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We investigate the connection between the full- and flat-sky angular power spectra. First, we
revisit this connection established on the geometric and physical grounds, namely that the angular
correlations on the sphere and in the plane (flat-sky approximation) correspond to each other in the
limiting case of small angles and a distant observer. To establish the formal conditions for this limit,
we first resort to a simplified shape of the 3D power spectrum, which allows us to obtain analytic
results for both the full- and flat-sky angular power spectra. Using a saddle-point approximation, we
find that the flat-sky results are obtained in the limit when the comoving distance and wave modes ℓ
approach infinity at the same rate. This allows us to obtain an analogous asymptotic expansion of
the full-sky angular power spectrum for general 3D power spectrum shapes, including the ΛCDM
Universe. In this way, we find a robust limit of correspondence between the full- and flat-sky results.
These results also establish a mathematical relation, i.e., an asymptotic expansion of the ordinary
hypergeometric function of a particular choice of arguments that physically corresponds to the
flat-sky approximation of a distant observer. This asymptotic form of the ordinary hypergeometric
function is obtained in two ways: relying on our saddle-point approximation and using some of the
known properties of the hypergeometric function.

PACS numbers:

I. INTRODUCTION

The angular power spectrum is a powerful tool for analysing data from cosmological surveys. It is the canonical
observable in the study of the distribution of temperature and polarisation anisotropies in the cosmic microwave
background (CMB), as well as one of the possibilities when analyzing the distribution of matter (and its tracers) in
the study of the large-scale structure (LSS) of the universe. The angular power spectrum is calculated by decomposing
the CMB or matter tracer observables into a series of eigenfunctions that describe how the temperature or density of
the universe varies with the direction on the sky. The angular power spectrum measures how much power is present in
each spherical harmonic and how that power is distributed over different angular scales.

Two typical methods for calculating the angular power spectrum are the full-sky approach and the flat-sky
approximation. In the full-sky approach, the entire spherical geometry of the sky is considered, with the observer
located at the centre of the sphere (neglecting space-time curvature). The eigenfunctions on a sphere are simple
spherical harmonics, so the angular power spectrum is thus a measure of the power in each of these harmonics. While
the full-sky approach is well suited for analysing data from experiments that observe the entire sky (e.g., Planck [1]),
the flat-sky approximation is often used for ground-based experiments that observe a smaller region of the sky (until
recently, this has been a typical setup for galaxy surveys). Usually it is also assumed that the observations lie on a
single plane in the sky, neglecting correlations along the line of sight. The latter, paired with the flat-sky geometry,
forms the so-called Limber approximation [2, 3]; a practical ‘go-to’ implementation of the angular power spectrum for
LSS data analyses. However, some of the upcoming and planned cosmological LSS surveys, such as e.g., Euclid [4],
DESI [5], SPHEREx [6], SKAO [7], the Vera Rubin Observatory [8], will observe large portions of the sky. This means
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δK
ij Kronecker symbol

δD(x) Dirac delta function
W (χ) Window function; related to the specific observable and survey
δ(x) 3D density field of matter or biased tracer
δ̂(θ) 2D projected filed in the real space coordinates on the sky
P(k; z, z′) Unequal-time theoretical power spectrum of the 3D density field (unobservable)
Cℓ Projected angular power spectrum (with finite size window functions)
Cℓ(z, z′) Unequal-time angular power spectrum (in the narrow window function limit)
Jλ(z) ordinary Bessel function
jλ(z) spherical Bessel function
Iλ(z) modified Bessel function of the first kind
Kλ(z) modified Bessel function of the second kind
2F1(a, b; c; z) ordinary (Gaussian) hypergeometric function

Table I: Notation used for the most important quantities in this paper.

that the approximations currently in use can no longer provide sufficient accuracy and that upcoming data analyses
will need to go beyond existing practices (see, e.g., [9] for a recent comparison of various methods).

On the other hand, solely relying on the full-sky formalism would make the analysis pipeline cumbersome and
even prevent efficient information extraction and usage of entire data sets, as we would be forced to perform various
suboptimal data compressions and binning. Constrained by these two considerations, the optimal strategy is thus
to find a middle path by removing some limitations of the currently implemented approximations while retaining
most of the computational simplicity and efficiency of such approximations. In this paper, we lay out the map of this
intermediate path by providing a consistent derivation of a new flat-sky result as an asymptotic approximation of the
full-sky formalism.

This paper is organised as follows:

• Sec. II provides a preamble to the discussion of the cosmological correlators and their projections on the sky. It
introduces the theoretical unequal-time 3D power spectrum as a two-point correlation function in Fourier space
over the statistical ensemble and, thus, by construction, a non-observable quantity (see [10] for a discussion).

• Sec. III introduces the full- and flat-sky two-point angular power spectrum. We discuss the relations between
these spectra and establish their correspondence in the flat-sky limit. We discuss the emergence and consequences
of unequal-time effects in the flat-sky two-point angular power spectrum. We show how these effects lead to
the breaking of translational invariance in the 2D plane and, consequently, to the breakdown of the isotropy
manifested in the full-sky angular power spectrum (see also [11]).

• In Sec. IV, we continue our study of the angular power spectrum of the full- and flat-sky, starting from a simple
analytic form of the theoretical 3D power spectrum. In this way, we obtain analytic expressions for both the full
and flat-sky angular power spectra, allowing us to determine the precise asymptotic limit under which flat-sky
results are obtained. Although these conditions were obtained in this simplified scenario, they can be generalized
for arbitrary cosmologies and power spectra, including the ΛCDM case.

• Sec. V utilises the precise asymptotic limit conditions obtained in the previous section to derive the expression for
the unequal-time angular power spectrum in flat-sky approximation for a general theoretical 3D power spectrum.
For this purpose, we use the Mellin integral transform of the 3D power spectrum.

• In Sec. VI we determine a limit of the ordinary hypergeometric function 2F1(a, b; c; z) in which it corresponds
to the modified Bessel function of the second kind Kν(z). We achieve this by combining the known analytic
solutions for the integral containing the power law and two spherical Bessel functions with our results from the
previous sections. We also show an alternative derivation that follows from some of the known properties of the
ordinary hypergeometric function.

• We end by summarising our results and providing some concluding remarks in Sec. VII.

