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Perturbation theory is a powerful tool for studying large-scale structure formation in the universe and
calculating observables such as the power spectrum or bispectrum. However, beyond linear order, typically
this is done by assuming a simplification in the time-dependence of gravitational-coupling kernels between
the matter and velocity fluctuations. Though the true dependencies are known for Lambda cold dark matter
cosmologies, they are ignored due to the computational costs associated with considering them in full and,
instead, are replaced by simpler dependencies valid for an Einstein–de Sitter cosmology. Here we develop,
implement, and demonstrate the effectiveness of a new numerical method for finding the full dynamical
evolution of these kernels to all perturbative orders based upon spectral methods using Chebyshev
polynomials. This method is found to be orders of magnitude more efficient than direct numerical solvers
while still producing highly accurate and reliable results. A code implementation of the Chebyshev spectral
method is then presented and characterized. The code has been made publicly available alongside this
paper. We expect our method to be of use for interpretation of upcoming galaxy clustering measurements.
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I. INTRODUCTION

Studying the history of large-scale structure (LSS)
formation in our Universe is crucial to modern cosmology.
The highly structured cosmic web of galaxy clusters,
sheets, walls, filaments and voids present in the late-time
Universe arises from evolution under gravity of small,
primordial fluctuations in the density and velocity of
matter, believed to have been sourced during a period of
cosmic inflation. LSS therefore encodes information on the
primordial fluctuations as well as the expansion history,
geometry and matter content of the Universe, which affect
the subsequent evolution of the perturbations.
Theoretical studies of LSS aim to predict the statistical

properties of the clustering of the matter density (and
associated velocity), for example, the power spectrum and
higher-point correlation functions. These can be compared
with the observed statistics of the clustering of galaxies

since the galaxy over-density on large scales traces the
matter over-density. Such comparisons are complicated by
two issues, however. First, galaxies need not necessarily
follow the underlying matter distribution exactly, although
on the largest cosmological scales the relation for galaxies
is essentially linear with a constant of proportionality
known as galaxy bias, while on smaller, mildly nonlinear
scales, corrections can be treated perturbatively [1].
Second, we have the issue that each galaxy’s redshift
depends not only on distance but also on its peculiar
velocity via the Doppler effect [2,3]. Furthermore, these
velocities are not random but instead correlate with the
matter density field itself. This alters galaxy statistics by
producing redshift-space distortions (RSDs), also introduc-
ing features such as the well-known “Fingers of God” [3].
These issues are compounded by the fact that we are now
entering the era of high-precision cosmology with large
galaxy surveys such as Euclid [4], DESI [5], Rubin [6], and
Roman [7]. Here, it becomes necessary to quantify these
effects fully, lest they introduce greater uncertainties or
issues of biased parameter estimation.
Given the small amplitude of the primordial fluctuations,

perturbation theory is a very powerful tool for calculating
the evolution of fluctuations in cosmological fields. For
early-time observables, such as the cosmic microwave
background (CMB), linear perturbation theory is an excel-
lent description. Accurate predictions for the CMB power
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spectra can be calculated in this way (e.g., [8,9]) and their
comparison with measurements of the CMB temperature
and polarization anisotropies has been instrumental in
establishing the standard model of cosmology, the
Lambda cold dark matter (ΛCDM) model, and determining
its parameters to high precision (e.g., [10]). However, linear
perturbation theory fails to describe the late-time Universe,
where, particularly at smaller scales, complex nonlinear-
ities take hold and baryon physics begins to play a role [11].
As a result, higher-order perturbation theory is crucial
to building analytic models. The standard procedure for
SPT in these perturbative approaches is to use the quasi-
static Einstein–de Sitter (EdS) approximation, henceforth
referred to as the quasi-EdS approximation (qEDS). Here, a
blend of models is used, with nonlinear interaction kernels
calculated in the dramatically simpler EdS (completely
matter-dominated) universe. These are then combined with
linear growth-rate results for the full ΛCDM dynamical
Universe in order to extract observables [12]. In essence,
this approximation assumes that any nonlinearities are
constant in time, to then be scaled up to their present-
day values.
The qEDS approach has been fairly successful thus far,

yielding percent-level accuracy for all necessary two-point
statistics close to the linear regime [13]. Such models have
already yielded concrete predictions, in particular for the
one-loop power spectrum and tree-level bispectrum, and
these have been used to extract relevant cosmological
information from galaxy surveys [14–16]. However,
for future surveys, this accuracy will not be enough.
Particularly in the context of RSDs, the full dynamics of
ΛCDM must be taken into account. A large body of work
has already explored the extent of these effects at the
level of one-loop results [17–25], and recently to two-loop
order [26–28]. Some of these solutions (notably [19,20,22])
managed to obtain the formal solutions for arbitrary
perturbative order, with explicit solutions recently pre-
sented in [22]. Unfortunately, accounting for the full
ΛCDM dynamics introduces several issues, including that
some of these features are slow to calculate using brute-
force numerical methods (especially at higher perturbative
order). This makes exploration of parameter space compu-
tationally challenging when interpreting survey data.
Therefore, this paper aims to optimize the process by
which the full ΛCDM dynamics can be calculated at
each perturbative order, using previous results for time-
dependent coefficients as a starting point [20,27].
We tackle this problem with a novel numerical method,

expanding the time-dependent interaction kernels in shifted
Chebyshev polynomials [29] as in the Chebyshev Spectral
Method (CSM; see, e.g., [30] for the explicit, matrix-based
approach that we follow). Doing so, we convert the process
of calculating these dynamical coefficients into a linear-
algebra problem that can readily be solved. We have
implemented this method into a new Python library that

we present below. The code is freely available at https://
github.com/Chousti/CSMethod.git, with the hope that it
can be integrated into likelihood analyses of forthcoming
survey data, allowing more accurate parameter estimates to
be derived from these data. While we focus on ΛCDM
cosmologies here, it is expected that the method can be
straightforwardly extended to more generalized cosmo-
logies, including features such as clustered quintes-
sence [31,32].
This paper is arranged as follows. In Sec. II we review

certain theoretical results underpinning the problem.
Section III discusses the implementation of our spectral
method with explanations of the code philosophy, and
Sec. IV presents results and code tests. Finally, we discuss
our results in Sec. V. More extensive auxiliary functions are
given in the Appendix.
All numerical results (unless stated otherwise) are

calculated using the Planck best-fit ΛCDM cosmology,
with parameters as follows: the present-day matter density
parameter Ωm0

¼ 0.315; present-day dark-energy density
parameter ΩΛ0

¼ 0.685, giving a flat universe; and Hubble
constant H0 ¼ 67.74 km s−1 Mpc−1 [10].

