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Perturbation theory is a powerful tool for studying large-scale structure formation in the universe
and calculating observables such as the power spectrum or bispectrum. However, beyond linear
order, typically this is done by assuming a simplification in the time-dependence of gravitational-
coupling kernels between the matter and velocity fluctuations. Though the true dependencies are
known for Lambda cold dark matter cosmologies, they are ignored due to the computational costs
associated with considering them in full and, instead, are replaced by simpler dependencies valid for
an Einstein–de-Sitter cosmology. Here we develop, implement and demonstrate the effectiveness of a
new numerical method for finding the full dynamical evolution of these kernels to all perturbative
orders based upon spectral methods using Chebyshev polynomials. This method is found to be
orders of magnitude more efficient than direct numerical solvers while still producing highly accurate
and reliable results. A code implementation of the Chebyshev spectral method is then presented
and characterised. The code has been made publicly available alongside this paper. We expect our
method to be of use for interpretation of upcoming galaxy clustering measurements.

I. INTRODUCTION

Studying the history of large-scale structure (LSS) formation in our Universe is crucial to modern cosmology. The
highly structured cosmic web of galaxy clusters, sheets, walls, filaments and voids present in the late-time Universe
arises from evolution under gravity of small, primordial fluctuations in the density and velocity of matter, believed to
have been sourced during a period of cosmic inflation. LSS therefore encodes information on the primordial fluctuations
as well as the expansion history, geometry and matter content of the Universe, which affect the subsequent evolution
of the perturbations.
Theoretical studies of LSS aim to predict the statistical properties of the clustering of the matter density (and

associated velocity), for example, the power spectrum and higher-point correlation functions. These can be compared
with the observed statistics of the clustering of galaxies since the galaxy over-density on large scales traces the matter
over-density. Such comparisons are complicated by two issues, however. Firstly, galaxies need not necessarily follow the
underlying matter distribution exactly, although on the largest cosmological scales the relation for galaxies is essentially
linear with a constant of proportionality known as galaxy bias, while on smaller, mildly nonlinear scales, corrections
can be treated perturbatively [1]. Secondly, we have the issue that each galaxy’s redshift depends not only on distance
but also on its peculiar velocity via the Doppler effect [2, 3]. Furthermore, these velocities are not random but instead
correlate with the matter density field itself. This alters galaxy statistics by producing redshift-space distortions
(RSDs), also introducing features such as the well-known “Fingers of God” [3]. These issues are compounded by
the fact that we are now entering the era of high-precision cosmology with large galaxy surveys such as Euclid [4],
DESI [5], Rubin [6] and Roman [7]. Here, it becomes necessary to quantify these effects fully, lest they introduce
greater uncertainties or issues of biased parameter estimation.

Given the small amplitude of the primordial fluctuations, perturbation theory is a very powerful tool for calculating
the evolution of fluctuations in cosmological fields. For early-time observables, such as the cosmic microwave background
(CMB), linear perturbation theory is an excellent description. Accurate predictions for the CMB power spectra can be
calculated in this way (e.g., [8, 9]) and their comparison with measurements of the CMB temperature and polarization
anisotropies has been instrumental in establishing the standard model of cosmology, the Lambda cold dark matter
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(ΛCDM) model, and determining its parameters to high precision (e.g., [10]). However, linear perturbation theory fails
to describe the late-time Universe, where, particularly at smaller scales, complex non-linearities take hold and baryon
physics begins to play a role [11]. Here, higher-order perturbation theory is crucial to building analytic models. The
standard procedure in these perturbative approaches is to use the quasi-static Einstein–de-Sitter (EdS) approximation,
henceforth referred to as the quasi-EdS approximation (qEDS). Here, a blend of models is used, with non-linear
interaction kernels calculated in the dramatically simpler EdS (completely matter-dominated) universe. These are
then combined with linear growth-rate results for the full ΛCDM dynamical Universe in order to extract observables
[12]. In essence, this approximation assumes that any non-linearities are constant in time, to then be scaled up to their
present-day values.
The qEDS approach has been fairly successful thus far, yielding percent-level accuracy for all necessary two-point

statistics close to the linear regime [13]. Such models have already yielded concrete predictions, in particular for
the one-loop power spectrum and tree-level bispectrum, and these have been used to extract relevant cosmological
information from galaxy surveys [14–16]. However, for future surveys, this accuracy will not be enough. Particularly
in the context of RSDs, the full dynamics of ΛCDM must be taken into account. A large body of work has already
explored the extent of these effects at the level of one-loop results [17–24], and recently to two-loop order[25–27].
Unfortunately, accounting for the full ΛCDM dynamics introduces several issues, including that some of these features
are slow to calculate using brute-force numerical methods (especially at higher perturbative order). This makes
exploration of parameter space computationally challenging when interpreting survey data. Therefore, this paper aims
to optimize the process by which the full ΛCDM dynamics can be calculated at each perturbative order, using previous
results for time-dependent coefficients as a starting point [19, 26].

We tackle this problem with a novel numerical method, expanding the time-dependent interaction kernels in shifted
Chebyshev polynomials [28] as in the Chebyshev Spectral Method (CSM; see, e.g., [29] for the explicit, matrix-based
approach that we follow). Doing so, we convert the process of calculating these dynamical coefficients into a linear-
algebra problem that can readily be solved. We have implemented this method into a new Python library that we
present below. The code is freely available at https://github.com/Chousti/CSMethod.git, with the hope that it
can be integrated into likelihood analyses of forthcoming survey data, allowing more accurate parameter estimates
to be derived from these data. While we focus on ΛCDM cosmologies here, it is expected that the method can be
straightforwardly extended to more generalised cosmologies, including features such as clustered quintessence [30, 31].
This paper is arranged as follows. In Sec. II we review certain theoretical results underpinning the problem.

