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Theoretical Physics Division, Rudjer Bošković Institute,
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Abstract

Conceptual difficulties in semiclassical and quantum gravity arise from dif-
feomorphism invariance of classical general relativity. With a motivation to
shed some light on these difficulties, we study a class of toy models for which
one-dimensional diffeomorphism invariance, namely time-reparametrization in-
variance, emerges at the classical level from energy conservation. An attempt
to quantize the models while taking the invariance seriously leads to toy ver-
sions of the problem of time in quantum gravity, of the cosmological constant
problem, and of the black hole firewall problem. Nevertheless, all these prob-
lems are easily resolved by taking into account that the invariance emerges only
at the classical level, while the fundamental theory that needs to be quantized
is not diffeomorphism invariant.

Keywords: diffeomorphism invariance; time in quantum gravity; cosmological con-
stant; black hole firewall

1 Introduction

Classical general relativity [1, 2, 3] is one of the most elegant theories in physics.
Its most distinguished feature is diffeomorphism invariance, or invariance under ac-
tive general transformations of spacetime coordinates, which implies that spacetime
metric is a dynamical quantity. But this elegance is a blessing and a curse. It’s
a blessing in classical physics, but a curse in quantum physics because we still do
not fully understand how to quantize gravity [4, 5, 6], that is, how to implement
diffeomorphism invariance at the quantum level. The problems appear not only in
fully quantum gravity, but also in the semiclassical approximation [7, 8] where only
matter is quantized while gravity is treated classically. The problems that appear
are not only technical, but also conceptual. The three conceptual problems that
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stand out are the problem of time in quantum gravity [9, 10, 11, 12], the cosmolog-
ical constant problem [13, 14, 15, 16, 17], and the black hole information paradox
[18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32].

One possibility that potentially could help to resolve these conceptual problems is
the idea that general relativity and its diffeomorphism invariance is emergent, rather
than fundamental, while the underlying more fundamental theory rests on entirely
different principles. This idea can be realized in condensed-matter inspired theories
such as induced gravity [33], as well as in string theory [6]. However, there is no
any direct experimental evidence for such a more fundamental theory. Moreover,
promising theoretical candidates such as string theory are still poorly understood in
their most fundamental terms. Consequently, it is very difficult to study the idea of
emergent diffeomorphism invariance in realistic models. In this paper, therefore, we
study this idea in toy models, similar to the toy models in [11, 9, 34] studied before
in the context of the problem of time in quantum gravity. In these models, the 4-
dimensional spacetime diffeomorphism invariance of general relativity is replaced with
a 1-dimensional diffeomorphism invariance realized as time-reparametrization invari-
ance. Even though such models cannot solve the problems of realistic 4-dimensional
systems with gravity, it is hoped that such simple models can at least serve as a
conceptual inspiration for dealing with more difficult realistic theories.

The paper is organized as follows. In Sec. 2 we first introduce a class of toy
models without diffeomorphism invariance and then explain how 1-dimensional dif-
feomorphism invariance emerges from conservation of energy, namely, as a way to
implement the constraint that the classical system has definite energy. In Sec. 3 we
explain how the 1-dimensional diffeomorphism invariance leads to a toy version of
the problem of time in quantum gravity, and how the problem resolves when one
recalls that the diffeomorphism invariance is not fundamental. Similarly, in Sec. 4
we explain how the 1-dimensional diffeomorphism invariance leads to a toy version of
the cosmological constant problem, and how the problem resolves when one recalls
that the diffeomorphism invariance is not fundamental. Likewise, in Sec. 5 we find
a solution of the constraint that in some aspects resembles the behavior in a black
hole exterior, explain how the diffeomorphism invariance can be used to extend the
solution to a region resembling the behavior in a black hole interior, and point out
that the interior is actually unphysical because the diffeomorphism invariance is not
fundamental. The non-existence of the interior can be understood as a toy version
of the black hole firewall [35, 36], which plays a key role in some approaches to solv-
ing the black hole information paradox. In Sec. 6 we briefly speculate how these toy
models could perhaps be generalized to real 4-dimensional diffeomorphism invariance.
Finally, in Sec. 7 we present a qualitative discussion of our results.
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2 The model and emergent diffeomorphism invari-

ance

2.1 The model

We study a system with N dynamical degrees of freedom described by the collective
configuration variable q(t) = {q1(t), . . . , qN(t)}, the dynamics of which is described
by the action

