)m

n!

×
∫

dq q2 e
1
2 (k1·k2)X(q)Cn,m

(
Y (q)

2

)n

j2m(pq)

=
∞∑

m=0

∞∑
n=m

Cn,m

n! (k1,i1 . . . k1,ink2,j1 . . . k2,jn [L2m(p̂)]i1...jn)4π(−1)m

×
∫

dq q2 e
1
2 (k1·k2)X(q)

(
Y (q)

2

)n

j2m(pq)
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where we have defined the coefficients

µ2n =
n∑

m=0
Cn,mL2m(µ). (A.24)

As in the previous method the final expression is a series of Hankel transforms whose integrands
are independent of p̂ and proportional to powers of Y (q), multiplied by the angular coefficient

D2m(k̂1, k̂2, p̂) = k̂1,i1 . . . k̂1,in k̂2,j1 . . . k̂2,jn [L2m(p̂)]i1...jn . (A.25)

Here L2m are the tensor equivalents of the Legendre polynomials (see e.g. ref. [49]). The D2m

are polynomials in the dot products of the three unit vector arguments and can be worked
out recursively using the recurrence relations of the Legendre polynomials.

Let us consider the special case of the power spectrum k = k1 = −k2 = p. In this
case the angular contraction is

D(k̂, −k̂, k̂) = (−1)nk̂i1 . . . k̂jn [L2m(k̂)]i1...jn = (−1)n

such that we can write

PZel(k) =
∞∑

m=0
4π(−1)m

∫
dq q2 e− 1

2 k2X(q)j2m(pq)Fm(q)

where

Fm(q) =
∞∑

n=m

Cn,m

n!

(
−k2Y (q)

2

)n

=
(4m + 1)Γ

(
m + 3

2

)
(2m + 1)Γ(2m + 3

2) 1F1

(
m + 1

2; 2m + 3
2; −k2Y (q)

2

)(
−k2Y (q)

2

)m

. (A.26)

Note that Fm is proportional to Y m to leading order, so this formula is a re-summation of the
method presented above where terms with different powers were separated. Figure 13 shows
the convergence of this sum as mmax is increased — it is in excellent agreement with the
fiducial method and indeed exhibits significantly faster convergence at large wavenumbers.

B IR cancellation and enhancement by BAO at 1-loop order

Let us first consider the infrared properties of the kernels Zn, i.e. their asymptotic limits
when one or more momenta are small compared to the total momentum. In particular, if
the momenta pm satisfy pm ≪ k we have that

Zn(p1, . . . , pm, k1, . . . , kn−m) → (n − m)!
n!

(p1 · k
p2

1

)
. . .

(pm · k
p2

m

)
Zn−m(k1, . . . , kn−m),

(B.1)
i.e. the kernels factor into “shifts” and lower-order kernels. Here k = k1 + . . . + kn−m ≈
p1 + . . . + pm + k1 + . . . + kn−m.

Let us now consider each contributing diagram to the 1-loop bispectrum. Since the
IR limits of the kernels Zn reduce to shift terms involving long-wavelength modes pm we
integrate over and lower order kernels, let us look specifically for diagrams whose IR limits
approach piece of the tree level bispectrum proportional to Z2(k1, k2)PL(k1)PL(k2). All other
IR contributions will be equivalent up to permutations of the external wavenumbers. Each of
the diagrams we will evaluate in the IR limit is shown in the order below in figure 2.
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Figure 13. Convergence of the Hankel-transform series in equation (A.26) compared to the fiducial
method described in section A.1 in the case of the Zeldovich power spectrum. The series both converge
to the correct values as the number Nj of Hankel transforms increases, though equation (A.26) does
so substantially faster at almost all wavenumbers.