Section III discusses the implementation of our spectral method with explanations of the code philosophy, and Sec. IV
presents results and code tests. Finally, we discuss our results in Sec.V. More extensive auxiliary functions are given in
Appendix A.

All numerical results (unless stated otherwise) are calculated using the Planck best-fit ΛCDM cosmology, with
parameters as follows: the present-day matter density parameter Ωm0 = 0.315; present-day dark-energy density
parameter ΩΛ0 = 0.685, giving a flat universe; and Hubble constant H0 = 67.74 km s−1 Mpc−1 [10].

II. DYNAMICS IN THE ΛCDM UNIVERSE

A. Deriving the Equations of Motion

On the large scales for which a perturbative treatment is valid, we may approximate the cosmic matter density
field as a single, self-gravitating, cold, pressureless fluid. Baryons follow the dark matter on these scales and pressure
and other baryonic effects are negligible compared to gravitational interactions. The matter density may therefore be
characterised by its density contrast δ(x, a) and peculiar velocity v(x, a), where x is comoving position and a is the
scale factor (we use a and conformal time τ , interchangeably, as time variables in the following). It is convenient to
decompose the peculiar velocity into its divergence θ = ∇ · v(x, a) and vorticity ω = ∇× v(x, a). These quantities
obey the following equations of motion [1, 13]:

∂δk

∂τ
+ θk = −

∫
q1,q2

(2π)3δDk−q12
α(q1, q2)θq1δq2 , (1)

∂θk

∂τ
+Hθk + 3

2ΩmH2δk = −
∫

q1,q2

(2π)3δDk−q12
β(q1, q2)θq1θq2 , (2)

∂ωk

∂τ
+Hωk = ik ×

∫
q1,q2

(2π)3δDk−q12
vq1ωq2 , (3)

where δDq is the Dirac delta function, k12 = k1 + k2,
∫

q1,...,qn
≡ (2π)−3n ∫ d3q1 · · · d3qn, Ωm(a) is the matter-

density parameter and H = d ln a/d ln τ is the conformal Hubble parameter. The kernels are defined by α(q1, q2) =

https://github.com/Chousti/CSMethod.git
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Figure 1: Comparison of the growth factors for the growing mode (left), along with the logarithmic growth rates of
the growing (middle) and decaying (right) modes, between the ΛCDM and quasi-EdS universes.

1 + (q1 · q2)/q2
1 and β(q1, q2) = (q12)2(q1 · q2)/(2q2

1q
2
2). Equation (3) implies that ω remains zero for all time in

the case of vanishing primordial vorticity, while it decays as 1/a at linear order if vorticity were present in the early
universe. As a result, any small initial vorticity rapidly decays as the universe expands. Therefore, we proceed to
assume the velocity field to be irrotational – an assumption that holds well up to shell crossing (and the formation of
shocks) [12].

The remaining system of Eqs. (1) and (2) are now closed and well-suited to be solved perturbatively, with an ansatz
of

δ(k, a) =
∞∑
n=1

∫
q1,...,qn

(2π)3δDk−q12...n
Fn(q1, . . . , qn; a)Dn

+(a)δin
q1
. . . δin

qn
,

θ(k, a) = −Hf+(a)
∞∑
n=1

∫
q1,...,qn

(2π)3δDk−q12...n
Gn(q1, . . . , qn; a)Dn

+(a)δin
q1
. . . δin

qn
. (4)

Here, Fn and Gn are our solution kernels (defined to be fully symmetrized with respect to momenta), D± are the
growing and decaying linear growth factors satisfying

a2 d
2D±
da2 + a

(
2 + d lnH

d ln a

)
dD±
da
− 3

2Ωm(a)D± = 0, (5)

in ΛCDM cosmologies, f± = d lnD±/d ln a are the associated linear growth rates and δin
q describe the initial density

contrast. At linear order, we find trivial results of F1 = G1 = 1, giving

δ
(1)
k (a) = D+(a)δin

k , θ
(1)
k = −H(a)f+(a)D+(a)δin

k . (6)

The linear growth factor for the growing mode, and its associated growth rate, are given by the following:

D+(a) = 5
2H

2
0 Ωm0H(a)

∫ a

0

dx

[xH(x)]3 , (7)

f+(a) = Ωm0

(1− Ωm0)a3 + Ωm0

(
5a

2D+(a) −
3
2

)
, (8)

where H(a) = H0[Ωm0a
−3 + (1− Ωm0)]1/2. We have normalised D+(a) so that it approaches a as a→ 0. The linear

growth factor for the decaying mode is D−(a) ∝ H(a) and the associated growth rate is

f−(a) = −3
2

Ωm0

(1− Ωm0)a3 + Ωm0

= −3
2Ωm(a). (9)

Although we only consider growing-mode solutions, f−(a) appears below in the equation of motion for the Fn
and Gn kernels through d lnH/d ln a, or, equivalently, Ωm(a). Figure 1 shows the growth factor D+(a) along with
the logarithmic growth rates f± in both the ΛCDM and EdS universes. In the latter, D+(a) = a, f+(a) = 1 and
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f−(a) = −3/2. The behaviour of these functions in ΛCDM differs from the EdS limits at late times and these deviations
eventually compound to affect observables. The constancy of f± in EdS helps to explain how this approximation is
viewed as ‘static’, as these growth rates do not introduce any dynamics into the system. Typically, the quasi-EdS
approximation is made, whereby the kernels Fn and Gn are assumed to be time-independent and are replaced by their
counterparts in EdS, while the full ΛCDM growth factor (D+) is used in Eq. (4). This is done due to the fact that
such kernels are much easier to compute in the simpler EdS case [12, 13, 19, 26].