A =

∫

dt L(q, q̇), (1)

where the dot denotes the derivative with respect to time t and

L(q, q̇) =

N
∑

a=1

maq̇
2
a

2
− V (q). (2)

The canonical momenta are well defined

pa =
∂L

∂q̇a
= maq̇a, (3)

so the Hamiltonian is

H(q, p) =

N
∑

a=1

paq̇a − L =

N
∑

a=1

p2a
2ma

+ V (q) (4)

and can be interpreted as the energy of the system. The system can be treated
either classically of quantum mechanically, in a straightforward manner. In particu-
lar, quantization can be performed via canonical quantization and dynamics can be
described by the Schrödinger equation

H|ψ(t)〉 = ih̄∂t|ψ(t)〉 (5)

as usual, where H is the operator. Since the action does not have any a priori gauge
or diffeomorphism invariance, the quantization is straightforward.

2.2 Emergent diffeomorphism invariance

Since the Hamiltonian H does not have an explicit time dependence, it is conserved.
In classical physics, this means that H has some definite constant value E of energy,
so we can write it as H(q, p) = E, or

H(q, p) = 0, (6)

where
H(q, p) ≡ H(q, p)− E. (7)
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In the configuration space, the fact that the Hamiltonian has the value E can be
written as

N
∑

a=1

maq̇
2
a

2
+ V (q)−E = 0. (8)

If we imagine that (2) describes a whole Universe, then E is the energy of that
Universe. The inhabitants of this Universe observe only one value of E, but the
theory cannot say which one. For the inhabitants of this Universe, the constant E is
a fundamental constant the value of which can be determined from experiments.

Since E appears as a fundamental constant, it seems natural to incorporate the
value of this constant into an effective action. One possibility is to incorporate the con-
straint (8) into the action by adding the Lagrange multiplier term λ [

∑

amaq̇
2
a/2 + V (q)− E].

However, there is a much more interesting way to incorporate the constraint (8) into
the action. We do that not by introducing a Lagrange multiplier λ, but by introducing
a new configuration variable g(t) > 0 and replacing the action (1) with

Ã =

∫

dt
√
g

[

N
∑

a=1

maq̇
2
a

2g
− V (q) + E

]

. (9)

Since this action does not depend on time derivatives of g(t), the g(t) is not a dy-
namical variable and the equation of motion for this variable is a constraint equation.
More precisely, the equation of motion δÃ/δg = 0 gives

− 1

2
√
g

[

N
∑

a=1

maq̇
2
a

2g
+ V (q)− E

]

= 0, (10)

which reduces to the constraint (8) if g = 1. But what is the rational for taking g = 1?
The answer is that the action (9) has the property of diffeomorphism invariance which
allows us to choose for g(t) any positive function we want, so g(t) = 1 is nothing but
a convenient choice of “gauge”. Since this diffeomorphism invariance is crucial, let us
explain it in more detail.

The g in (9) appears in two terms, which are proportional to

dt
√
g,

q̇2a
g

=
dq2a
g dt2

. (11)

Thus g appears either in the combination
√
gdt =

√

g dt2 or g dt2 = (
√
gdt)2. This

implies that the action is invariant under arbitrary transformations that keep

dτ 2 ≡ g(t)dt2 (12)

invariant. The dτ 2 is very much analogous to the spacetime line element ds2 =
gµν(x)dx

µdxν in general relativity, so we see that g in (12) corresponds to g00 in
general relativity. Likewise, 1/g corresponds to g00. Just like general relativity is
invariant under arbitrary 4-dimensional spacetime diffeomorphisms xµ → x′µ = fµ(x)
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which keep ds2 = gµν(x)dx
µdxν invariant, the action (9) is invariant under arbitrary

1-dimensional time diffeomorphisms

t→ t′ = f(t) (13)

which keep (12) invariant. The invariance g dt2 = g′dt′2 implies that g transforms as

g → g′ =

(

dt

dt′

)2

g. (14)

This 1-dimensional diffeomorphism invariance is also known in literature under the
name time-reparametrization invariance [5, 12, 10].