Table I summarises the notation used throughout the paper for the most important physical and mathematical
quantities.
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II. THEORETICAL 3D POWER SPECTRUM

The usual method for studying the dynamics of gravitational galaxy clustering uses 3D Fourier space correlators.
The reason why Fourier space is an appropriate choice lies in the fact that the properties of the system, such as
statistical isotropy and homogeneity, manifest themselves in the direct simplification of the functional form of the
n-point correlation functions. The homogeneity manifests itself in the translational invariance of these correlators,
while the isotropy corresponds to the rotational invariance. The realization of these properties in the correlation
functions can be easily observed, e.g., in N-body simulations, where one can perform ensemble averaging over different
realisations determined by different initial conditions (see Fig. 1). The theoretical 3D power spectrum P(k) can then
be defined as the two-point correlation function of the overdensity field of a tracer

⟨δ(k, z)δ(k′, z′)⟩ = (2π)3δD(k + k′)P(k; z, z′) . (1)

Here we have explicitly pointed out that two overdensity fields do not have to be correlated at the same time, so we
can study the unequal-time power spectrum. The left part of Fig. 1 schematically shows a realisation of the time
evolution of the overdensity. The right panel shows how these different times are projected onto a single observable
redshift slice. Thus, the full unequal-time 3D power spectrum is not an observable quantity since it is never accessible
from survey data to an observer located at a single position in the Universe (for more details, see [11]). On the other
hand, the 2D angular power spectrum Cℓ correlates the projected overdensity in two different redshift regions is the
most easily observable quantity accessible to such an observer (see the sketch in the right part of Fig. 1).

The 3D power spectrum is characterised by its shape dependence (in wave modes k) as well as by the time dependence,
which in turn are determined by the physical model and cosmological parameters of our universe. Thus, determining
its shape and time dependence allows us to measure and constrain the fundamental parameters of our Universe. In
this work, however, our goal is not to determine any of these parameters or to study their sensitivity in detail; more on
that can be found in [10, 11]. Rather, we explore the connections between the observable angular power spectrum
and the unobservable 3D power spectrum in general terms, focusing on the broad properties of these relationships.
Although we present our final results in a general form so that they are also valid for the ΛCDM universe, in certain
cases we will find it helpful to use a simple functional form that captures some general properties similar to those
of the real universe. Thus, in Sec. IV, we use P(k; z, z′) = AD(z)D(z′)k2 exp

(
−α2k2)

to establish the asymptotic
relation between the full- and flat-sky angular power spectra and to investigate the anti-correlations that appear in the
unequal-time angular power spectrum.

III. UNEQUAL-TIME ANGULAR POWER SPECTRUM

The relationships between the full-sky and the flat-sky angular power spectrum formalisms have been studied in
great detail in the context of temperature fluctuations and polarisation [12–17]. In this section, we revisit and review
these results for scalar fields, emphasising the geometric aspects of the connection between the full-sky and flat-sky
tracer number density. First, we verify that the formally introduced projected overdensity fields in the corresponding
scales lead to the equivalent observable (a similar approach was taken in [16], which also motivated much of the
discussion presented in this section). Namely, we focus on the angular power spectrum. We show that the derived
observables in both cases match in an asymptotic sense, i.e., the flat-sky observable recovers some of the properties,
such as statistical isotropy, in an approximate form. We show how the Limber approximation can be obtained from
the flat-sky approximation, assuming wide window functions.

In Fig. 2, we schematically present our geometrical setup comparing the full-sky geometry to the flat-sky approxima-
tion. We can imagine a construction of the observable by collecting all the tracers in a certain redshift bin characterised
by a isotropic window function W (χ) and a direction on the sky n̂. We thus obtain a projected density field

δ̂(n̂) =
∫

dχ W (χ)δ(χn̂, z[χ]) =
∫

dχ W (χ)
∫

d3k

(2π)3 e−iχn̂·kδ(k, z[χ]) , (2)

where the observable is obtained by projecting/integrating over the comoving distance χ weighted by the window
function W (χ). On a full-sky, described by a spherical shell, it is convenient to represent the overdensity field in terms
of the spherical harmonics expansion

δ̂(χn̂) =
∞∑

ℓ=0

ℓ∑
m=−ℓ

δ̂ℓ,m(χ)Y m
ℓ (n̂) . (3)
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•

•

δ(x, z′′)

δ(x, z′)

δ(x, z) δ̂(θ, χ)

δ̂(θ, χ′)

O χ

χ′

z

Theoretical Power Spectrum
P(k, z, z′)

Angular Spectrum
Cℓ

(
z[χ], z[χ′]

)

Figure 1: Scheme representing the construction of the observable angular power spectrum. We start by correlating the 3D
density field δ(x, z), which provides us with the theoretical, unobservable unequal-time 3D power spectrum P(k; z, z′). The
simplest two-point observable accessible to an observer at position O is the unequal-time projected angular power spectrum
Cℓ(χ, χ′).

This decomposition is useful as it allows us to utilise the statistical homogeneity and isotropy assumptions. The
simplification is manifest once we look at the two-point statistics〈

δ̂ℓ,mδ̂∗ℓ,m

〉
= δK

mm′δK
ℓℓ′Cℓ , (4)

where the two Kronecker delta functions δK
mm′ and δK

ℓℓ′ arise as consequences of the translational invariance and isotropy
of the 3D power spectrum P(k). This allows us to introduce the projected angular power spectrum, dependent on a
single mode ℓ, and is related to the 3D power spectrum P(k) via the well known relation

Cℓ = 4π

∫
dχ1dχ2 W (χ1)W ′(χ2)

∫ ∞
0

k2dk

2π2 P(k; χ1, χ2)jℓ(kχ1)jℓ(kχ2) . (5)

In recent years, there was a revival of efforts for efficient evaluations of this expression [18–23]. If we are interested in
thin redshift slices that characterise spectroscopic surveys, we have W (χ) = δD (χ − χ∗), which simply gives us

Cfull
ℓ (χ, χ′) = 4π

∫ ∞
0

k2dk

2π2 P(k; χ, χ′) jℓ(kχ)jℓ(kχ′) , (6)

that we label the unequal-time angular power spectrum. We use the explicit label ‘full’ to distinguish the full-sky from
the flat-sky version of the unequal-time angular power spectrum, which we investigate next.

As indicated in Fig. 2, we can approximate the observable field near a given direction n̂ and a given comoving
distance χ by the flat-sky approximation rather than defining it on the spherical shell with the comoving distance
χ. This approximation assumes that all tracers lie in the same plane orthogonal to n̂. Since the observer has a fixed
location O, this means that the statistical observable defined on such a plane is not guaranteed to inherit symmetries
such as translational invariance in the plane. This can be recovered by explicitly assuming that a distant observer also
implies a so-called plane-parallel approximation, i.e., that one can define the observables in the plane invariant under
the translations corresponding to the displacements of the observer point O in the plane parallel to the observables.
We abandon this latter assumption and leave the position of the observer O unchanged. The result we obtain can then
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Full-sky surface
Flat-sky surface

•
O

S

χ′

χ

χ(n̂ + θ)

n̂
θ

Figure 2: The full-sky and flat-sky geometrical setup. Assuming a limited survey volume and distant observer approximation,
we expect the flat sky approximation to be a suitable representation of the full-sky results.

be organised so that the leading term in this flat sky approximation explicitly recovers this translational invariance in
the plane, as we shall see further below, with the sub-leading terms estimating the measure of the error of such an
approximation.