Dropping the qEdS approximation, these kernels obey the following equations of motion:

a

f+

dFn
da

+ nFn −Gn = h(n)
α (q1, ..., qn, a),

a

f+

dGn
da

+ (n− 1)Gn −
f−
f2

+
(Gn − Fn) = h

(n)
β (q1, ..., qn, a), (10)

with source terms given by Eq. (8) in [19]. In order to proceed, we assume a separable solution at each order, with
ansatz [19, 26]

Fn(q1, ..., qn; a) =
N(n)∑
l=1

λ(l)
n (a) H(l)

n (q1, ..., qn),

Gn(q1, ..., qn; a) =
N(n)∑
l=1

κ(l)
n (a) H(l)

n (q1, ..., qn), (11)

where H(l)
n are the momentum operators (see [26]) and λ(l)

n and κ(l)
n are the time-dependent coefficients, which are the

focus of this paper. The numbering function N(n) gives us the simplest way to ensure the full dimension of each kernel
is accounted for, albeit allowing for some redundancies. These are imposed primarily through physical constraints such
as conservation of mass and momentum, along with the equivalence principle — though these are not explored here.
The N(n) are found recursively, with explicit form given in Appendix A; the first few terms of which are N(1) = 1,
N(2) = 2, N(3) = 6, N(4) = 25 and N(5) = 111. For the purpose of this paper, we focus on the time-dependent
coefficients, which can be written as [26]

λ(l)
n (a) = δKn

2 ,b
n
2 c

N(n/2)∑
i=1

[N(n/2)∑
j=1

[Wn(i,j)
α; n

2 ,
n
2

]δKl,φ1
+
N(n/2)∑
j=i

[Wn(i,j)
β; n

2 ,
n
2

]δKl,φ2

]

+
b(n−1)/2c∑
m=1

N(m)∑
i=1

N(n−m)∑
j=1

[
[Wn(i,j)

α;m,n−m]δKl,φ3
+ [Wn(j,i)

α;n−m,m]δKl,φ4
+ [Wn(i,j)

β;m,n−m]δKl,φ5

]
, (12)

κ(l)
n (a) = δKn

2 ,b
n
2 c

N(n/2)∑
i=1

[N(n/2)∑
j=1

[Un(i,j)
α; n

2 ,
n
2

]δKl,φ1
+
N(n/2)∑
j=i

[Un(i,j)
β; n

2 ,
n
2

]δKl,φ2

]

+
b(n−1)/2c∑
m=1

N(m)∑
i=1

N(n−m)∑
j=1

[
[Un(i,j)
α;m,n−m]δKl,φ3

+ [Un(j,i)
α;n−m,m]δKl,φ4

+ [Un(i,j)
β;m,n−m]δKl,φ5

]
, (13)

for n > 1. For the case n = 1, we have λ(1)
1 = κ

(1)
1 = 1. In these expressions, δK is the Kronecker delta and φk are

bijective maps of their arguments (n and all of the integers being summed over) that serve to identify the correct
coefficient for each momentum operator. Their form is given explicitly in Appendix A. For λ(l)

n , exactly one of the
Wα(a) or Wβ(a) coefficients are selected, while for κ(l)

n it is one of the Uα(a) or Uβ(a). Though this formulation
appears terse, we reiterate that this represents an algorithm that is capable of readily producing all information
necessary to each perturbative order. For pedagogical reasons, we summarise the amount of information necessary to
predict typical observables in Tab. I [30, 32].
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Required order (n) Observable Number of dynamical coefficients
1 Linear power spectrum 2 (trivial)
2 Tree-level bispectrum 6
3 One-loop power spectrum 18
4 One-loop bispectrum 68
5 Two-loop power spectrum 290

Table I: Cumulative information required to calculate typically used observables of the matter and velocity fluctua-
tions. The number of coefficients required is calculated as 2

∑n
i=1N(i).

The W and U functions satisfy coupled differential equations, with the following structure:

Ẇn(i,j)
α;m1,m2

+ nWn(i,j)
α;m1,m2

− Un(i,j)
α;m1,m2

= κ(i)
m1
λ(j)
m2
,

U̇n(i,j)
α;m1,m2

+ (n− 1)Un(i,j)
α;m1,m2

− f−
f2

+

[
Un(i,j)
α;m1,m2

−Wn(i,j)
α;m1,m2

]
= 0, (14)

Ẇ
n(i,j)
β;m1,m2

+ nW
n(i,j)
β;m1,m2

− Un(i,j)
β;m1,m2

= 0,

U̇
n(i,j)
β;m1,m2

+ (n− 1)Un(i,j)
β;m1,m2

− f−
f2

+

[
U
n(i,j)
β;m1,m2

−Wn(i,j)
β;m1,m2

]
= κ(i)

m1
κ(j)
m2
, (15)

where n = m1 + m2, and overdots denote differentiation with respect to η, where η = lnD+ is used as a reduced
time coordinate, so that d/dη = (a/f+)d/da. Equations (14) and (15) have initial conditions as a→ 0 given by their
time-independent EdS values, found using the recursion relations