To summarize, we have started from the action (1) without diffeomorphism invari-
ance and, from the fact that energy has some constant value E in classical mechanics,
derived the corresponding action (9) with 1-dimensional diffeomorphism invariance.
In this way, the 1-dimensional diffeomorphism invariance is emergent from classical

energy conservation.

2.3 The constraint in the canonical form

Now we want to develop some formal tools that will be used in further sections. The
action (9) can also be written as

Ã =

∫

dt L̃(q, q̇, g) =

∫

dt
√
gL(q, q̇, g), (15)

where

L(q, q̇, g) =
N
∑

a=1

maq̇
2
a

2g
− V (q) + E,

L̃(q, q̇, g) =
√
gL(q, q̇, g). (16)

The corresponding canonical momenta are

p̃a =
∂L̃

∂q̇a
=
maq̇a√
g
, pg =

∂L̃

∂ġ
= 0, (17)

so the Hamiltonian is

H̃(q, p̃, g) =
N
∑

a=1

p̃aq̇a − L̃ =
√
gH(q, p̃), (18)

where

H(q, p̃) =

N
∑

a=1

p̃2a
2ma

+ V (q)− E. (19)
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The canonical equation of motion for pg is

ṗg = −∂H̃
∂g

= − 1

2
√
g
H. (20)

However, in (17) we have seen that pg = 0, which implies ṗg = 0, so (20) implies

− 1

2
√
g
H = 0, (21)

which is identical to the constraint (10). Thus, since g > 0, we see that the constraint
(10), or (21), can also be written as the Hamiltonian constraint

H(q, p̃) = 0, (22)

or equivalently
H̃(q, p̃, g) = 0. (23)

In the gauge g = 1, this reduces to the constraint (6).

3 The problem of time in quantum gravity

Seduced by the beauty and elegance of the action with 1-dimensional diffeomorphism
invariance, one may be tempted to quantize it. The problem is, how to implement
the Hamiltonian constraint (22) in the quantum theory? The most natural approach
is to implement it as the constraint on physical states

H(q, p̃)|ψ〉 = 0, (24)

where H(q, p̃) is the quantum operator obtained via standard canonical quantization.
This constraint implies also

H̃(q, p̃, g)|ψ〉 = 0, (25)

which is the quantum version of (23). However, the time evolution of the state should
be described by the corresponding Schrödinger equation

H̃(q, p̃, g)|ψ(t)〉 = ih̄∂t|ψ(t)〉, (26)

so compatibility with (25) implies

∂t|ψ(t)〉 = 0. (27)

Hence the state does not depend on time. But we know that the real world, or even
the toy world described by the toy model in Sec. 2.1, depends on time. Where does
the dependence on time come from, if the quantum state |ψ(t)〉 does not depend on
time? This is the toy version of the problem of time in quantum gravity [9, 10, 11, 12].

Within our model, it is not difficult to understand where the problem comes
from and how it should be resolved. In general, whenever a quantum system has a
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well defined energy E, its wave function has trivial time dependence proportional to
e−iEt/h̄, which is just a time-dependent phase without any physical consequences. To
have a genuine time-dependent state in quantum mechanics, the state must not have
a well defined energy. Instead, the state must be in a superposition of two or more
different energies.

So what is wrong with (25)? This quantum constraint originates from the classical
action (9) in which the energy E is fixed. In fact, the whole diffeomorphism invariance
of (9) emerged from a desire to implement the classical value E of energy into the
action. There is nothing wrong with it in classical physics, where energy indeed
has a well defined value. However, requiring that the quantum system should also
have a definite value of energy is wrong, because the energy of a quantum system
is, in general, uncertain. In other words, it is wrong to quantize the diffeomorphism
invariant effective action (9). What needs to be quantized is the original action (1),
which is not diffeomorphism invariant and leads to the proper Schrödinger equation
(5) without the problem of time. The emergent diffeomorphism invariance is only
valid at the classical level, where energy is well defined. At the quantum level, where
energy is uncertain, there is no diffeomorphism invariance.

To conclude, the problem of time in the toy version of quantum gravity originates
from taking the diffeomorphism invariance too seriously. When one takes into account
that this invariance is only emergent at the classical level, while fundamental quantum
theory does not have this invariance, the problem of time disappears in an obvious
way.