We thus have δ̂(n̂′) ≈ δ̂(n̂ + θ), and given that the direction n̂ is fixed, we can drop labelling it as a variable, and
we simply write δ̂(n̂′) ≈ δ̂(θ). In a 2D plane, a convenient and often used method for decomposing a 2D field is the
Fourier transform

δ̂(ℓ) =
∫

d2θ eiℓ·θ δ̂(θ) . (7)

However, instead of the 2D Fourier transform, we opt for something more in line with the expansion in the spherical
harmonics we have used to decompose the spherical shell. The ordinary Bessel functions are a convenient basis for that
purpose, given that they are the eigenfunction of the 2D Laplacian in the plane. Thus, representing the 2D position θ
in polar coordinates {θ, ϕ}, we obtain

δ̂(θ) = 1
2π

∞∑
m=−∞

∫ ∞
0

ℓdℓ δ̂m(ℓ)Jm(ℓθ)e−imϕ , (8)

where the coefficients can be obtained by using the orthogonality of the used eigenfunctions

δ̂m(ℓ) =
∫ 2π

0
dϕ

∫ ∞
0

θdθ Jm(ℓθ) eimϕδ̂(θ) . (9)

This also establishes a natural connection between the flat-sky coefficients δ̂m(ℓ) and the full-sky ones δ̂ℓ,m, as the
former should approach the latter ones as we approach the field close to the line of sight n̂.

Using the Jacobi-Anger expansion in Eq. (7) provides us with the connection of the δ̂m(ℓ) coefficients and the 2D
Fourier transformed field δ̂(ℓ), i.e.,

δ̂(ℓ) =
∞∑

m=−∞
im

∫
d2θ Jm(ℓθ)eim(ϕ−ϕℓ)δ̂(θ) =

∞∑
m=−∞

imδ̂m(ℓ)e−imϕℓ . (10)

This establishes the correspondence of the two bases in the 2D plane. We can relate these coefficients to the 3D Fourier
field

δ̂m(ℓ) = (−i)m

∫
dχ

χ2 W (χ)
∫ ∞
−∞

dkn̂

2π
e−iχkn̂

∫ 2π

0

dϕk

2π
δ
(
kn̂, ℓ̃, ϕk, z[χ]

)
eimϕk , (11)

where we have separated the dependence of δ(k) field in modes along (kn̂) and perpendicular (k⊥) to the line of sight.
Modes perpendicular to the line of sight can be additionally decomposed in amplitude ℓ̃ ≡ k⊥ = ℓ/χ, and phase ϕk.
We thus have

δ̂(ℓ) =
∫

dχ

χ2 W (χ)
∫ ∞
−∞

dkn̂

2π
e−iχkn̂δ

(
kn̂, ℓ̃, ϕℓ, z[χ]

)
, (12)
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which is, of course, consistent with the direct 2D Fourier transform in Eq. (7).
Let us look at the two-point correlator〈

δ̂m(ℓ)δ̂∗m′(ℓ′)
〉

= δK
mm′

∫
dχ1
χ2

1

dχ2
χ2

2
W (χ1)W ′(χ2)(2π)

√
χ1χ2√
ℓℓ′

δD (ℓ/χ1 − ℓ′/χ2) (13)

×
∫ ∞
−∞

dkn̂

2π
e−i(χ1−χ2)kn̂P

(
kn̂,

√
ℓℓ′/

√
χ1χ2; z[χ1], z[χ2]

)
,

where we have written the Dirac delta function in polar coordinates as

δ3D (k − k) = 1
√

ρkρk′
δD (ρk − ρk′) δD (ϕk − ϕk′) δD (kz − k′z) . (14)

Moreover, using δD (
ℓ̃ − ℓ̃′

)
=

√
χχ′ δD(

(χ′ℓ − χℓ′)/
√

χχ′
)
, and thin redshift windows W (χ) = δD (χ − χ∗), we can

define the flat-sky version of the unequal-time angular power spectrum〈
δ̂m(ℓ, χ)δ̂∗m′(ℓ′, χ′)

〉
= (2π)δK

mm′√
ℓℓ′

Cflat
(√

ℓℓ′, χ, χ′
)

δD
(

χ′ℓ − χℓ′√
χχ′

)
, (15)

with the explicit expression

Cflat (ℓ, χ, χ′) = 1
χχ′

∫ ∞
−∞

dkn̂

2π
e−iδχkn̂P

(
kn̂, ℓ/

√
χχ′; z[χ], z[χ′]

)
, (16)

and defining δχ = χ − χ′. Before we discuss this definition of the flat-sky angular power spectrum Cflat in its possible
alternative choices, let us first establish the link between the angular power spectrum obtained using the flat-sky
coefficients δ̂m(ℓ) compared to the 2D Fourier modes δ̂(ℓ). Investigating the correlation function of the 2D Fourier
fields δ̂(ℓ) we find 〈

δ̂(ℓ, χ)δ̂∗(ℓ′, χ′)
〉

=
∑

m,m′

im−m′
〈

δ̂m(ℓ)δ̂∗m′(ℓ′)
〉

e−imϕℓ+im′ϕℓ′ (17)

= (2π)Cflat
(√

ℓℓ′, χ, χ′
) 1√

ℓℓ′
δD

(
χ′ℓ − χℓ′√

χχ′

) ∑
m

e−im(ϕℓ−ϕℓ′ )

= (2π)2Cflat
(√

ℓℓ′, χ, χ′
)

δ2D
(

χ′ℓ − χℓ′
√

χχ′

)
,

and thus the unequal-time angular power spectrum obtained is equivalent to the one obtained correlating the flat-sky
eigenfunction coefficients δ̂m(ℓ).