[Wn(i,j)
α;m1,m2

]EdS =
(

2n+ 1
2n2 + n− 3

)
[κ(i)
m1

]EdS[λ(j)
m2

]EdS,

[Un(i,j)
α;m1,m2

]EdS =
(

3
2n2 + n− 3

)
[κ(i)
m1

]EdS[λ(j)
m2

]EdS, (16)

[Wn(i,j)
β;m1,m2

]EdS =
(

2
2n2 + n− 3

)
[κ(i)
m1

]EdS[κ(j)
m2

]EdS,

[Un(i,j)
β;m1,m2

]EdS =
(

2n
2n2 + n− 3

)
[κ(i)
m1

]EdS[κ(j)
m2

]EdS. (17)

The efficient solution of the equations of motion (14) and (15) is the main goal of this paper, as the iterative source
terms make their numerical evaluation relatively computationally intensive. This is accentuated by the information in
Tab. I, which shows just how many of these functions must be calculated to predict each observable. As a result, this
work aims to find an efficient method to determine the solution of non-linear, coupled ordinary differential equations of
this form. Doing so will allow us to take into account efficiently the full time-dependence of the non-linear density and
velocity fields in perturbation-theory calculations.

B. Direct Numerical Solution for the Equations of Motion

To establish a benchmark, we first solve Eqs. (12) and (13) directly with a basic LSODA solver for first-order
ordinary differential equations (ODEs) [33, 34]. We use initial conditions defined in Eqs. (16) and (17), giving for
instance

[W 2(1,1)
α;1,1 ]EdS = 5

7 , [U2(1,1)
α;1,1 ]EdS = 3

7 ,

[W 2(1,1)
β;1,1 ]EdS = 2

7 , [U2(1,1)
β;1,1 ]EdS = 4

7 , for n = 2.

This process was completed up to third-order, with second-order solutions being used in turn to generate higher-order
results. Figure 2 shows the solutions for λ(l)

3 and κ(l)
3 for l = 1–6 (since N(3) = 6), found using this method. These

have been normalised by their respective EdS values in order to make visual comparison easier. We find that in the
majority of cases these coefficients tend to depart from EdS with increasing a. It is important to note that the iterative
nature of Eqs. (14) and (15) makes this method progressively more time-consuming as we aim to solve for higher n,
corresponding to higher-order dynamics. Therefore, a more efficient method of solution is clearly desirable.
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Figure 2: Numerical solutions for λ(l)
n (left) and κ(l)

n (right) for n = 3 obtained from Eqs. (12) and (13) with the
ODEs (14) and (15) solved by direct numerical integration. The solutions are normalised by their respective EdS
values. These coefficients start to depart from their EdS values with increasing a, reaching around 1% and 4%
differences for λ(l)

n and κ(l)
n , respectively.

III. THE CHEBYSHEV SPECTRAL METHOD

As stated above, we aim to find an efficient method to solving Eqs. (12–15) in a full ΛCDM universe. We do so using
the Chebyshev spectral method (CSM), based around an expansion in Chebyshev polynomials. A code implementation
of the CSM in Python is available at https://github.com/Chousti/CSMethod.git, with its structure presented in
Sec. III B.

A. Shifted Chebyshev Polynomials

Before we proceed to describe the CSM, we introduce the Chebyshev polynomials themselves [35]. These are two
families of polynomials defined in relation to trigonometric functions:

Tn(cos θ) = cos(nθ),
Un(cos θ) sin θ = sin(n+ 1)θ, (18)

typically defined in the domain θ ∈ [−π/2, π/2]. These are referred to as the Chebyshev polynomials of the first and
second kind, respectively. We use the first kind, which can also be generated from the recurrence relation

T0 = 1, T1 = x, Tn+1(x) = 2xTn(x)− Tn−1(x), (19)

where x ∈ [−1, 1].
These polynomials are particularly useful as they are orthogonal within their domain with respect to the weight

function w(x) = (1− x2)−1/2. This is because they are solutions to the Chebyshev differential equations, which are of
Sturm–Liouville form.

In order to make the Chebyshev polynomials suitable for our problem, we must rescale them, such that we can use
the cosmological scale factor a ∈ [0, 1] as the argument. This is done by defining the shifted Chebyshev polynomials,

T̃n(x) = Tn

(
2x− c− b
c− b

)
, (20)

where, for generality, we have considered the domain [b, c]. We now proceed to outline several key properties (for this

https://github.com/Chousti/CSMethod.git
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arbitrary shift) which will be particularly useful. These include their orthogonality relations:∫ c

b

T̃n(x)T̃m(x) dx√
x(b+ c− x)− bc

=


0 if n 6= m,

π if n = m = 0,
π
2 if n = m 6= 0;

(21)

product relations:
2T̃n(x)T̃m(x) = T̃n+m(x) + T̃|n−m|(x); (22)

and integral relation:
4

c− b

∫
T̃n(x) dx = T̃n+1(x)

n+ 1 − T̃n−1(x)
n− 1 (n ≥ 2) . (23)

These properties were derived based on known results for the original polynomials. For the full derivations of the
original properties, along with a myriad of others, the reader may consult [28].

It is now possible to approximate an arbitrary, smooth function y(x), valid in the range [b, c], with a truncated sum
of shifted polynomials:

y(x) =
N∑
i=0

aiT̃i(x) = a · t, (24)

where the expansion coefficients are given by

ai = ci
π

∫ c

b

y(u)T̃i(u) du√
u(b+ c− u)− bc

, ci =
{

2 if i 6= 0,
1 if i = 0.