4 The cosmological constant problem

Among the N degrees of freedom, let us suppose that Nheavy of them are “heavy”
and the rest Nlight = N − Nheavy are “light”. We call them “heavy” and “light”
degrees because we assume that one can use a semiclassical approximation in which
the Nheavy degrees are treated classically, while the rest Nlight of them are quantized.
For simplicity, we also assume that V (q) can be split as

V (q) = Vheavy(qheavy) + Vlight(qlight), (28)

where qheavy = {qb | b = 1, . . . , Nheavy} are heavy degrees, and qlight = {qa | a =
1, . . . , Nlight} are light degrees. Thus the classical constraint (10) can be written
as

−
Nheavy
∑

b=1

mbq̇
2
b

2g
− Vheavy(qheavy) =

Nlight
∑

a=1

maq̇
2
a

2g
+ Vlight(qlight)− E, (29)

or more concisely
−Hheavy = Hlight −E, (30)

with a self-explaining notation. This is a classical equation, but as we said, the idea
is to treat it semi-classically, so that the light degrees are quantized while the heavy
degrees are left classical. Thus one replaces (30) with a semiclassical equation

−Hheavy = 〈ψ|Hlight|ψ〉 − E, (31)
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where 〈ψ|Hlight|ψ〉 is the mean value of the operator Hlight in the quantum state |ψ〉.
Next suppose that Vlight(qlight) is the potential of Nlight harmonic oscillators

Vlight(qlight) =

Nlight
∑

a=1

kaq
2
a

2
. (32)

Then the operator Hlight can be written in the usual quantum harmonic oscillator
form

Hlight =

Nlight
∑

a=1

h̄ωa

(

A†
aAa +

1

2

)

, (33)

where ωa =
√

ka/ma, while A
†
a and Aa are the raising and lowering operators, respec-

tively. In particular, in the quantum ground state defined by Aa|0〉 = 0 we have

〈0|Hlight|0〉 =
Nlight
∑

a=1

h̄ωa

2
, (34)

so the semiclassical equation (31) becomes

−Hheavy =

Nlight
∑

a=1

h̄ωa

2
−E. (35)

By contrast, the ground state energy of the classical harmonic oscillator is zero, so
the classical version of (35) is

−Hheavy = −E. (36)

But Nlight is supposed to be very large, after all this is the number of light degrees
in the whole toy Universe. Thus, there is a large discrepancy between the classical
equation (36) and the semiclassical equation (35). The semiclassical equation (35)
can also be written as

−Hheavy = −Eeff , (37)

where

− Eeff = −E +

Nlight
∑

a=1

h̄ωa

2
. (38)

The effective energy Eeff contains a very large contribution from the quantum zero-
point energy.

Finally, suppose that the inhabitants of the toy Universe measure Eeff and find a
value

− Eeff ≪
Nlight
∑

a=1

h̄ωa

2
. (39)

Then it is the problem to explain why −Eeff is so small; why is it much smaller than
its natural value given by the right-hand side of (39)?
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Clearly, this problem is analogous to the cosmological constant problem in semi-
classical gravity [13, 14, 15, 16, 17]. Eq. (30) multiplied with g

−Hheavyg = Hlightg − Eg (40)

is analogous to the 00-component of the Einstein equation which, in appropriate units,
can be written as

Gµν = Tµν + Λgµν , (41)

where Gµν is the Einstein tensor depending only on gravitational degrees, Tµν is the
energy-momentum tensor of matter, and Λ is the cosmological constant. In this anal-
ogy, “heavy” degrees are analogous to the gravitational degrees, “light” degrees are
analogous to the matter degrees, and the constant −E is analogous to the cosmo-
logical constant. In the semiclassical approximation one performs a quantization of
matter while keeping gravity classical, so (41) is replaced with

Gµν = 〈Ψ|Tµν |Ψ〉+ Λgµν , (42)

the 00-component of which is analogous to (31) multiplied with g

−Hheavyg = 〈ψ|Hlight|ψ〉g − Eg. (43)

In particular, in the matter ground state |Ψ〉 = |0〉 one finds a very large quantum
contribution analogous to (34), so there is a large discrepancy between the value of
cosmological constant defined by the quantum ground state and the small value of
cosmological constant found from cosmological observations [13, 14, 15, 16, 17].