II. DYNAMICS IN THE ΛCDM UNIVERSE

A. Deriving the equations of motion

On the large scales for which a perturbative treatment is
valid, we may approximate the cosmic matter density
field as a single, self-gravitating, cold, pressureless fluid.
Baryons follow the dark matter on these scales and pressure
and other baryonic effects are negligible compared to
gravitational interactions. The matter density may therefore
be characterized by its density contrast δðx; aÞ and peculiar
velocity vðx; aÞ, where x is comoving position and a is the
scale factor (we use a and conformal time τ, interchange-
ably, as time variables in the following). It is convenient
to decompose the peculiar velocity into its divergence
θ ¼ ∇ · vðx; aÞ and vorticity ω ¼ ∇ × vðx; aÞ. These quan-
tities obey the following equations of motion [1,13]:

∂δk
∂τ

þ θk ¼ −
Z
q1;q2

ð2πÞ3δDk−q12αðq1; q2Þθq1δq2 ; ð1Þ

∂θk
∂τ

þHθk þ
3

2
ΩmH2δk

¼ −
Z
q1;q2

ð2πÞ3δDk−q12βðq1; q2Þθq1θq2 ; ð2Þ

∂ωk

∂τ
þHωk ¼ ik ×

Z
q1;q2

ð2πÞ3δDk−q12vq1ωq2 ; ð3Þ

where δDq is the Dirac delta function, k12 ¼ k1 þ k2,R
q1;…;qn

≡ð2πÞ−3n R d3q1 � � � d3qn, ΩmðaÞ is the matter-
density parameter and H ¼ d ln a=d ln τ is the conformal
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Hubble parameter. The kernels are defined by αðq1; q2Þ ¼
1þ ðq1 · q2Þ=q21 and βðq1; q2Þ ¼ ðq12Þ2ðq1 · q2Þ=ð2q21q22Þ.
Equation (3) implies that ω remains zero for all time in
the case of vanishing primordial vorticity, while it decays as
1=a at linear order if vorticity were present in the early
universe. As a result, any small initial vorticity rapidly

decays as the universe expands. Therefore, we proceed to
assume the velocity field to be irrotational—an assumption
that holds well up to shell crossing (and the formation of
shocks) [12].
The remaining system of Eqs. (1) and (2) are now closed

andwell-suited to be solved perturbatively, with an ansatz of

δðk; aÞ ¼
X∞
n¼1

Z
q1;…;qn

ð2πÞ3δDk−q12…n
Fnðq1;…; qn; aÞDnþðaÞδinq1…δinqn ;

θðk; aÞ ¼ −HfþðaÞ
X∞
n¼1

Z
q1;…;qn

ð2πÞ3δDk−q12…n
Gnðq1;…; qn; aÞDnþðaÞδinq1…δinqn : ð4Þ

Here, Fn and Gn are our solution kernels (defined
to be fully symmetrized with respect to momenta),
D� are the growing and decaying linear growth factors
satisfying

a2
d2D�
da2

þ a

�
2þ d lnH

d ln a

�
dD�
da

−
3

2
ΩmðaÞD� ¼ 0; ð5Þ

in ΛCDM cosmologies, f� ¼ d lnD�=d ln a are the
associated linear growth rates and δinq describe the initial
density contrast. At linear order, we find trivial results of
F1 ¼ G1 ¼ 1, giving

δð1Þk ðaÞ¼DþðaÞδink ; θð1Þk ¼−HðaÞfþðaÞDþðaÞδink : ð6Þ

The linear growth factor for the growing mode, and its
associated growth rate, are given by the following:

DþðaÞ ¼
5

2
H2

0Ωm0
HðaÞ

Z
a

0

dx
½xHðxÞ�3 ; ð7Þ

fþðaÞ ¼
Ωm0

ð1 −Ωm0
Þa3 þ Ωm0

�
5a

2DþðaÞ
−
3

2

�
; ð8Þ

where HðaÞ ¼ H0½Ωm0
a−3 þ ð1 −Ωm0

Þ�1=2. We have nor-
malizedDþðaÞ so that it approaches a as a → 0. The linear
growth factor for the decaying mode is D−ðaÞ ∝ HðaÞ and
the associated growth rate is

f−ðaÞ ¼ −
3

2

Ωm0

ð1 − Ωm0
Þa3 þΩm0

¼ −
3

2
ΩmðaÞ: ð9Þ

Although we only consider growing-mode solutions, f−ðaÞ
appears below in the equation of motion for the Fn and Gn
kernels through d lnH=d ln a, or, equivalently, ΩmðaÞ.
Figure 1 shows the growth factor DþðaÞ along with
the logarithmic growth rates f� in both the ΛCDM and
EdS universes. In the latter, DþðaÞ ¼ a, fþðaÞ ¼ 1, and
f−ðaÞ ¼ −3=2. The behavior of these functions in ΛCDM
differs from the EdS limits at late times and these deviations
eventually compound to affect observables. The constancy