Let us comment on the meaning of the Dirac delta function in Eqs. (15) and (17). The two modes, ℓ and ℓ′, are
modulated by the corresponding comoving distances, keeping in mind that we are comparing the modes on two different
redshift slices. These modulations break the translational invariance in the single plane, which would be realised by
the simple Dirac delta function of the form δD(ℓ − ℓ′). However, we also know that the corresponding symmetry,
i.e., statistical isotropy, is realised in the treatment of the entire sky in the form of the Kronecker delta function δK

ℓℓ′ .
We can thus consider the translational invariance of the plane as a flat-sky manifestation of the rotational isotropy of
the whole sky, realised in the limiting case of two nearby planes, both distant from the observer. Thus, the deviations
from this symmetry that we experience in the flat-sky are a feature of the approximation itself, and the generated
off-diagonal terms do not capture any additional full-sky features or contributions. On the contrary, we can interpret
the off-diagonal contributions as a measure of the accuracy of our flat-sky approximation, i.e., if they are in any
way significant or comparable to the diagonal term, we should not expect our flat-sky approximation to be a good
representation of the full-sky result. Furthermore, we expect the result to be physically meaningful when the two
planes are close to each other and far from the observer, which motivates us to reorganise our flat-sky result reflecting
these properties. Introducing variables δ = δχ/(2χ̄), ∆ = ℓ′ + ℓ we can write

δ2D
(

χ′ℓ − χℓ′
√

χχ′

)
= A(δ) δ2D (ℓ − ℓ′ + φ(δ)∆) , (18)

where the obtained amplitude A(δ) and phase φ(δ) are both functions of δ that depend on a particular choice of the
definition of mean comoving distance χ̄. For a particular choice of the arithmetic mean χ̄a, we get A = 1 − δ2 and
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φ = δ, while with the choice of the harmonic mean χ̄h the amplitude shift vanishes, i.e. A = 1, at the expense of a
more complex phase φ dependence on δ.1 Expanding in small δ, i.e., around the diagonal contributions, we have

δ2D(
ℓ − ℓ′ + φ(δ)∆

)
= δ2D(

ℓ − ℓ′
)

+
(

eφ(δ)∆·
→
∂ ℓ − 1

)
δ2D(

ℓ − ℓ′
)

. (19)

The unequal-time two-point correlation function of the projected overdensity field in the Fourier space then becomes

〈
δ̂(ℓ, χ)δ̂∗(ℓ′, χ′)

〉
= (2π)2δ2D(

ℓ − ℓ′
) ∞∑

n=0

(←
∂ ℓ · ∆

)n

n! C(n)
(√

ℓℓ′, χ, χ′
)

, (20)

where the n-th angular power spectrum is given as

C(n) (ℓ, χ, χ′) = A(δ)ϕ(δ)n Cflat (ℓ, χ, χ′) , (21)

and the expression for the Cflat is given in Eq. (16). Again, if we choose the arithmetic mean χ̄a, the prefactor Aϕn

simplifies to (1 − δ2)δn, and the higher n terms are thus suppressed by the additional δ = δχ/(2χ̄) terms. Different
choices of the mean distance χ̄ would give somewhat different ϕ dependence on δ. Nonetheless, the leading term would
still remain linear in δ (see [11]).

Let us consider for a moment the content of this result. As mentioned earlier, Eq. (20) states that in addition to the
diagonal term reflecting the translational invariance in the plane, there exist off-diagonal correction terms characterised
by the higher derivative operator acting on the Dirac delta function. These correction terms are suppressed with
respect to the leading n = 0 term by the higher powers of δ (generally ϕ(δ)) in Eq. (21). The higher n terms arise
purely as a consequence of assuming the flat-sky where the underlying symmetry, namely the isotropy, is realised on a
sphere. As we will discuss below, this suppression not only depends on the weighting of the window functions but
is also closely related to the shape of the 3D power spectrum P and its wave mode support along the line of sight,
which is evident from the integration along the kn̂ in the Eq. (16). The range of support of P in kn̂ thus determines
the support of Cflat in δ, i.e., it determines the extent of unequal-time correlation in the unequal-time angular power
spectrum and consequently in the projected angular power spectrum C(ℓ). We can estimate the correlation support in
the δ direction by finding the extrema of Cflat, which gives us

0 =
∫ ∞

0
dkn̂ sin (2δ∗χ̄kn̂) kn̂P (kn̂, ℓ/χ̄; z[χ̄]) + . . . (22)

and where we have neglected the other contributions arising from the derivative of the 3D power spectrum and other δ
dependencies. The expression above determines the position of the δ∗ extrema where the unequal-time angular power
spectrum exhibits the maximal or minimal correlation strength. We note that this explicitly depends on the shape of
the 3D power spectrum. In the next section, we examine these points assuming a simplified shape of the 3D power
spectrum.

Before we close this section, let us further consider the dependence of the unequal-time angular power spectrum on
the unequal-time variable δ and how it affects the integration of the window functions in the projected angular power
spectrum. We can also clarify under what conditions the often used Limber approximation [2, 24–26] is justified and
can be expected to hold. We begin by noting that the unequal-time contributions in the 3D power spectrum can be
organised in a series in δ of the form

P (k; z, z′) =
∞∑

m=0
Pm (k; z̄) δm . (23)

This expansion obviously holds in the linear theory P (k; z, z′) = D(z)D(z′)PL(k), but also in the case of the nonlinear
power spectrum, when, e.g., higher-order perturbative corrections are considered. Using this expansion in Eq. (16) and
assuming that Pm depend only quadratically on kn̂ (the fact that holds even when redshift-space distortions are taken
into account), we get

Cflat (ℓ, χ, χ′) = 2
χχ′

∞∑
m=0

δm

∫ ∞
0

dkn̂

2π
cos (2χ̄δkn̂) Pm (kn̂, ℓ/χ̄; z[χ̄]) . (24)

1 For a more detailed discussion of this point we refer the interested reader to the appendix in [11].
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Integrating over the general window functions W and using the Eq. (21), we obtain the projected version of the angular
power spectra

C(n)(ℓ) =
∫

dχ1dχ2 W (χ1)W ′(χ2)A(δ)ϕ(δ)n Cflat (ℓ, χ1, χ2) , (25)

where we define the projected flat-sky angular power spectrum as the leading, diagonal component in our expansion

C(ℓ) ≡ C(0)(ℓ) . (26)

To proceed a bit further, we assume a specific form of the window function, namely, we assume a Gaussian window

W (χ) = 1√
2πσ

e−
(χ−χ∗)2

2σ2 , (27)

which, for the case when both windows in the projected angular power spectrum are equal, gives us

W
(
χ̄ + 1

2 δχ
)

W
(
χ̄ − 1

2 δχ
)

= W (χ̄)2
e−(χ̄/σ)2δ2

. (28)

In the case when the two windows are not equal, the analysis gets a bit more cumbersome; however, the qualitative
results do not change. For the projected angular power spectra, choosing the arithmetic mean, we have