Within our model, it is not difficult to understand where the problem comes
from and how it should be resolved. In the diffeomorphism invariant action (9), the
constant energy −E has physical consequences because it is coupled to g via the
term proportional to

√
gE. This is analogous to the cosmological constant coupled

to gravity via the term proportional to
√

| det gµν |Λ. On the other hand, the action
(1) with (2) is not diffeomorphism invariant and hence does not contain

√
g. As a

consequence, adding a constant E to the Lagrangian (2) does not have any physical
consequences. In the corresponding quantum theory described by the Schrödinger
equation (5), the Hamiltonian is shifted by a constant value −E, which changes the
phase of the quantum state by an additional phase factor eiEt/h̄, which does not have
any physical consequences. The quantum ground state energy further shifts this value
from E to Eeff as given by (38), but the new phase factor eiEeff t/h̄ still does not have
any physical consequences.

Hence the conclusion is very similar to that in Sec. 3. The toy version of the
cosmological constant problem originates from taking the diffeomorphism invariance
too seriously. When one takes into account that this invariance is only emergent at
the classical level, while fundamental quantum theory does not have this invariance,
the toy cosmological constant problem disappears in an obvious way.

9



5 Black hole and firewall

5.1 The model

Consider a subsystem described by only two degrees of freedom q(t) = {x(t), y(t)},
and suppose that the subsystem is invariant under rotations in the x-y plane. Suppose
also that E = 0. Under these conditions, the action (9) reduces to

Ã =

∫

dt
√
g

[

m(ẋ2 + ẏ2)

2g
− V (x, y)

]

, (44)

where V (x, y) = V (x2+y2). Due to the rotational symmetry, it is convenient to work
in polar coordinates

z =
√

x2 + y2, ϕ = arctg
y

x
, (45)

with ranges
z ∈ [0,∞), ϕ ∈ [0, 2π), (46)

where the values ϕ = 0 and ϕ = 2π are identified. Note that z is the usual radial
coordinate, but we denote it with z, rather than with r, for the reasons that will
become clear later. Thus the action (44) can be written as

Ã =

∫

dt
√
g

[

m(ż2 + z2ϕ̇2)

2g
− V (z2)

]

, (47)

and the corresponding constraint (10) reduces to

m(ż2 + z2ϕ̇2)

2g
+ V (z2) = 0. (48)

To get an interesting solution of the constraint, let us suppose that the potential
V (z2) for small z has a form of an inverted harmonic oscillator

V (z2) = −kz
2

2
, (49)

with k > 0. Thus, assuming in addition that ϕ(t) = 0 and choosing the gauge

g(t) = 1, (50)

the constraint (48) finally reduces to

mż2

2
− kz2

2
= 0, (51)

which is a differential equation for z(t)

(

dz(t)

dt

)2

= γ2z2(t), (52)

where γ =
√

k/m. We will see that (52) describes a motion analogous to the radial
motion of a particle around a black hole with a horizon at z = 0.
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5.2 Analogy with a black hole

The solution of the differential equation (52) is

z(t) = z(0)e±γt. (53)

The solution z(t) = z(0)e−γt can be visualized as radial infalling towards z = 0. The
infalling exponentially slows down as z = 0 is approached, and it takes an infinite
time t to reach z = 0. Likewise, the solution z(t) = z(0)eγt is a time inversion of the
infalling, it describes an escaping from small z towards z → ∞. However, if it starts
from z(0) = 0, then it can never escape; it remains trapped at z(t) = 0 forever. This
behavior is very much analogous to infalling towards the black hole, or escaping from
it. In particular, it takes an infinite time to reach the black hole horizon, from the
point of view of observer staying at a fixed non-zero distance from the horizon. Also,
an object initially at the horizon can never escape from it. We see that the point
z = 0 is analogous to the black hole horizon.