FIG. 1. Comparison of the growth factors for the growing mode (left), along with the logarithmic growth rates of the growing (middle)
and decaying (right) modes, between the ΛCDM and quasi-EdS universes.
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of f� in EdS helps to explain how this approximation is
viewed as “static,” as these growth rates do not introduce
any dynamics into the system. Typically, the quasi-EdS
approximation is made, whereby the kernels Fn and Gn are
assumed to be time-independent and are replaced by their
counterparts in EdS, while the full ΛCDM growth factor
(Dþ) is used in Eq. (4). This is done due to the fact that
such kernels are much easier to compute in the simpler EdS
case [12,13,20,27].
Dropping the qEdS approximation, these kernels obey

the following equations of motion:

a
fþ

dFn

da
þ nFn −Gn ¼ hðnÞα ðq1;…; qn; aÞ;

a
fþ

dGn

da
þ ðn − 1ÞGn −

f−
f2þ

ðGn − FnÞ ¼ hðnÞβ ðq1;…; qn; aÞ;

ð10Þ

with source terms given by Eq. (8) in [20]. In order to
proceed, we assume a separable solution at each order, with
ansatz [20,27]

Fnðq1;…; qn; aÞ ¼
XNðnÞ

l¼1

λðlÞn ðaÞHðlÞ
n ðq1;…; qnÞ;

Gnðq1;…; qn; aÞ ¼
XNðnÞ

l¼1

κðlÞn ðaÞHðlÞ
n ðq1;…; qnÞ; ð11Þ

where HðlÞ
n are the momentum operators (see [27]) and λðlÞn

and κðlÞn are the time-dependent coefficients, which are the
focus of this paper. The numbering function NðnÞ gives us
the simplest way to ensure the full dimension of each kernel
is accounted for, albeit allowing for some redundancies.
These are imposed primarily through physical constraints
such as conservation of mass and momentum, along with
the equivalence principle—though these are not explored
here. The NðnÞ are found recursively, with explicit form
given in the Appendix; the first few terms of which
are Nð1Þ ¼ 1, Nð2Þ ¼ 2, Nð3Þ ¼ 6, Nð4Þ ¼ 25, and
Nð5Þ ¼ 111. For the purpose of this paper, we focus on
the time-dependent coefficients, which can be written
as [27]

λðlÞn ðaÞ ¼ δKn
2
;bn

2
c
XNðn=2Þ

i¼1

" XNðn=2Þ

j¼1

h
Wnði;jÞ

α;n
2
;n
2

i
δKl;ϕ1

þ
XNðn=2Þ

j¼i

h
Wnði;jÞ

β;n
2
;n
2

i
δKl;ϕ2

#

þ
Xbðn−1Þ=2c

m¼1

XNðmÞ

i¼1

XNðn−mÞ

j¼1

½½Wnði;jÞ
α;m;n−m�δKl;ϕ3

þ ½Wnðj;iÞ
α;n−m;m�δKl;ϕ4

þ ½Wnði;jÞ
β;m;n−m�δKl;ϕ5

�; ð12Þ

κðlÞn ðaÞ ¼ δKn
2
;bn

2
c
XNðn=2Þ

i¼1

" XNðn=2Þ

j¼1

h
Unði;jÞ

α;n
2
;n
2

i
δKl;ϕ1

þ
XNðn=2Þ

j¼i

h
Unði;jÞ

β;n
2
;n
2

i
δKl;ϕ2

#

þ
Xbðn−1Þ=2c

m¼1

XNðmÞ

i¼1

XNðn−mÞ

j¼1

½½Unði;jÞ
α;m;n−m�δKl;ϕ3

þ ½Unðj;iÞ
α;n−m;m�δKl;ϕ4

þ ½Unði;jÞ
β;m;n−m�δKl;ϕ5

�; ð13Þ

for n > 1. For the case n ¼ 1, we have λð1Þ1 ¼ κð1Þ1 ¼ 1. In
these expressions, δK is the Kronecker delta (meant to
ensure that the first two respective terms are nonzero only
in the case of even n) and ϕk are bijective maps of their
arguments (n and all of the integers being summed over)
that serve to identify the correct coefficient for each
momentum operator. Their form is given explicitly in

the Appendix. For λðlÞn , exactly one of the WαðaÞ or

WβðaÞ coefficients are selected, while for κðlÞn it is one
of the UαðaÞ or UβðaÞ. Though this formulation appears
terse, we reiterate that this represents an algorithm that is
capable of readily producing all information necessary to
each perturbative order. For pedagogical reasons, we
summarize the amount of information necessary to predict
typical observables in Table I [31,33].

TABLE I. Cumulative information required to calculate typi-
cally used observables of the matter and velocity fluctuations.
The number of coefficients required is calculated as 2

P
n
i¼1 NðiÞ.

Required order
(n) Observable

Number of dynamical
coefficients

1 Linear power
spectrum

2 (trivial)

2 Tree-level
bispectrum

6

3 One-loop power
spectrum

18

4 One-loop bispectrum 68
5 Two-loop power

spectrum
290
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The W and U functions satisfy coupled differential equations, with the following structure:

_Wnði;jÞ
α;m1;m2

þ nWnði;jÞ
α;m1;m2

− Unði;jÞ
α;m1;m2

¼ κðiÞm1
λðjÞm2

;

_Unði;jÞ
α;m1;m2

þ ðn − 1ÞUnði;jÞ
α;m1;m2

−
f−
f2þ

½Unði;jÞ
α;m1;m2

−Wnði;jÞ
α;m1;m2

� ¼ 0; ð14Þ

_Wnði;jÞ
β;m1;m2

þ nWnði;jÞ
β;m1;m2

− Unði;jÞ
β;m1;m2

¼ 0;

_Unði;jÞ
β;m1;m2

þ ðn − 1ÞUnði;jÞ
β;m1;m2

−
f−
f2þ

½Unði;jÞ
β;m1;m2

−Wnði;jÞ
β;m1;m2

� ¼ κðiÞm1
κðjÞm2

; ð15Þ

where n ¼ m1 þm2, and overdots denote differentiation
with respect to η, where η ¼ lnDþ is used as a reduced time
coordinate, so that d=dη ¼ ða=fþÞd=da. Equations (14)
and (15) have initial conditions as a → 0 given by their
time-independent EdS values, found using the recursion
relations