C(n)(ℓ) = 2
∫ ∞

0
χ̄dχ̄ W (χ̄)2

∫ ∞
−∞

dδ (1 − δ2)δne−(χ̄/σ)2δ2
Cflat (ℓ, χ̄, δ) (29)

= 2
∞∑

m=0

∫ ∞
0

dχ̄

χ̄
W (χ̄)2

∫ ∞
−∞

dkn̂

2π
Gn+m (2χ̄kn̂, χ̄/σ) Pm (kn̂, ℓ/χ̄; z[χ̄]) ,

where we have introduced the kernel GN containing the integral over δ, that can be written as

GN (a, b) =
∫ ∞
−∞

dδ δN e−iaδ−bδ2
= (i∂a)N

G0(a, b) , (30)

and where G0(a, b) =
√

π/b exp
(
−a2/(2b)2)

is the usual Gaussian integral. After a bit of straightforward calculation,
we arrive at

GN (a, b) = (−i/b)N U
(
−N/2; 1/2; a2/(2b)2)

G0(a, b) , (31)

where U(a; b; z) is a confluent hypergeometric function of the second kind.
It is interesting to consider what happens when the window support, characterised by the variance σ is large. The

support of the window contributions GN , at large kn̂, is controlled by G0 part that takes the form

G0 (2χ̄kn̂, χ̄/σ) =
√

πσ/χ̄ exp
(
−σ2k2

n̂

)
, (32)

which effectively constrains the integral domain to kn̂ ≲ 1/σ. For some fixed and finite ℓ such that kn̂ ≪ ℓ/χ̄, one can
neglect the kn̂ dependence of the 3D power spectrum. This is, of course, possible since we assume that the 3D power
spectrum depends only on the amplitude of the total wave mode k =

√
k2

n̂ + ℓ2/χ̄2 ≃ ℓ/χ̄, which is not the case when,
e.g., redshift space distortions are considered (a known regime when Limber approximation fails). From Eq. (29) we
than get

C(n)(ℓ) =
∞∑

m=0
(−i)n+m

γn+m

∫ ∞
0

dχ̄
W (χ̄)2

χ̄2

(
σ

χ̄

)n+m

Pm (ℓ/χ̄; z[χ̄]) , (33)

where the integration over the GN gives us

γN =
∫ ∞
−∞

dx√
π

U
(
−N/2; 1/2; x2)

e−x2
=


1 if N = 0 ,

(−2)−N/2+1/2(N − 2)!!/
√

π if N is odd ,

0 if N is even .

(34)

The usual Limber approximation is obtained by setting n = 0 and m = 0, and we obtain the well known expression

C(ℓ) = C(0)(ℓ) =
∫ ∞

0
dχ̄

W (χ̄)2

χ̄2 P (ℓ/χ̄; z[χ̄]) . (35)
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From the expression in Eq. (33) we see that the higher terms in m (and equivalently in n), originating from the unequal
time effects in the 3D power spectrum, are suppressed in this ‘large σ’ approximation by the higher powers of σ/χ̄.

In summary, in this section we have established the connection between the full-sky and flat-sky angular power
spectrum from a geometrical perspective. Starting from the common propositions of setting the analysis in the plane
(flat-sky), we derived the expressions for the angular power spectrum that can be considered a suitable approximation
for the full analysis on the sphere (full-sky). The question that naturally arises is under what condition do we expect
this approximation to hold? On physical grounds, we expected it to hold for small survey angles (high ℓ) and distant
observers (from the observation planes). In the following sections, we show how these notions arise in a more formal,
asymptotic sense and what is the appropriate limit of dynamical variables in which the flat-sky solution is realised.

IV. FLAT-SKY LIMIT USING THE SIMPLIFIED 3D POWER SPECTRUM

In this section, let us focus on the simplified 3D power spectrum. This will allow us to make a straightforward and
concrete comparison between the flat-sky and the full-sky results for the unequal-time angular power spectrum Cℓ.
Moreover, by performing the asymptotic expansion around the saddle point, we can establish the precise conditions
that give rise to the flat-sky results. Even though obtained in the simplified 3D power spectrum case, these conditions
should be independent of the shape and form of the power spectrum and can thus be considered as universal. Indeed,
these very conditions are then used in the next section to obtain the flat sky limit for the general case for an arbitrary
3D power spectrum.

Let us thus assume a form of the 3D power spectrum

P(k; z, z′) = AD(z)D(z′)k2e−α2k2
= A

α2 D(z)D(z′) (−∂κ) e−κk2
∣∣∣
κ=α2

. (36)

Using this form in the expression given in Eq. (16) we obtain a simple and analytic flat-sky unequal-time angular
power spectrum

Cflat (ℓ, χ, χ′) = ADD′ (−∂κ) e−κℓ2/(χχ′) 1
2
√

πκχχ′
e−

(δχ)2
4κ

∣∣∣
κ=α2

(37)

= ADD′

2
√

πα3χχ′

(
1
2 + (αℓ)2/(χχ′) − δχ2

4α2

)
e−(αℓ)2/(χχ′)− δχ2

4α2 ,

and where we use again the notation δχ = χ − χ′. Using the arithmetic mean χ̄ = (χ + χ′)/2 and the δ variable
(introduced in the previous section), this expression becomes

Cflat (ℓ, χ̄, δ) = − ADD′

2
√

πχ̄2(1 − δ2)
∂κ

(
1√
κ

exp
[
− κ

χ̄2(1 − δ2)ℓ2 − χ̄2

κ
δ2

])
κ=α2

. (38)

In the full-sky case, the unequal-time angular power spectrum is given by Eq. (6), which also has an analytic solution
for our choice of the 3D power spectrum. We obtain

Cfull
ℓ (χ̄, δ) = − ADD′

2χ̄
√

1 − δ2
∂κ

(
1
κ

e−
χ̄2
2κ (1+δ2)Iℓ+1/2

(
χ̄2

2κ

(
1 − δ2)))

κ=α2
, (39)

where we use the fact that the integral over the two spherical Bessel functions and Gaussian suppression gives rise to
the modified Bessel function Iν(z), i.e.

2
π

∫
k2dk jℓ(χk)jℓ(χ′k)e−κk2

= 1
2
√

χχ′
1
κ

e−
χ2+χ′2

4κ Iℓ+1/2

(
χχ′

2κ

)
. (40)

The question now arises regarding the relation of this full-sky result Cfull
ℓ to the obtained flat-sky result Cflat (ℓ).