B.1 The 114 contribution

In this case we want to consider the diagram

B114 =
〈
δ(1)(k1)δ(1)(k2)δ(4)(k3)

〉′

= 12
∫

p
Z4(p, −p, k1, k2) PL(p)PL(k1)PL(k2)

⊃
∫ kIR

p

(p · k12
p2

)(−p · k12
p2

)
Z2(k1, k2) PL(p)PL(k1)PL(k2)

=
(

−k3,ik3,j

∫ kIR

p

pipj

p4 PL(p)
)

Z2(k1, k2) PL(k1)PL(k2)

= −1
2k2

3Σ2
IR 2Z2(k1, k2) PL(k1)PL(k2)

where we have defined

Σ2
IR = 1

3

∫ kIR

p

PL(p)
p2 , (B.2)

and used that k12 = −k3.
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B.2 The 123 contribution

In this case we have the diagram

B123 =
〈
δ(1)(k1)δ(2)(k2)δ(3)(k3)

〉′

⊃ 6
∫

p
Z2(p, k2 − p)Z3(p, k2 − p, k1) PL(p)PL(|k2 − p|)PL(k1)

⊃ 12
∫ kIR

p
Z2(p, k2 − p)Z3(p, k2 − p, k1) PL(p)PL(|k2 − p|)PL(k1)

→ 2
∫ kIR

p

(p · k2
p2

)(p · k12
p2

)
Z2(k1, k2) PL(p)PL(|k2 − p|)PL(k1)

= −2k2,ik3,jZ2(k1, k2)
∫ kIR

p

pipj

p4 PL(p)PL(|k2 − p|)PL(k1)

→ −(k2 · k3)Σ2
IR 2Z2(k1, k2)PL(k1)PL(k2).

In the third line, we have used that there are two IR poles in the integrand at p = 0, k2, and
that the integrand is invariant when shifting to the latter. There is an additional contribution
to in B213 with k1 ↔ k2, such that the total IR contribution is

−(k2 · k3 + k1 · k3)Σ2
IR 2Z2(k1, k2)PL(k1)PL(k2) = +k2

3Σ2
IR 2Z2(k1, k2)PL(k1)PL(k2). (B.3)

B.3 The 132 contribution

Here we have the diagram

B132 =
〈
δ(1)(k1)δ(3)(k2)δ(2)(k3)

〉′

⊃ 6
∫

p
Z2(k1, k2)Z3(p, −p, k2) PL(p)PL(k1)PL(k2)

→
∫ kIR

p

(p · k2
p2

)(−p · k2
p2

)
Z2(k1, k2) PL(p)PL(k1)PL(k2)

=
(

−1
2k2

2Σ2
IR

)
2Z2(k1, k2)PL(k1)PL(k2).

Here again we can permute k1,2 to get the total contribution(
−1

2(k2
1 + k2

2)Σ2
IR

)
2Z2(k1, k2)PL(k1)PL(k2). (B.4)

B.4 The 222 contribution

Finally we have the diagram

B222 =
〈
δ(2)(k1)δ(2)(k2)δ(2)(k2)

〉′

⊃ 8
∫

p
Z2(p, k1 − p)Z2(−p, k2 + p)Z2(k1 − p, k2 + p) PL(p)PL(|k1 − p|)PL(|k2 + p|)

→ 2
∫ kIR

p

(p · k1
p2

)(−p · k2
p2

)
Z2(k1, k2) PL(p)PL(|k1 − p|)PL(|k2 + p|)

→ −(k1 · k2)Σ2
IR 2Z2(k1, k2) PL(k1)PL(k2).
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Note that this diagram has three IR regions, identical to the full resummation discussed in
section 3.2–however, shifting to the other IR regions produces terms proportional to P (k3)
instead, which are not degenerate with the terms discussed here but rather permutations
thereof, so we can ignore them.

Combining the previous results we have that the full IR contribution the 1-loop bispectrum
is given by

1
2
(
−k2

3 + 2k2
3 − (k2

1 + k2
2) − 2k1 · k2

)
Σ2

IR 2Z2(k1, k2)PL(k1)PL(k2) = 0, (B.5)

that is long-wavelength displacements do not contribute to the 1-loop bispectrum.