(25)

Henceforth, we will refer to a as the vector of components of y(x), of length N . In this vectorial language, it is
possible to express operations such as derivatives and products of functions as matrix operations. Namely, we have the
derivative

dy

dx
= a′ · t = (D · a) · t → a′ = D · a, (26)

where we have defined

D = 4
c− b



0 1
2 0 3

2 0 5
2 · · ·

0 0 2 0 4 0
0 0 0 3 0 5
0 0 0 0 4 0
0 0 0 0 0 5
...

. . .

 . (27)

This follows from integrating dy/dx = a′ · t and using Eq. (23). Similarly, it is possible to expand the product of two
functions using Eq. (22) as

y(x) = g(x)h(x) = (g · t)(h · t) = (P (g) · h) · t → a = P (g) · h, (28)
where we have defined

P (g) = 1
2


2g0 g1 g2 g3 · · ·
2g1 2g0 + g2 g1 + g3 g2 + g4
2g2 g1 + g3 2g0 + g4 g1 + g5
2g3 g2 + g4 g1 + g5 2g0 + g6
...

. . .

 . (29)

Here, we note that two different P matrices commute between each other (i.e., P (g) · h = P (h) · g). Furthermore, P
and D matrices will not commute, providing a useful sanity check. This formalism will prove particularly useful and
will be implemented fully in Section III B. Though these results are given for an arbitrary rescaling of the argument,
henceforth we shall proceed with T̃ denoting a shift to the domain [0, 1].
Given the ODEs (14) and (15) that we need to solve, when expressed in terms of derivatives with respect to a

we shall require decompositions of the functions f−/f2
+ and 1/f+ into the polynomial basis. To allow for future

generalisability, this is done numerically using Eqs. (24) and (25) with the accuracy of the recomposition for f−/f2
+

shown in Fig. 3 for N ∈ [2, 4, 6] Chebyshev components. Here we find that using N = 4 yields sub-percent-level
accuracy across the whole function. The same is true for the decomposition of 1/f+, but this is not shown for brevity.
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Figure 3: Numerical decomposition of δf = f−/f
2
+ + 3/2 into the shifted Chebyshev polynomial basis. Both the

residue (top) and absolute values of the relative error (bottom) are shown. The residue is given by ∆X = X −Xtrue.

B. Implementation of CSM

We now discuss the implementation and structure of the CSM. Generally, spectral methods work by numerically
determining the coefficients in a given basis of a differential equation subject to boundary conditions [36]. Particularly,
the CSM makes use of Chebyshev polynomials because they are easy to compute and rapidly convergent as compared
to other basis functions such as the Legendre Polynomials [29, 36, 37].

On the surface, this method works by using the polynomials’ properties to convert differential equations into matrix
equations, corresponding to a system of linear equations for a set of unknown components, with the number of
components (N) corresponding to the user’s desired accuracy. Therefore, the problem’s complexity has been reduced
to one of simple linear algebra, for which a variety of optimised codes exist. As a result, the method will naively
always be faster than one using numerical integration routines.
We proceed by defining the following expansions, using the formalism outlined in Sec. IIIA of shifted Chebyshev
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polynomials:

λ(a) = L · t(a), κ(a) = K · t(a), (30)
W (a) = x · t(a), U(a) = y · t(a), (31)

f−
f2

+
(Ωm0 , a) = d(Ωm0) · t(a), f−1

+ (Ωm0 , a) = c(Ωm0) · t(a), a = e · t(a), (32)

where e = (1, 0, 0, . . .) and all subscripts and superscripts have been implied but omitted for brevity. The components
c and d are calculated as shown in Fig. 3 on the first iteration of each run.
Next, we substitute these relations into Eqs. (12) and (13) for a given cosmology and utilise properties of the

polynomials to find:

L(l)
n = δKn

2 ,b
n
2 c

N(n/2)∑
i=1

[N(n/2)∑
j=1

[xα]n(i,j)
n
2 ,

n
2
δKl,φ1

+
N(n/2)∑
j=i

[xβ ]n(i,j)
n
2 ,

n
2
δKl,φ2

]

+
b(n−1)/2c∑
m=1

N(m)∑
i=1

N(n−m)∑
j=1

[
[xα]n(i,j)

m,n−mδ
K
l,φ3

+ [xα](ji)n−m,mδ
K
l,φ4

+ [xβ ]n(i,j)
m,n−mδ

K
l,φ5

]
, (33)

K(l)
n = δKn

2 ,b
n
2 c

N(n/2)∑
i=1

[N(n/2)∑
j=1

[yα]n(i,j)
n
2 ,

n
2
δKl,φ1

+
N(n/2)∑
j=i

[yβ ]n(i,j)
n
2 ,

n
2
δKl,φ2

]

+
b(n−1)/2c∑
m=1

N(m)∑
i=1

N(n−m)∑
j=1

[
[yα]n(i,j)

m,n−mδ
K
l,φ3

+ [yα](ji)n−m,mδ
K
l,φ4

+ [yβ ]n(i,j)
m,n−mδ

K
l,φ5

]
, (34)

where the coupled system of ODEs (14) and (15) becomes a system of algebraic equations:[
P (c) · P (e) ·D + nI

]
· [xα]n(i,j)

m1,m2
− I · [yα]n(i,j)

m1,m2
= P (K(i)

m1
) ·L(j)

m2
,

P (d) · [xα]n(i,j)
m1,m2

+
[
P (c) · P (e) ·D + (n− 1)I − P (d)