Our strategy here is to derive the latter from the former. We could, of course, compare them numerically and check
the correspondence. However, this is not exactly what we are aiming at, especially since we are dealing with the
unrealistic shape of the 3D power spectrum. We want to use the analytic expressions to determine the exact conditions
under which the full-sky results approach the flat-sky. This is more valuable information because we will require it to
hold universally, regardless of the choice of the shape of our 3D power spectrum. Thus, we are looking for the exact
asymptotic limit in which we can recover the flat-sky result Cflat (ℓ) starting from the expression Cfull

ℓ in Eq. (39).
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Without further ado, we postulate that the flat-sky results are retrieved in the limit χ ∝ ℓ → ∞, i.e., when the mean
comoving distance χ is approaching large values as fast as ℓ is. We are thus interested in obtaining the asymptotic
form of the modified Bessel function Iν(z) in that limit, i.e., we would like to obtain the approximation for

Iν+ 1
2

(
aν2 − b

)
, as ν → ∞ . (41)

To do this, we use the standard saddle point method, starting from the integral representation of the modified Bessel
function

Iν(z) = 1
2π

∫ π

−π

dθ ez cos θ+iνθ . (42)

We rewrite the integral in the following form

Iν+ 1
2

(
aν2 − b

)
= 1

2π

∫ π

−π

dθ ei(ν+ 1
2 )θeν2f(θ) , (43)

where f(θ) =
(
a − b/ν2)

cos θ. From f ′(θ0) = −
(
a − b/ν2)

sin θ0 = 0 we have θ0 = 0, π, and −π, and thus
f ′′(θ0) = −a + b/ν2, a − b/ν2 and a − b/ν2. Expanding the integrand around the stationary point θ0 = 0 gives us

f(θ) =
(
a − b/ν2)

+ 1
2f ′′0 (θ − θ0)2 + . . . =

(
a − b/ν2)

+ 1
2 |f ′′0 |ei arg(f ′′

0 )s2ei2ϕ , (44)

and we have

Iν+ 1
2

(
aν2 − b

)
∼ eaν2−b

2π

[∫ 0

∞
dt e−i(ν+ 1

2 )te−
1
2 (aν2−b)t2+π +

∫ ∞
0

dt ei(ν+ 1
2 )te−

1
2 (aν2−b)t2

]

∼ e(aν2−b)√
2π (aν2 − b)

e
−

(ν+ 1
2 )2

2(aν2−b) , as ν → ∞ . (45)

We have thus obtained the leading asymptotic term by expanding around the stationary θ = 0 point. Further
corrections could be obtained by exploring the subleading terms of this saddle, as well as by considering the corrections
arising from the borders of the integration region.

Using ν = ℓ, a = χ̄2

2κℓ2 and b = χ̄2

2κ δ2, we obtain

Iℓ+1/2

(
χ̄2

2κ

(
1 − δ2))

≈
√

κ

χ̄

e
χ̄2
2κ (1−δ2)√
π (1 − δ2)

exp
[
− κ

χ̄2(1 − δ2)ℓ′2
]

, (46)

where we use ℓ′ = ℓ + 1/2, which also gives us a mathematical justification of the commonly used approximation
(often adopted in conjunction with the Limber approximation, see, e.g., [26]). This gives us the limit for the full-sky
unequal-time angular power spectrum

Cfull
ℓ (χ̄, δ) ≈ − ADD′

2
√

πχ̄2(1 − δ2)
∂κ

(
1√
κ

exp
[
− χ̄2

κ
δ2 − κ

χ̄2(1 − δ2)ℓ′2
])

κ=α2
, (47)

which is equivalent to the flat-sky result Cflat (ℓ) given in Eq. (38), up to the difference in ℓ and ℓ′. This thus justifies
our limiting procedure where we assumed χ ∝ ℓ → ∞. In the next section, we show how we can generalise these results
to the case of a general 3D power spectrum. Luckily, it turns out we have done most of the calculations that we will
need already in this section.

Before we move on, however, let us use our simple example to investigate the support of the unequal-time effects in
the flat-sky angular power spectrum Cflat (ℓ). Condition for finding the extrema is given in Eq. (22), which, besides
the trivial δ∗ = 0 solution, gives us two finite δ∗ solutions

δ∗ ≈ ±α

χ̄

√
3
2

(
1 + 2(αℓ)2

3χ̄2

)
. (48)

The mathematical details of this expression are not highly important by themself; nonetheless, there are several lessons
to be learned. First of all, the flat-sky angular power spectrum Cflat (ℓ) at these two points is negative, i.e., comparing
the two specific time slices (separated approximately by δ∗) structure is anti-correlated (see also [10]). What determines
this anti-correlation length? We see that δ∗ is dependent on α, i.e., it is determined by the shape of the 3D power
spectrum P. We thus expect to find similar features in more general, ΛCDM-like, cosmologies.
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V. FLAT-SKY LIMIT USING THE GENERAL 3D POWER SPECTRUM

We generalise our results from the previous section, obtained by considering a simplified shape of the 3D power
spectrum, to the case of the general shape, which includes the realistic ΛCDM power spectrum. We start with the
assumption that the 3D power spectrum P can be represented as a discrete Mellin transform of the following form

P(k; χ, χ′) = DD′
∑

i

αik
νi , (49)

where αi are coefficients, and the νi are phases. Each of these can be complex. This is a good approximation that
works well in various LSS applications (see, e.g. [18, 27–31] for some examples). Our strategy is thus to use this
transform and perform the limiting procedure on the individual kνi case.

Adopting the transform given in Eq. (49) and using it in the flat-sky angular power spectrum expression given in
Eq. (16), we get

Cflat(ℓ, χ, χ′) = DD′

χχ′

∑
i

αi

∫ ∞
−∞

dkn̂

2π
e−iδχkn̂

(
k2

n̂ + ℓ̃2) νi
2 = DD′

χχ′

∑
i

αi
(2ℓ̃/|δχ|)

νi
2 + 1

2
√

πΓ(− νi

2 )
K νi

2 + 1
2
(|δχ|ℓ̃) , (50)

where we use ℓ̃ = ℓ/
√

χχ′, and where Kν is the modified Bessel function of the second kind. This expression is useful
because it allows efficient evaluation of the calculation of the projected angular power spectrum. It is analogous to
the computation performed in reference [18] for the full-sky case, where the ordinary hypergeometric function 2F1 is
obtained instead of Kν . In this respect, the flat-sky results provide us with significant computational simplification.
However, we won’t discuss these aspects of the flat-sky results here; for a detailed analysis and performance of these
flat-sky results, we refer the reader to reference [32]. Here we attempt to obtain the result in Eq. (50) directly from
the full-sky formalism.