Moreover, the analogy with black holes does not stop here. The solution (53) is
obtained in the gauge (50), but the theory is diffeomorphism invariant under time
reparametrizations (13). Thus we can introduce a new time variable t′ defined im-
plicitly by

e−γt = 1− γt′, (54)

so the infalling solution z(t) = z(0)e−γt can be written as

z(t(t′)) = z(0)[1− γt′]. (55)

Now the point z = 0 is reached after a finite time t′ = 1/γ. Furthermore, the solution
(55) can be extended to negative values of z (this is the reason why we denote it with
z, rather than with r), reached at times t′ > 1/γ. This is analogous to the Kruskal
extension (see e.g. [1, 2, 3]) of the Schwarzschild solution in general relativity, where
in appropriate spacetime coordinates a freely falling object reaches the horizon after
a finite time and the Schwarzschild solution is extended beyond the horizon, thus
describing not only the black hole exterior, but also its interior. Hence, the region
of negative z in the toy model is analogous to the black hole interior behind the
Schwarzschild horizon.

5.3 Effective spacetime

The analogy above can also be made more explicit by introducing an effective space-
time metric. The constraint (52) can be written as γ2z2dt2 − dz2 = 0, which can
be interpreted as motion of a relativistic massless particle in a spacetime with the
effective metric

ds2eff = Ω(t, z)[γ2z2dt2 − dz2], (56)

where Ω(t, z) > 0 is an arbitrary conformal factor. This effective metric has a horizon
at z = 0. In particular, the metric in the square bracket has the same form as the
Rindler metric [37, 1]

ds2Rindler = a2z2dt2 − dz2, (57)
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associated with an observer at z = 1/a accelerating with proper acceleration a. The
Rindler horizon at z = 0 is known to have many similarities with the black hole
horizon [37, 7, 8].

Since (56) has a coordinate singularity at z = 0, we want to see what happens
with this singularity after the coordinate transformation (54). By applying (54) to
(56), we get

ds2eff = Ω

[

γ2z2dt′2

(1− γt′)2
− dz2

]

, (58)

which is still singular at z = 0. However, the singular quantity

g′00 =
Ωγ2z2

(1− γt′)2
(59)

is in fact regular along the infalling trajectory (55), i.e.

g′00
traj
= Ωγ2z2(0) (60)

is regular provided that the initial position obeys z(0) 6= 0.
A standard way to completely remove the coordinate singularity at the horizon

z = 0 is to introduce the new spacetime coordinates

T = z shγt, Z = z chγt. (61)

Indeed, an elementary calculus shows that dT 2− dZ2 = γ2z2dt2− dz2, so (56) can be
written as

ds2eff = Ω[dT 2 − dZ2]. (62)

In these coordinates the relativistic massless particle obeys dT 2 − dZ2 = 0, so the
infalling solution is

Z(T ) = Z(0)− T, (63)

which corresponds to (55).
Now we want to express the position of the horizon z = 0 in the T, Z coordinates.

Inserting z = 0 into (61) gives (T, Z) = (0, 0), if t is finite. But what about the limit
t → ±∞? In this limit (61) gives Z/T = ±1 for any z, including the limit z → 0,
so the two lines Z = ±T are also consistent with z = 0. Thus the horizon is the
union of the point (T, Z) = (0, 0) (corresponding to finite t) and the lines Z = ±T
(corresponding to t → ±∞). But this union is simply the two lines Z = ±T , so we
conclude that the horizon is the two lines Z = ±T . The line Z = T is the future
horizon, which is characteristic for a black hole, while the line Z = −T is the past
horizon, which is characteristic for a white hole.

Thus we see that the infalling solution (63) crosses the future horizon Z = T and
extends beyond the future horizon, which corresponds to the extension beyond the
analogue horizon z = 0 in (55).

Finally note that the effective spacetime metric can be introduced not only for the
potential (49), but also for any potential V (x, y) in (44), provided that it is negative.
The constraint resulting from (44) is

m(ẋ2 + ẏ2)

2g
+ V (x, y) = 0, (64)
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which in the gauge g = 1 can be written as

− 2V (x, y)

m
dt2 − dx2 − dy2 = 0. (65)

This can be interpreted as motion of a relativistic massless particle in a spacetime
with the effective metric

ds2eff = Ω(t, x, y)

[

−2V (x, y)

m
dt2 − dx2 − dy2

]

, (66)

where Ω(t, x, y) > 0 is an arbitrary conformal factor. This metric has the relativis-
tic signature (+ − −), provided that V (x, y) < 0. Taking Ω = 1 for convenience
and defining the effective “Newtonian” gravitational potential φgrav(x, y) through the
standard relation [3]

g00(x, y) = 1 + 2φgrav(x, y), (67)

we see that the potentials V and φgrav are related as

φgrav(x, y) = −V (x, y)

m
− 1

2
. (68)

The important message of (68) is that φgrav corresponds to −V , rather than to V as
one might naively expect. In particular, we see that a repulsive potential V such as
(49) corresponds to an attractive gravitational potential φgrav.