]
· [yα]n(i,j)

m1,m2
= 0, (35)

and [
P (c) · P (e) ·D + nI

]
· [xβ ]n(i,j)

m1,m2
− I · [yβ ]n(i,j)

m1,m2
= 0,

P (d) · [xβ ]n(i,j)
m1,m2

+
[
P (c) · P (e) ·D + (n− 1)I − P (d)

]
· [yβ ]n(i,j)

m1,m2
= P (K(i)

m1
) ·K(j)

m2
(36)

for the α and β systems, respectively. It is important to note several aspects. First, the length (N + 1) of the unknown
vectors x and y corresponds to the greatest order of Chebyshev polynomial used (N) and is set by the user, with the
implications discussed in Section IVA. Secondly, due to the iterative nature of these equations, in principle, the source
terms on the right-hand sides of Eqs. (35) and (36) are just vectors of constants, which we shall henceforth define as
σα/β and τα/β , respectively. We note that τα = 0 and σβ = 0. These source terms are calculated recursively, making
use of the code’s inherent structure to ensure this is done efficiently. Finally, one small approximation is made to make
the code even more efficient. In particular, it was noted that for all functions decomposed in this way, the components
ai were O(10−i). Therefore, in Eq. (24), the code forces all components of orders greater than N to zero.
Schematically, we can simplify Eqs. (35) and (36) into matrix equations of dimension 2N + 2:(

E F
G H

)(
x
n(i,j)
µ;m1,m2

y
n(i,j)
µ;m1,m2

)
=
(
σ
n(i,j)
µ;m1,m2

τ
n(i,j)
µ;m1,m2

)
, (37)

where µ = α, β denotes which system is being computed. We must also implement our boundary conditions, namely
that our dynamical coefficients reduce to their EdS counterparts as a→ 0. Component-wise, this becomes for W :

[Wn(i,j)
µ;m1,m2

]EdS =
N∑
k=0

[xn(i,j)
µ;m1,m2

]kT̃k(0) =
N∑
k=0

(−1)k[xn(i,j)
µ;m1,m2

]k, (38)
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with a similar result for U . We then force this constraint on the system by replacing the bottom row of E with
[1,−1, ..., (−1)N+1], the bottom row of F with an (N+1)-tuple of zeros, and finally setting [σn(i,j)

µ;m1,m2 ]N = [Wn(i,j)
µ;m1,m2 ]EdS.

We then repeat this process for H, G and τn(i,j)
µ;m1,m2 , respectively.

Therefore, we have successfully reduced our system of coupled ODEs to a basic matrix multiplication problem, for
which there exist a variety of efficient linear algebra methods. For the purposes of the CSM, a well-established LAPACK
routine was used [38] to invert Eq. (37). Once these unknown components have been found, we can recompose them
to find W and U . In turn, Eqs. (33) and (34) can then be used to find the dynamical solutions for Eqs. (12) and (13),
therefore solving our problem.

IV. RESULTS AND COMPARISON OF SOLUTIONS

A. Testing the Chebyshev Spectral Method

The method described in Section III has been implemented, and is here tested by means of solving Eqs. (12) and (13)
for the case of a ΛCDM universe with initial conditions given by the EdS limit (Eqs. 16 and 17) and with Ωm0 = 0.315.
This case was chosen for illustrative purposes only, as the CSM is capable of efficiently producing results for any
ΛCDM universe, allowing it to be used to scan across the full parameter space of Ωm0 .

Figure 4 shows all solutions to Eq. (12) for the λ(l)
n (red) and Eq. (13) for the κ(l)

n (blue) for n ∈ [2, 3, 4, 5] and
for all associated values of l as generated by the CSM with N = 5. This demonstrates both the increasing number
of dynamical functions and their greater deviation from the EdS limit with increased perturbative order. These
functions represent all those necessary in order to derive the matter-density and associated velocity power spectra to
two-loop-order, as given in [26].
Figure 5 shows a direct comparison between results for λ(1)

3 as calculated by direct numerical integration of the
differential equations and by the CSM with N ∈ [2, 4, 6] components. Results obtained using the EdS approximation
are also shown for illustrative purposes. Both the residues are shown (top) as well as the absolute value of the relative
error (bottom), displaying several clear facts. First, the CSM successfully manages to reproduce the dynamics of this
third-order coefficient, with an expansion truncated at N = 2 already achieving an accuracy of greater than 0.03%.
Furthermore, we find the expected result that increasing N yields more accurate results. This suggests that the user is
effectively able to control the output accuracy of results, though with slight sacrifices in efficiency (as discussed in
Section IVA). Finally, we also find that the relative accuracy of the CSM tends to improve at late times (a→ 1) away
from zero crossings for all component numbers and at all orders.

Next, Fig. 6 shows the normalised dynamical dependence of λ(1)
5 (a) as a one-parameter-family of Ωm0 , calculated by

the CSM with N = 5. Here, examples of dark-energy dominated (red), ΛCDM (black) and matter-dominated (blue)
cosmologies are shown, along with the shaded full parameter space. Here, it is found that λ(1)

5 shows a non-trivial
Ωm0 dependence, further implying the importance of fully taking these dynamics into account. Finally, the CSM
successfully reproduces the expected EdS result of constant coefficients as Ωm0 → 1.