Referring to the full-sky unequal-time angular power spectrum expression given in Eq. (6) and using the discrete
transform of the 3D power spectrum given in Eq. (49), we have

Cfull
ℓ (χ, χ′) = 4πDD′

∑
i

αi

∫ ∞
0

k2dk

2π2 kνi jℓ(kχ)jℓ(kχ′) . (51)

We can use the integral representation of the product of two spherical Bessel functions

jν(z)jν(ζ) = 1
4i

√
zζ

∫ c+i∞

c−i∞

dt

t
exp

(
1
2 t − z2 + ζ2

2t

)
Iν+1/2

(
zζ

t

)
, ℜ(ν) > −1/2 , (52)

where c is a positive constant (see, e.g. [33, (10.9.28)]). Using our earlier result on the asymptotic expansion of the
modified Bessel function given in Eq. (45), we have

jν(z)jν(ζ) ≈ −1
4

i√
2π

1
zζ

∫ c+i∞

c−i∞

dt√
t

exp
(

1
2 t − (z − ζ)2

2t

)
e−

ν′2
2zζ t . (53)

This gives us

4π

∫ ∞
0

k2dk

2π2 kν jℓ(kχ)jℓ(kχ′) ≈ −i

√
π

2
1

χχ′

∫ ∞
0

dk

2π2 kν

∫ c+i∞

c−i∞
exp

(
1
2 t − δχ2

2t
k2

)
e
− ℓ′2

2χχ′k2 t dt√
t

(54)

≈ −i

√
π

2
1

χχ′

∫ c+i∞

c−i∞

dt√
t

et/2
∫ ∞

0

dk

2π2 kνe
− δχ2

2t k2− ℓ′2
2χχ′k2 t

≈ − i

(2π)3/2
1

χχ′
(
ℓ̃′/|δχ|

) ν
2 + 1

2 K ν
2 + 1

2

(
|δχ|ℓ̃′

) ∫ c+i∞

c−i∞
dt et/2t

ν
2 ,

where ℓ̃′ = (ℓ + 1/2)/
√

χχ′, and in the second line, we have used the integral representation of the modified Bessel
function of the second kind (see, e.g., [33, (10.32.10)]. Finally, the remaining integral is related to the definition of the
gamma function

1
2πi

∫ c+i∞

c−i∞
dt et/2ts = 2s+1

Γ(−s) . (55)

http://dlmf.nist.gov/10.9.E28
http://dlmf.nist.gov/10.32.E10
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This gives us an asymptotic form of the full-sky unequal-time angular power spectrum

Cfull
ℓ (χ, χ′) = 4πDD′

∑
i

αi

∫ ∞
0

k2dk

2π2 kν jℓ(kχ)jℓ(kχ′) ≈ DD′

χχ′

∑
i

αi

(
2ℓ̃′/|δχ|

) νi
2 + 1

2

√
πΓ

(
− νi

2
) K νi

2 + 1
2

(
|δχ|ℓ̃′

)
. (56)

This is precisely the same form we have obtained from the flat-sky calculations in Eq. (50).
Thus we have established a direct mathematical correspondence between the full- and the flat-sky angular power

spectrum. We have already shown that this is to be expected on physical grounds in Sec. III, where geometric
considerations are used to establish the correspondence between the full- and the flat-sky for distant observers looking
at the small patch of the sky. Here we have succeeded in showing that the same correspondence follows purely
mathematically when the proper limit of large χ and ℓ variables is taken, namely when χ ∝ χ′ ∝ ℓ → ∞, as we have
shown in Sec. (IV).

VI. ASYMPTOTIC FORM OF THE ORDINARY HYPERGEOMETRIC FUNCTION 2F1(a, b; c; z)

Here we establish a link between a direct representation of the double spherical Bessel integral given in Eq. (51) given
in terms of the ordinary (Gaussian) hypergeometric function 2F1(a, b; c; z) and, on the other hand, our asymptotic
representation established in the Sec. V. This gives us an asymptotic expansion of the ordinary hypergeometric function
2F1 in a distinct variable regime that we further specify in this section. We show how our asymptotic result can also
be obtained in an alternative way using some of the known properties of the ordinary hypergeometric function.

We start with the representation of the double spherical Bessel integral arising in Eq. (51) in terms of the ordinary
hypergeometric function, giving us

4π

∫ ∞
0

k2dk

2π2 kνjℓ(kχ)jℓ(kχ′) = 2ν+1χ−3−ν Γ
(
ℓ + ν

2 + 3
2
)

Γ
(
− ν

2
)

Γ
(
ℓ + 3

2
) tℓ

2F1
(

ν
2 + 1, ℓ + ν

2 + 3
2 ; ℓ + 3

2 ; t2)
, for t ≤ 1 , (57)

where t = χ′/χ = (1 − δ)/(1 + δ), and we assume without loss of generality that χ ≥ χ′ (positive δ). This explicit
result has already been used to compute the CMB and LSS angular statistics [18–20, 22]. However, the complexity
of the hypergeometric function poses limits to the efficiency of using this result. As shown in [32], for all practical
purposes in CMB and LSS, replacing the full result with its asymptotic form, as given in the previous section, leads to
highly accurate results while significantly reducing the computational effort. The reason for this simplification lies in
replacing the hypergeometric function with the modified Bessel function of the second kind.

Given our asymptotic results provided in Eq. (56) and the analytic expression in Eq. (57), we can establish the
following relation

2F1
(
λ, ℓ + λ; ℓ + 1; t2)

∼ 1√
π

(
ℓ

2

)λ− 1
2 Γ (ℓ + 1)

Γ (ℓ + λ) t−ℓ−λ
2−

1
4 (1 − t)−λ+ 1

2 Kλ− 1
2

[
ℓ(1 − t)/

√
t
]

, for ℓ → ∞ , (58)

and for t ≤ 1. However, in order to make these results fully consistent, we need to impose certain conditions on the
variable t. Namely, when deriving the saddle point approximation for the modified Bessel function Iν in Sec. IV,
we imposed the condition that χ ∝ χ′ ∝ ℓ, i.e., that the variable measuring the magnitude of unequal-time effects,
δ = δχ/(2χ̄) ∝ 1/ℓ, is small. This implies that the above results in Eq. (58) are valid for small values of t. How
small? We can relate the smallness to the ℓ variable, δ = δχ/(2χ̄) = δχk⊥/(2ℓ) = x/(2ℓ), where we have introduced an
arbitrary constant x(≡ δχk⊥). Thus, the above results hold for any x such that x ≪ ℓ. Therefore, the asymptotic
result in Eq. (58) holds when

t = 1 − x/(2ℓ)
1 + x/(2ℓ) , (59)

for an arbitrary x. We can simplify the above results further by noting that we are working in the ℓ → ∞ limit, and
thus t ∼ 1 − x/ℓ. The Eq. (58) then simplifies to the following compact form

2F1

(
λ, ℓ + λ; ℓ + 1; 1 − 2x

ℓ

)
∼

√
2
π

(
ℓ

2

)λ (
1 + x

ℓ

)ℓ Kλ− 1
2

(
x

)
xλ− 1

2
, for ℓ → ∞ . (60)

This result represents the asymptotic expansion of the ordinary hypergeometric function in a specific configuration
defined above. Moreover, in the strict limit, when ℓ ≫ x, we can further simplify this result using (1 + x/ℓ)ℓ → exp(x).
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Further asymptotic relations, valid in different variable domains, can be obtained using various transformation rules
of the ordinary hypergeometric function. The most immediate ones follow from applying, e.g., Euler and Pfaff
transformations.