½Wnði;jÞ
α;m1;m2

�EdS ¼
�

2nþ 1

2n2 þ n − 3

�
½κðiÞm1

�EdS½λðjÞm2
�EdS;

½Unði;jÞ
α;m1;m2

�EdS ¼
�

3

2n2 þ n − 3

�
½κðiÞm1

�EdS½λðjÞm2
�EdS; ð16Þ

½Wnði;jÞ
β;m1;m2

�EdS ¼
�

2

2n2 þ n − 3

�
½κðiÞm1

�EdS½κðjÞm2
�EdS;

½Unði;jÞ
β;m1;m2

�EdS ¼
�

2n
2n2 þ n − 3

�
½κðiÞm1

�EdS½κðjÞm2
�EdS: ð17Þ

The efficient solution of the equations of motion (14)
and (15) is the main goal of this paper, as the iterative
source terms make their numerical evaluation relatively
computationally intensive. This is accentuated by the
information in Table I, which shows just how many of
these functions must be calculated to predict each observ-
able. As a result, this work aims to find an efficient method
to determine the solution of nonlinear, coupled ordinary
differential equations of this form. Doing so will allow us to
take into account efficiently the full time-dependence of the
nonlinear density and velocity fields in perturbation-theory
calculations.

B. Direct numerical solution for the equations of motion

To establish a benchmark, we first solve Eqs. (12)
and (13) directly with a basic LSODA solver for first-
order ordinary differential equations (ODEs) [34,35]. We
use initial conditions defined in Eqs. (16) and (17), giving
for instance

½W2ð1;1Þ
α;1;1 �EdS ¼ 5

7
; ½U2ð1;1Þ

α;1;1 �EdS ¼ 3

7
;

½W2ð1;1Þ
β;1;1 �EdS ¼ 2

7
; ½U2ð1;1Þ

β;1;1 �EdS ¼ 4

7
; for n ¼ 2:

This process was completed up to third-order, with second-
order solutions being used in turn to generate higher-order

results. Figure 2 shows the solutions for λðlÞ3 and κðlÞ3 for
l ¼ 1–6 (since Nð3Þ ¼ 6), found using this method. These
have been normalized by their respective EdS values in
order to make visual comparison easier. We find that in the
majority of cases these coefficients tend to depart from EdS
with increasing a. It is important to note that the iterative
nature of Eqs. (14) and (15) makes this method progres-
sively more time-consuming as we aim to solve for higher
n, corresponding to higher-order dynamics. Therefore, a
more efficient method of solution is clearly desirable.

III. THE CHEBYSHEV SPECTRAL METHOD

As stated above, we aim to find an efficient method to
solving Eqs. (12)–(15) in a full ΛCDM universe. We do so
using the Chebyshev spectral method (CSM), based around
an expansion in Chebyshev polynomials. A code imple-
mentation of the CSM in Python is available at https://github
.com/Chousti/CSMethod.git, with its structure presented
in Sec. III B.

A. Shifted Chebyshev polynomials

Before we proceed to describe the CSM, we introduce
the Chebyshev polynomials themselves [36]. These are two
families of polynomials defined in relation to trigonometric
functions:

Tnðcos θÞ ¼ cosðnθÞ;
Unðcos θÞ sin θ ¼ sinðnþ 1Þθ; ð18Þ

typically defined in the domain θ ∈ ½−π=2; π=2�. These are
referred to as the Chebyshev polynomials of the first and
second kind, respectively. We use the first kind, which can
also be generated from the recurrence relation

T0 ¼ 1; T1 ¼ x; Tnþ1ðxÞ¼ 2xTnðxÞ−Tn−1ðxÞ; ð19Þ

where x ∈ ½−1; 1�.
These polynomials are particularly useful as they are

orthogonal within their domain with respect to the weight
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function wðxÞ ¼ ð1 − x2Þ−1=2. This is because they are
solutions to the Chebyshev differential equations, which
are of Sturm–Liouville form.
In order to make the Chebyshev polynomials suitable for

our problem, wemust rescale them, such that we can use the
cosmological scale factor a ∈ ½0; 1� as the argument. This is
done by defining the shifted Chebyshev polynomials,

T̃nðxÞ ¼ Tn

�
2x − c − b

c − b

�
; ð20Þ

where, for generality, we have considered the domain ½b; c�.
We now proceed to outline several key properties (for this
arbitrary shift) which will be particularly useful. These
include their orthogonality relations:

Z
c

b
T̃nðxÞT̃mðxÞ

dxffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xðbþc−xÞ−bc

p ¼

8>><
>>:
0 if n≠m;

π if n¼m¼ 0;
π
2

if n¼m≠ 0;

ð21Þ
product relations:

2T̃nðxÞT̃mðxÞ ¼ T̃nþmðxÞ þ T̃ jn−mjðxÞ; ð22Þ
and integral relation:

4

c− b

Z
T̃nðxÞdx¼

T̃nþ1ðxÞ
nþ 1

−
T̃n−1ðxÞ
n− 1

ðn ≥ 2Þ: ð23Þ

These properties were derived based on known results for
the original polynomials. For the full derivations of the
original properties, along with a myriad of others, the reader
may consult [29].

It is now possible to approximate an arbitrary, smooth
function yðxÞ, valid in the range ½b; c�, with a truncated sum
of shifted polynomials:

yðxÞ ¼
XM
i¼0

aiT̃iðxÞ ¼ a · t; ð24Þ

where the expansion coefficients are given by

ai ¼
ci
π

Z
c

b
yðuÞT̃iðuÞ

duffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
uðbþ c − uÞ − bc

p ;

ci ¼
�
2 if i ≠ 0;

1 if i ¼ 0:
ð25Þ

Henceforth, we will refer to a as the vector of components
of yðxÞ, of length M. In this vectorial language, it is
possible to express operations such as derivatives and
products of functions as matrix operations. Namely, we
have the derivative

dy
dx

¼ a0 · t ¼ ðD · aÞ · t → a0 ¼ D · a; ð26Þ

where we have defined

D ¼ 4

c − b

2
66666666664

0 1
2

0 3
2

0 5
2

� � �
0 0 2 0 4 0

0 0 0 3 0 5

0 0 0 0 4 0

0 0 0 0 0 5

..