The final comparison we make is to an alternative solution to the problem considered in this paper, which we shall
introduce here following results in [26]. The key observation there is that the parametric dependence of the equations
of motion (14) and (15) on Ωm0 can be absorbed into a new independent variable q, where

q ≡
(

1− Ωm0

Ωm0

)
a3. (39)

This follows by noting that D+(a; Ωm0) may be written as

D+(a; Ωm0) =
(

Ωm0

1− Ωm0

)1/3
D̂+(q), (40)

where the rescaled growth function D̂+ depends only on q. It follows that f±(a; Ωm0) also depend only on q and, since
d lnD+ = d ln D̂+, so do the solutions Uα/β and Wα/β of Eqs (14) and (15). Expanding f±(q) as power series in q, or,
equivalently, in ζ ≡ D̂3

+ on noting that around Ωm0 = 1 (i.e., q = 0) D̂+(q) = q1/3 [1 +O(q)], we have

f−
f2

+
(a; Ωm0) = −3

2 +
∞∑
i=1

ciζ
i. (41)
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Figure 4: Normalised solutions to Eqs. (12) and (13) up to fifth perturbative order in a ΛCDM universe, calculated
using the Chebyshev spectral method with N = 6. The functions are shown divided by their EdS counterparts
(which are constant in time).

Truncating this expansion at low order works well, with [26] suggesting dropping c4 and higher. Expanding the λ(l)
n

and κ(l)
n similarly,

λ(l)
n (a; Ωm0) ≈

3∑
i=0

[gln]iciζi, κ(l)
n (a; Ωm0) ≈

3∑
i=0

[hln]iciζi, (42)

the coefficients may be determined analytically from the equations of motion.
Figure 7 compares this truncated power-series expansion in ζ and the CSM, providing plots of the relative errors for

all λ(l)
n and κ(l)

n for perturbative orders n ∈ [2, 3, 4] compared to the direct numerical solutions. Though all ζ-expansion
(blue) and CSM with N = 4 (red) and N = 6 (orange) curves are given, the averages have been extracted and shown
in bold for clarity. Here, it is found that although both methods are very successful at reproducing all solutions,
we find that the CSM consistently produces greater accuracy as a → 1, making it more useful for computation of
late-time observations. The CSM is also helped by greater efficiency in calculating components and significantly greater
tunability in both accuracy and parameter space, as discussed later in Sec. V.
Finally, Fig. 8 shows the accuracy of the CSM as applied to calculating the present-day one- (left) and two-loop

(right) matter–matter (black), matter–velocity (red) and velocity–velocity (blue) power spectra compared to numerically
evaluated spectra. These were produced by combining dynamical coefficients produced by the CSM with momentum
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Figure 5: Comparison of approximate results for λ(1)
3 from the Chebyshev spectral method and direct numerical

integration. Differences with respect to the direct solution are shown in the top panel keeping different numbers
of terms in the expansions in Chebyshev polynomials, while the (absolute values) of the fractional differences are
shown in the bottom panel. The Chebyshev spectral method is very accurate for all a even with few terms in the
expansion. On the other hand, the EdS approximation (dotted lines) diverges rapidly away from the true solution.

kernels calculated as described in [26], omitted here for brevity. Here, we show both the loop-order contributions
to the ΛCDM power spectrum (top) and absolute-value relative error plots (Er(x) = log10(|∆x|/x); bottom) for the
overall ΛCDM power spectrum up to each loop order using N = 2 (dotted), N = 4 (dot-dashed) and N = 6 (solid)
Chebyshev components. Clearly, in the case of the one-loop power spectrum, using N = 2 components is sufficient to
produce results to sub-percent-level accuracy. In the case of the two-loop power spectrum contributions, it was found
that such gains were dwarfed by numerical uncertainties produced by the numerical integration of the momentum
kernels. In principle, however, this demonstrates the effectiveness of the CSM in predicting actual observables.
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density parameters labelled. The boundary of the shaded region is for Ωm0 → 0.

B. Benchmarking the Code

In Fig. 9 we compare the average computational time required to solve Eqs. (12) and (13) with direct numerical
integration (as in Sec. II B) and our implementation of the CSM. Specifically, we show the time taken to calculate
all dynamical components for a given perturbative order n for the Planck best-fit ΛCDM universe. For the direct
method (red) we use 50 subdivisions of the range a ∈ [0, 1], while for the CSM (blue) we use a variety of components
in the Chebyshev expansion (N ∈ [3, 4, 10]). Of these, N = 4 would be sufficiently accurate for most uses (and is thus
discussed below), while N = 10 is far more accurate than necessary for the time taken. We find that the terms needed
for the one-loop power spectrum (n = 2 and 3) are calculated two orders of magnitude faster than by direct numerical
integration; those for the two-loop power spectrum (n = 2, 3, 4, 5) are calculated more than four orders of magnitude
faster. We also comment that the CSM code used here is inherently iterative, therefore returning the results for all
previous-order coefficients while calculating the dynamics of a target n. This further exemplifies the efficiency of this
method, particularly within the context of its flexibility. Finally, due to this iterative nature, our implementation of
the CSM is able to calculate the dynamical coefficients to any perturbative order. This implies that this code will
remain useful as momentum operators at increasingly greater orders are computed in the future.

V. DISCUSSION AND CONCLUSIONS

The results in Section IV, including, most notably, Figs. 5, 7 and 8 demonstrate the accuracy and effectiveness
of the Chebyshev spectral method for solving the full dynamical evolution of the dark matter density and velocity
fluctuation fields in a ΛCDM universe. This is coupled with the fact that the CSM is, in practice, at least an order of
magnitude faster than direct numerical ODE solution methods. The true utility of this method is felt, however, at
higher perturbative orders n, with Fig. 9 demonstrating how much faster the CSM is at such orders.
From a practical standpoint, the code implementation produced as part of this work has the following features.