Moreover, with the hindsight of our previous result, we can also derive the asymptotic expression given in Eq. (60)
using some of the well-known relations for the ordinary hypergeometric function 2F1. The essential piece of information
is to understand the appropriate limit to be considered, which of course, follows from the insight provided in Sec. IV.
Thus, we can use the linear transformation property

2F1 (a, b; c; z) = (1 − z)−a
2F1 (a, c − b c; z/(z − 1)) , (61)

and the relation to Tricomi’s (confluent hypergeometric) function U(a, b, z) giving us

U(a, b, z) = z−a
(

lim
c→∞ 2F1 (a, a − b + 1; c; 1 − c/z)

)
. (62)

The latter relation is sometimes also used as a definition of the function U(a, b, z). Combining the two relations above
gives us

2F1 (λ, ℓ + λ; ℓ + 1; 1 − 2x/ℓ) =
(

2x

ℓ

)−λ

2F1 (λ, 1 − λ; ℓ + 1; 1 − ℓ/(2x)) ∼ ℓλ U (λ, 2λ; 2x) , for ℓ → ∞ . (63)

The final step is to note that for b = 2a, the Tricomi’s (confluent hypergeometric) function can be related to the
modified Bessel function of the second kind

U (λ, 2λ, 2z) = 1√
π

ez (2z)−λ+1/2
Kλ−1/2 (z) . (64)

Combining all these parts gives us

2F1 (λ, ℓ + λ; ℓ + 1; 1 − 2x/ℓ) ∼
√

2
π

(
ℓ

2

)λ ex Kλ−1/2 (x)
xλ−1/2 , for ℓ → ∞ , (65)

which is equivalent to the result obtained in Eq. (60).
It is easy to verify that starting from the expression given in Eq. (60) (and equivalently in Eq. (65)) and using it in

Eq. (57), we can recover our flat-sky result from the previous section given in Eq. (56).

VII. SUMMARY AND CONCLUSIONS

We have established a robust link between the full- and flat-sky descriptions of the leading two-point statistics used
in CMB and LSS data analyses, namely the angular power spectrum. So far, the two main modes of employing the
angular power spectrum have been within the Limber approximation or the so-called full-sky implementation, the
latter requiring a costly evaluation of oscillatory integrals containing a product of two Bessel functions.

The Limber approximation is foremost a practical approach. However, it has two considerable drawbacks. The first
is related to the fact that it yields results with the required accuracy only at relatively small scales and for surveys
with fairly wide windows. Moreover, the accuracy is limited to auto-correlations. The reason for these limitations
is the assumption that the wave modes along the line-of-sight (crucial in the RSDs) in the 3D power spectrum
can be entirely neglected when computing the angular power spectrum. Given these issues, the use of the Limber
approximation is restricted mainly to the analysis of weak gravitational galaxy and CMB lensing. At the same time,
they represent a serious obstacle to effective cosmological analyses using galaxy tomography. On the other hand,
the full-sky results are exact and capture the whole angular dependence of the correlators. However, the evaluation
of integrals involving a product of two Bessel functions and a theoretical 3D power spectrum has proven to be a
challenging task, especially when part of MCMC analyses. In recent years, there have been advances proposing the use
of the discrete Mellin transform (known in the field as the FFTLog decomposition), which leads to an expression in
terms of the ordinary hypergeometric function 2F1 (see notably [18]). Although this representation is exact, it still
poses a computational challenge when used at all scales, especially in the regime of high ℓ or for distant observers
(complementary to the Limber approximation). To mitigate this, one might consider patching the full-sky result with
the Limber approximation to achieve efficient yet satisfactory accuracy on overall scales. However, this quickly becomes
a sensitive fine-tuning problem, with challenges increasing for unequal-time cross-correlations and narrow windows.

Given this state of affairs, we found it prudent to develop a systematic framework that mitigates these challenges
and provides a robust and natural way to connect large- and small-scale results. This is achieved by providing an
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asymptotic approximation to the full-sky result in the limiting case of a distant observer and a large ℓ expansion
that is consistent with the unequal-time results obtained in the flat-sky limit, i.e., when the analysis on spherical
shells is replaced by the parallel planes. To establish the precise asymptotic conditions under which this limit is
achieved, we first consider a simple analytic form of the theoretical 3D power spectrum. This allows us to obtain the
analytic expressions for both the full- and flat-sky angular power spectra, which in turn gives a limiting procedure
that maps the former to the latter. It turns out that the full-sky result matches the flat-sky result (in the leading
saddle-point approximation) when the angular modes ℓ and comoving distance are taken to infinity at the same rate,
i.e., when χ ∝ χ′ ∝ ℓ → ∞. The final step is to use this well-defined asymptotic limit to derive the expansion of
the full-sky angular power spectrum valid for the general theoretical 3D power spectra (which would also include
ΛCDM-like universes). The latter is automatically achieved by using the above-mentioned Mellin integral transform
of the theoretical 3D power spectrum. As a result, we find that the same limiting procedure of high ℓ and distant
observer naturally maps the full-sky result into the one obtained in the flat-sky approximation, which establishes a
robust asymptotic connection between the two results, allowing us also to consider subleading asymptotic corrections,
a task we leave for future work.

By deriving our asymptotic connection between the full- and flat-sky angular power spectra, we have also derived
a purely mathematical result. Namely, our analysis establishes an asymptotic limit of the ordinary hypergeometric
function in the specific variable configuration (corresponding to the flat-sky limit in our physical interpretation). In
this configuration, the limit connects the hypergeometric function 2F1(a, b; c; z) to the modified Bessel function of the
second kind Kν(z). Once the nature of the appropriate limit is established, namely that χ ∝ χ′ ∝ ℓ → ∞, we are able
to provide an alternative derivation of our earlier flat-sky result using some of the known properties and limits of the
ordinary hypergeometric function.
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