. . .
.

3
77777777775
: ð27Þ

FIG. 2. Numerical solutions for λðlÞn (left) and κðlÞn (right) for n ¼ 3 obtained from Eqs. (12) and (13) with the ODEs (14) and (15)
solved by direct numerical integration. The solutions are normalized by their respective EdS values. These coefficients start to depart

from their EdS values with increasing a, reaching around 1% and 4% differences for λðlÞn and κðlÞn , respectively.
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This follows from integrating dy=dx ¼ a0 · t and using
Eq. (23). Similarly, it is possible to expand the product of
two functions using Eq. (22) as

yðxÞ ¼ gðxÞhðxÞ ¼ ðg · tÞðh · tÞ
¼ ðPðgÞ · hÞ · t → a ¼ PðgÞ · h; ð28Þ

where we have defined

PðgÞ¼1

2

2
666666664

2g0 g1 g2 g3 � ��
2g1 2g0þg2 g1þg3 g2þg4
2g2 g1þg3 2g0þg4 g1þg5
2g3 g2þg4 g1þg5 2g0þg6

..

. . .
.

3
777777775
: ð29Þ

Here, we note that two different P matrices commute
between each other (i.e., PðgÞ · h ¼ PðhÞ · g). Furthermore,
P and D matrices will not commute, providing a useful
sanity check. This formalism will prove particularly useful
and will be implemented fully in Sec. III B. Though these
results are given for an arbitrary rescaling of the argument,
henceforth we shall proceed with T̃ denoting a shift to the
domain [0, 1].
Given the ODEs (14) and (15) that we need to solve,

when expressed in terms of derivatives with respect to a
we shall require decompositions of the functions f−=f2þ
and 1=fþ into the polynomial basis. To allow for future
generalizability, this is done numerically using Eqs. (24)
and (25) with the accuracy of the recomposition for f−=f2þ
shown in Fig. 3 for M ∈ ½2; 4; 6� Chebyshev components.
Here we find that using M ¼ 4 yields subpercent-level
accuracy across the whole function. The same is true for the
decomposition of 1=fþ, but this is not shown for brevity.

B. Implementation of CSM

We now discuss the implementation and structure of the
CSM. Generally, spectral methods work by numerically
determining the coefficients in a given basis of a differential
equation subject to boundary conditions [37]. Particularly,
the CSM makes use of Chebyshev polynomials because
they are easy to compute and rapidly convergent as
compared to other basis functions such as the Legendre
Polynomials [30,37,38].
On the surface, this method works by using the poly-

nomials’ properties to convert differential equations into
matrix equations, corresponding to a system of linear
equations for a set of unknown components, with the
number of components (M) corresponding to the user’s
desired accuracy. Therefore, the problem’s complexity has

been reduced to one of simple linear algebra, for which a
variety of optimized codes exist. As a result, the method
will naively always be faster than one using numerical
integration routines.
We proceed by defining the following expansions, using

the formalism outlined in Sec. III A of shifted Chebyshev
polynomials:

λðaÞ ¼ L · tðaÞ; κðaÞ ¼ K · tðaÞ; ð30Þ

WðaÞ ¼ x · tðaÞ; UðaÞ ¼ y · tðaÞ; ð31Þ

f−
f2þ

ðΩm0
; aÞ ¼ dðΩm0

Þ · tðaÞ;

f−1þ ðΩm0
; aÞ ¼ cðΩm0

Þ · tðaÞ; a ¼ e · tðaÞ; ð32Þ

where e ¼ ð1; 0; 0;…Þ and all subscripts and superscripts
have been implied but omitted for brevity. The components
c and d are calculated as shown in Fig. 3 on the first
iteration of each run.
Next, we substitute these relations into Eqs. (12) and (13)

for a given cosmology and utilize properties of the
polynomials to find:

FIG. 3. Numerical decomposition of δf ¼ f−=f2þ þ 3=2 into
the shifted Chebyshev polynomial basis. Both the residue (top)
and absolute values of the relative error (bottom) are shown. The
residue is given by ΔX ¼ X − Xtrue.
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LðlÞ
n ¼ δKn

2
;bn

2
c
XNðn=2Þ

i¼1

" XNðn=2Þ

j¼1

½xα�nði;jÞn
2
;n
2

δKl;ϕ1
þ
XNðn=2Þ

j¼i

½xβ�nði;jÞn
2
;n
2

δKl;ϕ2

#

þ
Xbðn−1Þ=2c

m¼1

XNðmÞ

i¼1

XNðn−mÞ

j¼1

½½xα�nði;jÞm;n−mδKl;ϕ3
þ ½xα�ðjiÞn−m;mδKl;ϕ4

þ ½xβ�nði;jÞm;n−mδKl;ϕ5
�; ð33Þ

KðlÞ
n ¼ δKn

2
;bn

2
c
XNðn=2Þ

i¼1

" XNðn=2Þ

j¼1

½yα�nði;jÞn
2
;n
2

δKl;ϕ1
þ
XNðn=2Þ

j¼i

½yβ�nði;jÞn
2
;n
2

δKl;ϕ2

#

þ
Xbðn−1Þ=2c

m¼1

XNðmÞ

i¼1

XNðn−mÞ

j¼1

½½yα�nði;jÞm;n−mδKl;ϕ3
þ ½yα�ðjiÞn−m;mδKl;ϕ4

þ ½yβ�nði;jÞm;n−mδKl;ϕ5
�; ð34Þ

where the coupled system of ODEs (14) and (15) becomes a system of algebraic equations:

½PðcÞ · PðeÞ · Dþ nI� · ½xα�nði;jÞm1;m2
− I · ½yα�nði;jÞm1;m2

¼ PðKðiÞ
m1
Þ · LðjÞ

m2
;PðdÞ · ½xα�nði;jÞm1;m2

þ ½PðcÞ · PðeÞ · Dþ ðn − 1ÞI − PðdÞ� · ½yα�nði;jÞm1;m2
¼ 0; ð35Þ

and

½PðcÞ · PðeÞ · Dþ nI� · ½xβ�nði;jÞm1;m2
− I · ½yβ�nði;jÞm1;m2

¼ 0;