B.5 Enhancement by the BAO

In the above cancellations we have implicitly used that we can approximate

PL(|k + p|) = PL(k)
(

1 + O
(

p

k

))
. (B.6)

However, when the power spectrum contains an oscillatory component Pw ∼ sin(rsk) we
have that the corrections are instead of order powers of rs times the signal, or enhanced by
rsk compared to expectations. In other words, a mode p which is in the infrared compared
to k can still have a large effect due to the size of rs.

In the 1-loop bispectrum we can consider this enhancement by looking at the contributions
due to B123 and B222 for which we have the IR contribution

−2(k2,ik3,j + k2,ik1,j)Z2(k1, k2)
∫ kIR

p

pipj

p4 PL(p)PL(|k2 − p|)PL(k1)

= 2k2,ik2,jZ2(k1, k2)
∫ kIR

p

pipj

p4 PL(p)PL(|k2 − p|)PL(k1)

where we have dropped the p in PL(|k1 − p|) to focus on the effect on the BAO in PL(k2).
Isolating the BAO component in PL(k2 − p) then gives us, subtracting the p → 0 limit
by previous arguments

k2,ik2,j2Z2(k1, k2)PL(k1)
∫ kIR

p

pipj

p4 PL(p)(Pw(|k2 − p|) − Pw(k2))

= 1
2k2,ik2,j 2Z2(k1, k2)PL(k1)

∫ kIR

p

pipj

p4 PL(p)(Pw(|k2 − p|) + Pw(|k2 + p|) − 2Pw(k2))

= 1
2k2,ik2,j 2Z2(k1, k2)PL(k1)

∫
d3x e−ik2·xξw(x)

∫ kIR

p

pipj

p4 PL(p) (2 cos(p · x) − 2).

Since the BAO component of the correlation function is peaked at x = rs we see that any
contribution with p ≪ 1/rs is suppressed, but scales between 1/rs and k2 can contribute
to the BAO despite being in the IR regime. Indeed, setting x = rsx̂ and performing the
p integral we can see that it yields precisely Aij(x) = X(rs)δij + Y (rs)x̂ix̂j , such that the
total contribution to the bispectrum is

−1
2k2

2Σ2
sPw(k2) (B.7)

i.e. the leading order contribution to the damping of the BAO derived using the wiggle
no-wiggle split in section 4.
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C Corrections to saddle-point in power spectrum

Let us consider the integral

Pw,Zel(k) =
∫

d3q eik·q− 1
2 kikjAnw

ij (q) ξw(q). (C.1)

To use the saddle-point approximation we make the Taylor expansion about q = rdq̂+(q−rd)q̂:

Anw
ij (q) = Anw

ij (rdq̂) + (q − rd) q̂a∂aAnw
ij (rdq̂) + . . . . (C.2)

The first term gives us the leading order saddle-point result, i.e. exponential damping. The
second term leads to a correction

−1
2kikj

∫
d3q eik·q− 1

2 kikjAnw
ij (q) (q − rd) q̂a∂aAnw

ij (rdq̂) ξw(q). (C.3)

Defining

ξℓ
n(q) =

∫
dk k2+n

2π2 P (k)jℓ(kq) (C.4)

we have that the derivative above is given by

∂Anw
ij (q)
∂qk

= 2
5ξ1,nw

−1 (q)q̂(iδjk) − 4
5ξ3,nw

−1 (q)
(5

2 q̂iq̂j q̂k − 1
2 q̂(iδjk)

)
(C.5)

and, working to leading order we get that the correction is

−1
2k2

[2
3ξ1

−1(rd)P 1
w,0(k) − 2

3

(4
5ξ1

−1(rd) − 6
5ξ3

−1(rd)
)

P 1
w,2(k)

]
.