First, the method can be used with any number of Chebyshev components N . Doing so increases the accuracy of the
resultant solution somewhat but incurs an extra computational time cost, as seen in Fig. 9. As such, the user is able
to make this decision actively and tailor the method to their particular situation and use case. Next, it is found that
the magnitude of the calculated components drops almost exponentially with N , further showing the futility of finding
these high-order components. As a result, in testing it was found that using N = 4 components is more than suitable,
with N = 2 yielding sufficient results in most cases, as can be seen explicitly in Figs. 5 and 8.

Furthermore, the code has been generalised to work for arbitrary Ωm0 , extending the parameter space of this method
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Figure 7: Comparisons between the relative errors in solutions found for the dynamical coefficients λ(l)
n and κ(l)

n

for the perturbative orders n = 2, 3, 4 in the ΛCDM universe. Results are shown for the truncated power-series
expansion in ζ given by Eq. (42) (blue; labelled Perturbative) and the CSM with N = 4 (red) and N = 6 (orange).
Curves are shown for all l modes, with averages given in bold.

to encompass ΛCDM. The effect of this has been explored in Fig. 6. Along these lines, we have also compared the
effectiveness of the CSM to an alternative perturbative method introduced in [26], which is also valid for ΛCDM only.
It was found that the CSM was able to achieve a similar or better degree of accuracy, particularly for late times.
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Figure 8: Present-day one-loop (left) and two-loop (right) contributions to the matter–matter (black), matter–
velocity (red) and velocity–velocity (blue) power spectra, computed using the CSM with N = 2 (dotted), N = 4
(dot-dashed) and N = 6 (solid) Chebyshev polynomials. We show the loop-order contributions to the ΛCDM
power spectrum (top) and relative errors in the ΛCDM power spectra as compared to the numerical values
(Er(x) = log10(|∆x|/x); bottom) for each case. Errors in the two-loop contributions are dominated by numerical
uncertainties in calculations of the momentum kernels.

The CSM also grants the user a choice between accuracy and efficiency, which is important when calculating model
predictions for cosmological likelihood analyses. Furthermore, while the perturbative method is on the surface faster
to evaluate for a given Ωm0 , the CSM allows the user to generate dynamical-coefficient data to any perturbative
order efficiently. Next, the framework discussed in Section II can be extended to a more general set of cosmologies,
including clustered quintessence [30, 31]. On the other hand, it is thought that the perturbative method outlined
above in Eq. (42) will only work in the case of ΛCDM. Indeed, such an extension of the CSM has already been done to
first-loop-order for the power spectrum, with work underway to expand this further.1
Another interesting direction to explore would be to consider the implications of other models of dark matter and

energy. These might include decaying dark matter [39] or a dynamical dark energy equation of state [40, 41]. Finally, it
would be particularly interesting to explore the impact of various dark energy effective field theories (EFTs), of which
clustered quintessence is an example [30, 31, 42–46]. However, the most natural extension would be to implement
similar methods to study other observables to the same loop order, such as the bispectrum.
To conclude, we have shown how the CSM can optimize the problem of solving the full, perturbative dynamics

of perturbations in the ΛCDM Universe, reducing computation time by several orders of magnitude, with a view of
being potentially extended to a more general set of cosmologies. Our implementation of the CSM as a Python library
is presented alongside this paper (https://github.com/Chousti/CSMethod.git). It should be straightforward to

1This refers to work completed in a masters thesis by one of the authors, along with an upcoming paper.

https://github.com/Chousti/CSMethod.git
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Figure 9: Comparison of the time taken to compute all λ(l)
n and κ(l)

n for varying perturbative order n in the Planck
best-fit ΛCDM universe using both direct numerical integration (red) and Chebyshev spectral methods (blue) with
varying degrees of accuracy. Direct numerical solutions for higher n are not included as their computation is pro-
hibitively slow.

integrate this library into galaxy-clustering likelihood frameworks, allowing accurate predictions of observables in the
perturbative regime fully accounting for the ΛCDM dynamics.
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Appendix A: Auxiliary Functions

Here we review all auxiliary functions necessary to calculate Eqs. (12) and (13). These are derived in [26] and
represent a recursive method to establish the maximum number of dynamical coefficients. In principle, this number can
be reduced by utilising physical constraints such as conservation of mass and momentum or the equivalence principle —
though these are not discussed here. Specifically, we have the numbering function,

N(n) = 1
2δ

K
n
2 ,b

n
2 c
N(n/2)[1 + 3N(n/2)] + 3

b(n−1)/2c∑
m=1

N(m)N(n−m), (A1)
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and bijective maps,

φ1(n, i, j) = N(n/2)(i− j) + i, (A2)

φ2(n, i, j) = [N(n/2)]2 − 1
2 i(i− 1) + φ1(n, i, j), (A3)

φ3(n,m, i, j) = 1
2δ

K
n
2 ,b

n
2 c
N(n/2)[1 + 3N(n/2)] +

m−1∑
k=1

N(k)N(n− k) + (i− 1)N(n−m) + j, (A4)

φ4(n,m, i, j) =
b(n−1)/2c∑

k=1
N(k)N(n− k) + φ3(n,m, i, j), (A5)

φ5(n,m, i, j) = 2
b(n−1)/2c∑

k=1
N(k)N(n− k) + φ3(n,m, i, j). (A6)

The CSM makes use of these by looping over all maps while evaluating Eqs. (14) and (15), hence algorithmically
calculating all necessary functions.
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