PðdÞ · ½xβ�nði;jÞm1;m2
þ ½PðcÞ · PðeÞ · Dþ ðn − 1ÞI − PðdÞ� · ½yβ�nði;jÞm1;m2

¼ PðKðiÞ
m1
Þ · KðjÞ

m2
ð36Þ

for the α and β systems, respectively. It is important to note
several aspects. First, the length (M þ 1) of the unknown
vectors x and y corresponds to the greatest order of
Chebyshev polynomial used (M) and is set by the user,
with the implications discussed in Sec. IVA. Second, due to
the iterative nature of these equations, in principle, the
source terms on the right-hand sides of Eqs. (35) and (36)
are just vectors of constants, which we shall henceforth
define as σα=β and τα=β, respectively. We note that τα ¼ 0
and σβ ¼ 0. These source terms are calculated recursively,
making use of the code’s inherent structure to ensure this is
done efficiently. Finally, one small approximation is made
to make the code even more efficient. In particular, it was
noted that for all functions decomposed in this way, the
components ai were Oð10−iÞ. Therefore, in Eq. (24), the
code forces all components of orders greater than M to
zero.
Schematically, we can simplify Eqs. (35) and (36) into

matrix equations of dimension 2M þ 2:

 
E F

G H

! 
xnði;jÞμ;m1;m2

ynði;jÞμ;m1;m2

!
¼
 
σnði;jÞμ;m1;m2

τnði;jÞμ;m1;m2

!
; ð37Þ

where μ ¼ α, β denotes which system is being com-
puted. We must also implement our boundary conditions,
namely that our dynamical coefficients reduce to their
EdS counterparts as a → 0. Component-wise, this becomes
for W:

½Wnði;jÞ
μ;m1;m2

�EdS ¼
XM
k¼0

½xnði;jÞμ;m1;m2
�kT̃kð0Þ ¼

XM
k¼0

ð−1Þk½xnði;jÞμ;m1;m2
�k;

ð38Þ

with a similar result for U. We then force this constraint
on the system by replacing the bottom row of E with
½1;−1;…; ð−1ÞMþ1�, the bottom row of F with an

(M þ 1)-tuple of zeros, and finally setting ½σnði;jÞμ;m1;m2
�N ¼

½Wnði;jÞ
μ;m1;m2

�EdS. We then repeat this process for H, G and

τnði;jÞμ;m1;m2
, respectively.

Therefore, we have successfully reduced our system
of coupled ODEs to a basic matrix multiplication problem,
for which there exist a variety of efficient linear
algebra methods. For the purposes of the CSM, a well-
established LAPACK routine was used [39] to invert
Eq. (37). Once these unknown components have been
found, we can recompose them to find W and U. In turn,
Eqs. (33) and (34) can then be used to find the dynamical
solutions for Eqs. (12) and (13), therefore solving our
problem.

IV. RESULTS AND COMPARISON OF SOLUTIONS

A. Testing the Chebyshev spectral method

The method described in Sec. III has been implemented,
and is here tested by means of solving Eqs. (12) and (13)
for the case of a ΛCDM universe with initial conditions
given by the EdS limit [Eqs. (16) and (17)] and with
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Ωm0
¼ 0.315. This case was chosen for illustrative pur-

poses only, as the CSM is capable of efficiently producing
results for any ΛCDM universe, allowing it to be used to
scan across the full parameter space of Ωm0

.
Figure 4 shows all solutions to Eq. (12) for the λðlÞn (red)

and Eq. (13) for the κðlÞn (blue) for n ∈ ½2; 3; 4; 5� and for all
associated values of l as generated by the CSM with
M ¼ 5. This demonstrates both the increasing number of
dynamical functions and their greater deviation from the
EdS limit with increased perturbative order. These func-
tions represent all those necessary in order to derive the
matter-density and associated velocity power spectra to
two-loop-order, as given in [27].
Figure 5 shows a direct comparison between results for

λð1Þ3 as calculated by direct numerical integration of the
differential equations and by the CSM with M ∈ ½2; 4; 6�
components. Results obtained using the EdS approxima-
tion are also shown for illustrative purposes. Both the
residues are shown (top) as well as the absolute value of the

relative error (bottom), displaying several clear facts. First,
the CSM successfully manages to reproduce the dynamics
of this third-order coefficient, with an expansion truncated
at M ¼ 2 already achieving an accuracy of greater than
0.03%. Furthermore, we find the expected result that
increasing M yields more accurate results. This suggests
that the user is effectively able to control the output
accuracy of results, though with slight sacrifices in effi-
ciency (as discussed in Sec. IVA). Finally, we also find that
the relative accuracy of the CSM tends to improve at late
times (a → 1) away from zero crossings for all component
numbers and at all orders.
Next, Fig. 6 shows the normalized dynamical depend-

ence of λð1Þ5 ðaÞ as a one-parameter-family of Ωm0
,

calculated by the CSM with M ¼ 5. Here, examples of
dark-energy dominated (red), ΛCDM (black), and matter-
dominated (blue) cosmologies are shown, along with the

shaded full parameter space. Here, it is found that λð1Þ5

shows a nontrivial Ωm0
dependence, further implying the

FIG. 4. Normalized solutions to Eqs. (12) and (13) up to fifth perturbative order in a ΛCDM universe, calculated using the Chebyshev
spectral method with M ¼ 6. The functions are shown divided by their EdS counterparts (which are constant in time).
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importance of fully taking these dynamics into account.
Finally, the CSM successfully reproduces the expected EdS
result of constant coefficients as Ωm0