In the above we have defined

P n
w,ℓ(k) = 4π

∫
dq q2 (q − rd)n ξw(q) jℓ(kq). (C.6)

Roughly speaking these should be order the width of the (linear) BAO rn
D. The cumulative

correction to the damping is thus of order rDrdσ2
rd

, where we have used that ξ1
−1(q) = qσ2

q /3
is related to the mean square density σ2

q in spheres of radius q — in practice we find that
the effect is sufficiently small to be subdominant even to differences due to the choice of the
wiggle no-wiggle split for the BAO, though its relevance is proportional to the width of the
feature in the correlation function which can vary for e.g. primordial features.

D Angular integral in wiggle no-wiggle split

In this section we perform the angular integral in equation (4.2) to derive the damping
form for the BAO component of the power spectrum with Σ2

s = Xs + Ys. In order to do
so we will use the series and angular decomposition in section A.3. Let us take the special
case where the Zeldovich integrand multiplies ξw(q) such that X, Y are isolated at their
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values at the peak Xs, Ys. In the power spectrum for example this corresponds to the BAO
component of the b2

1 term

P NL
w (k) =

∫
d3q e−ik·q− 1

2 kikjAij(q) ξw(q)

≈
∞∑

n=0

n∑
m=0

4π
(−1)m

n!

∫
dq q2 e− 1

2 k2XsCn,m

(
−k2Ys

2

)n

ξw(q) j2m(kq)

= e− 1
2 k2Xs

∞∑
n=0

1
n!

(
−k2Ys

2

)n n∑
m=0

Cn,m Pw,2m(k). (D.1)

Here we have defined

Pw,ℓ = 4π(−i)ℓ
∫

dq q2 ξw(q) jℓ(kq). (D.2)

Since ξw is well localized at rs, for any sufficiently large k > r−1
s wherever the integral has

support we can make the asymptotic approximation that

j2m(kq) ≈ 1
kq

cos(kq − π/2 − mπ) = (−1)m

kq
cos(kq − π/2) ≈ (−1)mj0(kq) (D.3)

such that Pw,2m ≈ (−1)mPw. Plugging this approximation back into equation (D.1) and
using

∑n
m=0 Cn,m = 1 yields

P NL
w (k) = e− 1

2 k2Xs

∞∑
n=0

1
n!

(
−k2Ys

2

)n( n∑
m=0

Cn,m

)
Pw(k)

= e− 1
2 k2Xs

∞∑
n=0

1
n!

(
−k2Ys

2

)n

Pw(k) = e− 1
2 k2Σ2

sPw(k) (D.4)

with Σ2
s = Xs + Ys as desired.

We can also consider BAO contribtions with higher angular dependence in q space. For
example in the galaxy power spectrum we have linear terms proportional to

−1
2kikjAw

ij(q) ∼ k2L0,2(µ)
∫

dp

2π2 j0,2(pq) Pw(p), ikiUi ∼ kµ

∫
dp p

2π2 j1(pq) Pw(p)

which Fourier transform into Pw at leading order. For simplicity let us consider the latter
ikiUi term: upon resumming the linear displacements this yields

P w
b1 = ika

∫
d3q e−ik·q− 1

2 kikjAij(q)Uw(q)q̂a

= ika

∞∑
n=0

k̂i1 . . . k̂i2n

n!

∫
d3q e−ik·q− 1

2 k2X(q) Uw(q)
(

−k2Y (q)
2

)n

q̂aq̂i1 . . . q̂i2n

≈ ikae− 1
2 k2Xs

∞∑
n=0

k̂i1 . . . k̂i2n

n!

(
−k2Ys

2

)n ∫
d3q e−ik·q Uw(q) q̂aq̂i1 . . . q̂i2n

From here we can again decompose

µ2n+1 =
n∑

m=0
C(1)

n,mL2m+1(µ) (D.5)
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to write∫
d3q e−ik·q Uw(q) q̂aq̂i1 . . . q̂i2n =

n∑
m=0

4π(−i)2m+1C(1)
n,m

∫
dq q2 Uw(q) j2m+1(kq) L2m+1(k̂)

and, using the asymptotic form for j2m+1 as in equation (D.3) and that Lℓ(1) = 1 gives that
P w

b1
is also damped by Σ2

s, as are indeed all other BAO contributions by the same argument.