→ 1.
The final comparison we make is to an alternative

solution to the problem considered in this paper, which
we shall introduce here following results in [27]. The key
observation there is that the parametric dependence of the
equations of motion (14) and (15) on Ωm0

can be absorbed
into a new independent variable q, where

q≡
�
1 − Ωm0

Ωm0

�
a3: ð39Þ

This follows by noting that Dþða;Ωm0
Þ may be written as

Dþða;Ωm0
Þ ¼

�
Ωm0

1 −Ωm0

�
1=3

D̂þðqÞ; ð40Þ

where the rescaled growth function D̂þ depends only on q.
It follows that f�ða;Ωm0

Þ also depend only on q and, since
d lnDþ ¼ d ln D̂þ, so do the solutions Uα=β and Wα=β of

Eqs. (14) and (15). Expanding f�ðqÞ as power series in q,
or, equivalently, in ζ≡ D̂3þ on noting that around Ωm0

¼ 1

(i.e., q ¼ 0) D̂þðqÞ ¼ q1=3½1þOðqÞ�, we have

f−
f2þ

ða;Ωm0
Þ ¼ −

3

2
þ
X∞
i¼1

ciζi: ð41Þ

Truncating this expansion at low order works well,
with [27] suggesting dropping c4 and higher. Expanding

the λðlÞn and κðlÞn similarly,

λðlÞn ða;Ωm0
Þ≈
X3
i¼0

½gln�iciζi; κðlÞn ða;Ωm0
Þ≈
X3
i¼0

½hln�iciζi;

ð42Þ

the coefficients may be determined analytically from the
equations of motion.
Figure 7 compares this truncated power-series expansion

in ζ and the CSM, providing plots of the relative errors

for all λðlÞn and κðlÞn for perturbative orders n ∈ ½2; 3; 4�
compared to the direct numerical solutions. Though all
ζ-expansion (blue) and CSM with M ¼ 4 (red) and
M ¼ 6 (orange) curves are given, the averages have been
extracted and shown in bold for clarity. Here, it is found that
although both methods are very successful at reproducing
all solutions, we find that the CSM consistently produces
greater accuracy as a → 1, making it more useful for
computation of late-time observations. The CSM is also
helped by greater efficiency in calculating components and
significantly greater tunability in both accuracy and para-
meter space, as discussed later in Sec. V.
Finally, Fig. 8 shows the accuracy of the CSM as applied

to calculating the present-day one- (left) and two-loop
(right) matter-matter (black), matter-velocity (red), and
velocity-velocity (blue) power spectra compared to numeri-
cally evaluated spectra. These were produced by combining

FIG. 5. Comparison of approximate results for λð1Þ3 from the
Chebyshev spectral method and direct numerical integration.
Differences with respect to the direct solution are shown in the
top panel keeping different numbers of terms in the expansions
in Chebyshev polynomials, while the (absolute values) of the
fractional differences are shown in the bottom panel. The
Chebyshev spectral method is very accurate for all a even with
few terms in the expansion. On the other hand, the EdS
approximation (dotted lines) diverges rapidly away from the true
solution.

FIG. 6. Dynamical results for λð1Þ5 calculated using the CSM as
a one-parameter-family of Ωm0

. Specifically, matter-dominated
(blue), ΛCDM (black), and dark-energy-dominated (red) results
are highlighted, with matter density parameters labeled. The
boundary of the shaded region is for Ωm0

→ 0.
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dynamical coefficients produced by the CSM with momen-
tum kernels calculated as described in [27], omitted here for
brevity. Here, we show both the loop-order contributions to
the ΛCDM power spectrum (top) and absolute-value
relative error plots (ErðxÞ ¼ log10ðjΔxj=xÞ; bottom) for
the overall ΛCDM power spectrum up to each loop order
using M ¼ 2 (dotted), M ¼ 4 (dot-dashed), and M ¼ 6
(solid) Chebyshev components. Clearly, in the case of the

one-loop power spectrum, using M ¼ 2 components is
sufficient to produce results to subpercent-level accuracy.
In the case of the two-loop power spectrum contributions, it
was found that such gains were dwarfed by numerical
uncertainties produced by the numerical integration of the
momentum kernels. In principle, however, this demon-
strates the effectiveness of the CSM in predicting actual
observables.

FIG. 7. Comparisons between the relative errors in solutions found for the dynamical coefficients λðlÞn and κðlÞn for the perturbative
orders n ¼ 2; 3; 4 in the ΛCDM universe. Results are shown for the truncated power-series expansion in ζ given by Eq. (42) (blue;
labeled perturbative) and the CSMwithM ¼ 4 (red) andM ¼ 6 (orange). Curves are shown for all lmodes, with averages given in bold.
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B. Benchmarking the code

In Fig. 9 we compare the average computational time
required to solve Eqs. (12) and (13) with direct numerical
integration (as in Sec. II B) and our implementation of the
CSM. Specifically, we show the time taken to calculate all
dynamical components for a given perturbative order n for
the Planck best-fit ΛCDM universe. For the direct method
(red) we use 50 subdivisions of the range a ∈ ½0; 1�, while
for the CSM (blue) we use a variety of components in the
Chebyshev expansion (M ∈ ½3; 4; 10�). Of these, M ¼ 4
would be sufficiently accurate for most uses (and is thus
discussed below), while M ¼ 10 is far more accurate than
necessary for the time taken. We find that the terms needed
for the one-loop power spectrum (n ¼ 2 and 3) are
calculated two orders of magnitude faster than by direct
numerical integration; those for the two-loop power spec-
trum (n ¼ 2; 3; 4; 5) are calculated more than four orders of
magnitude faster. We also comment that the CSM code
used here is inherently iterative, therefore returning the

FIG. 8. Present-day one-loop (left) and two-loop (right) contributions to the matter-matter (black), matter-velocity (red), and velocity-
velocity (blue) power spectra, computed using the CSM with M ¼ 2 (dotted), M ¼ 4 (dot-dashed), and M ¼ 6 (solid) Chebyshev
polynomials. We show the loop-order contributions to the ΛCDM power spectrum (top) and relative errors in the ΛCDM power spectra
as compared to the numerical values (ErðxÞ ¼ log10ðjΔxj=xÞ; bottom) for each case. Errors in the two-loop contributions are dominated
by numerical uncertainties in calculations of the momentum kernels.

FIG. 9. Comparison of the time taken to compute all λðlÞn and κðlÞn
for varying perturbative order n in the Planck best-fit ΛCDM
universe using both direct numerical integration (red) and
Chebyshev spectral methods (blue) with varying degrees of
accuracy. Direct numerical solutions for higher n are not included
as their computation is prohibitively slow.
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results for all previous-order coefficients while calculating
the dynamics of a target n. This further exemplifies the
efficiency of this method, particularly within the context
of its flexibility. Finally, due to this iterative nature, our
implementation of the CSM is able to calculate the
dynamical coefficients to any perturbative order. This
implies that this code will remain useful as momentum
operators at increasingly greater orders are computed in
the future.

V. DISCUSSION AND CONCLUSIONS

The results in Sec. IV, including, most notably, Figs. 5, 7,
and 8 demonstrate the accuracy and effectiveness of the
Chebyshev spectral method for solving the full dynamical
evolution of the dark matter density and velocity fluc-
tuation fields in a ΛCDM universe. This is coupled with the
fact that the CSM is, in practice, at least an order of
magnitude faster than direct numerical ODE solution
methods. The true utility of this method is felt, however,
at higher perturbative orders n, with Fig. 9 demonstrating
how much faster the CSM is at such orders.
From a practical standpoint, the code implementation

produced as part of this work has the following features.
First, the method can be used with any number of
Chebyshev components M. Doing so increases the accu-
racy of the resultant solution somewhat but incurs an extra
computational time cost, as seen in Fig. 9. As such, the user
is able to make this decision actively and tailor the method
to their particular situation and use case. Next, it is found
that the magnitude of the calculated components drops
almost exponentially withM, further showing the futility of
finding these high-order components. As a result, in testing
it was found that using M ¼ 4 components is more than
suitable, with M ¼ 2 yielding sufficient results in most
cases, as can be seen explicitly in Figs. 5 and 8.
Furthermore, the code has been generalized to work for

arbitraryΩm0
, extending the parameter space of this method

to encompass ΛCDM. The effect of this has been explored
in Fig. 6. Along these lines, we have also compared the
effectiveness of the CSM to an alternative perturbative
method introduced in [27], which is also valid for ΛCDM
only. It was found that the CSM was able to achieve a
similar or better degree of accuracy, particularly for late
times. The CSM also grants the user a choice between
accuracy and efficiency, which is important when calculat-
ing model predictions for cosmological likelihood analy-
ses. Furthermore, while the perturbative method is on the
surface faster to evaluate for a given Ωm0

, the CSM allows
the user to generate dynamical-coefficient data to any
perturbative order efficiently. Next, the framework dis-
cussed in Sec. II can be extended to a more general set of
cosmologies, including clustered quintessence [31,32]. On
the other hand, it is thought that the perturbative method
outlined above in Eq. (42) will only work in the case of
ΛCDM. Indeed, such an extension of the CSM has already

been done to first-loop-order for the power spectrum, with
work underway to expand this further.1

Another interesting direction to explore would be
to consider the implications of other models of dark
matter and energy. These might include decaying dark
matter [40] or a dynamical dark energy equation of state
[41,42]. Finally, it would be particularly interesting to
explore the impact of various dark energy effective field
theories (EFTs), of which clustered quintessence is an
example [31,32,43–47]. However, the most natural exten-
sion would be to implement similar methods to study other
observables to the same loop order, such as the bispectrum.
To conclude, we have shown how the CSM can optimize

the problem of solving the full, perturbative dynamics
of perturbations in the ΛCDM Universe, reducing com-
putation time by several orders of magnitude, with a view
of being potentially extended to a more general set of
cosmologies. Our implementation of the CSM as a Python

library is presented alongside this paper (https://github
.com/Chousti/CSMethod.git). It should be straightforward
to integrate this library into galaxy-clustering likelihood
frameworks, allowing accurate predictions of observables
in the perturbative regime fully accounting for the ΛCDM
dynamics.
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APPENDIX: AUXILIARY FUNCTIONS

Here we review all auxiliary functions necessary to
calculate Eqs. (12) and (13). These are derived in [27]
and represent a recursive method to establish the maxi-
mum number of dynamical coefficients. In principle, this
number can be reduced by utilizing physical constraints
such as conservation of mass and momentum or the
equivalence principle—though these are not discussed
here. Specifically, we have the numbering function,

NðnÞ ¼ 1

2
δKn
2
;bn

2
cNðn=2Þ½1þ 3Nðn=2Þ�

þ 3
Xbðn−1Þ=2c

m¼1

NðmÞNðn −mÞ; ðA1Þ

and bijective maps,

1This refers to work completed in a masters thesis by one of the
authors, along with an upcoming paper.
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ϕ1ðn; i; jÞ ¼ Nðn=2Þði − jÞ þ i; ðA2Þ

ϕ2ðn; i; jÞ ¼ ½Nðn=2Þ�2 − 1

2
iði − 1Þ þ ϕ1ðn; i; jÞ; ðA3Þ

ϕ3ðn;m; i; jÞ ¼ 1

2
δKn
2
;bn

2
cNðn=2Þ½1þ 3Nðn=2Þ�

þ
Xm−1

k¼1

NðkÞNðn − kÞ

þ ði − 1ÞNðn −mÞ þ j; ðA4Þ

ϕ4ðn;m; i; jÞ ¼
Xbðn−1Þ=2c

k¼1

NðkÞNðn − kÞ þ ϕ3ðn;m; i; jÞ;

ðA5Þ

ϕ5ðn;m; i; jÞ ¼ 2
Xbðn−1Þ=2c

k¼1

NðkÞNðn − kÞ þ ϕ3ðn;m; i; jÞ:

ðA6Þ
The CSM makes use of these by looping over all maps
while evaluating Eqs. (14) and (15), hence algorithmically
calculating all necessary functions.
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