E Bispectrum of biased tracers

In this section we briefly sketch the calculation of the bispectrum of biased tracers in real
space, leaving further details to future work. In order to simplify things we will work in the
so-called shifted operator basis [45] where the real-space galaxy overdensity is given by

δg(k) =
∫

d3q e−ik·(q+Ψ(q)
(

b1δ(q) + 1
2b2(δ2(q) −

〈
δ2
〉
) + bs(s2(q) −

〈
s2
〉
) + . . .

)
. (E.1)

In order to compute the resummed galaxy bispectrum to leading order it is necessary to keep
up to quadratic bias terms (b1, b2, bs). Unlike in the Lagrangian bias basis there is no “1” term.

In order to compute the contributions from bias operators it is useful to first evaluate
the second cumulant of the generating function generating function [14]

C = 1
2⟨
(

−ik1 · ∆13 − ik2 · ∆23 +
∑

n

(λnδn + an,ijsn,ij)
)2

⟩c (E.2)

such that contributions due to each bias term can be obtained by taking derivatives of λn

and an. Here we have

C = CZel−i(λ3k1−λ1k3)·U13−i(λ3k2−λ2k3)·U23−i(λ2k1−λ1k2)·U12

−i(a3,abk1,i−a1,abk3,i)B13,iab−i(a3,abk2,i−a2,abk3,i)B23,iab−i(a2,abk1,i−a1,abk2,i)U12,iab

+λ1λ3ξ13+λ2λ3ξ23+λ1λ2ξ12+a1,aba3,cdC13,abcd+a2,aba3,cdC23,abcd+a1,aba2,cdC12,abcd

+(a1,abλ3+a3,abλ1)E13,ab+(a2,abλ3+a3,abλ2)E23,ab+(a1,abλ2+a2,abλ1)E12,ab

where we have defined U13 = ⟨δ1∆13⟩ = −⟨δ1Ψ3⟩ etc. The analagous due to the shear tensor
(Cabcd, Eab, Biab) were defined in [50]. From this it is clear the leading-order bispectrum
terms decompose into separable functions of r, q and q − r.

Proceeding to the bispectrum itself we see that the integrand is now the same as for
Zeldovich matter but multiplied by

b3
1(−i(k1 · U13 + k2 · U23)ξ12 − i(k1 · U12 − k3 · U23)ξ13 + i(k2 · U12 + k3 · U13)ξ23

+ b2
1b2(ξ12ξ13 + ξ13ξ23 + ξ12ξ23) + 2b2

1bs(E12,abE13,ab + E12,abE23,ab + E13E23) (E.3)

The top line can be symmetrized by changing the order of 1, 2, 3 and noting the sign flip
upon inversion.

From the above we can see that the bispectrum can again be computed as a convolution
over triplets of the functions

EU,ξ,E =
∫

d3q e−ip·q+ 1
2 k1,ik2,jAij(q) (U, ξ, E

)
(q)
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These can be evaluated using the additional angular integrals

Im
n =

∫
dΩq̂

[
k̂1,ik̂2,j

(
q̂iq̂j − δK

ij

)]n
(q̂i1 q̂i2 . . . q̂im) eiαp·q̂, (E.4)

up to m = 2. It is straightforward to see that these can be obtained by differentiating with
respect to pi. For example we have that

I1
n = 1

α

dIn(a, b, c, αp)
dpi

= 1
α

(
∂In

∂b
k̂2,i + ∂In

∂c
k̂1,i + α

∂In

∂p
p̂i

)
(E.5)

The derivatives with respect to b, c are straightforward since In are polynomials in these
variables.
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