5.4 The firewall

We have seen that the solution (55) can be extended to negative values of z, and
that this extension is analogous to the extension of black hole behind the horizon.
However, in the toy model, the extension is conceptually problematic. How can the
extension to negative values of z be compatible with the fact that the z-coordinate
was restricted to non-negative values by definition, in Eq. (46)? The answer is that it
cannot! Only non-negative values of z are physical. The region of space with negative
z does not exist. The motivation for extension to negative values of z has arisen from
(55), which, in turn, has arisen from a new time coordinate introduced in (54). But
the original model (1) with (2) is not diffeomorphism invariant, i.e. it does not allow
arbitrary redefinitions of the time coordinate. From this point of view, the gauge (50)
is not merely an arbitrary choice, but the correct physical value of g. The negative
values of z have arisen from taking the diffeomorphism invariance too seriously, while
this invariance is just an emergent feature resulting from a formalism that encoded
the classical value of energy E into the action, as described in Sec. 2.2.

The conclusion above that there is no region behind z = 0 is completely classi-
cal, it does not involve any quantum physics. Nevertheless, a semiclassical version
resembling Hawking radiation can also be constructed. Suppose that two entangled
particles are created at z > 0, one infalling and the other escaping, thus mimicking
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the Hawking pair. Suppose also that the potential V (z2), given by (49) for small z,
is defined for all z ≥ 0 as

V (z2) =

{

−kz2/2 for z ≤ z0
−V0 for z ≥ z0,

(69)

where

z0 =

√

2V0
k
. (70)

This potential can be visualized as a flat valley at the constant potential −V0 for
z > z0, with a hill of height V0, radius z0, and the top at z = 0. It mimics a stationary
black hole approximated with flat geometry for r ≥ r0, which is justified if r0 is much
larger than the Schwarzschild radius. To mimic a non-stationary evaporating black
hole, we modify (69) and (70) to

V (z2, t) =

{

−k(t)z2/2 for z < z0(t)
−V0 for z ≥ z0(t),

(71)

z0(t) =

√

2V0
k(t)

, (72)

where k(t) is an increasing function that, after a large but finite time t∗, becomes
infinite k(t∗) = ∞. Thus the radius z0(t) shrinks and becomes zero at time t∗, which
mimics the shrinking of the evaporating black hole. The information paradox can now
be formulated as follows. The peak of the infalling wave packet follows approximately
the classical trajectory (55), thus entering the region behind z = 0, i.e. behind the
top of the hill. But at late times t > t∗ the potential is V (z2) = −V0, so there is no
hill and hence no region behind the top of the hill. It looks as if the infalling particle
disappears at late times, so the remaining escaping particle in the mixed state seems
to contradict unitarity of quantum mechanics. This is the toy version of the black
hole information paradox. The solution of the paradox is that the region behind z = 0
never existed in the first place. As we said, the motivation for extension to negative
values of z originated from (55), which, in turn, originated from introducing a new
time coordinate in (54), which, however, is not allowed in the fundamental theory
without diffeomorphism invariance.

Remarkably, the non-existence of the region behind z = 0 in the toy model has an
analogy in black hole physics. With a motivation to resolve the black hole information
paradox [18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32] in semiclassical
gravity, it has been proposed that the black hole interior does not exist; the black
hole horizon represents a physical boundary called firewall [35, 36, 27]. The problem
with the firewall is to reconcile it with standard classical general relativity, which
predicts that the black hole interior exists, and that the horizon is not a physical
boundary. But such a standard view of classical general relativity is a consequence
of the 4-dimensional diffeomorphism invariance. Alternatively, if the 4-dimensional
diffeomorphism invariance in general relativity is emergent in a way similar to the
emergence of the 1-dimensional diffeomorphism invariance in our toy model, then the
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4-dimensional diffeomorphism invariance should not be taken too seriously even in
the classical theory. If so, then the existence of the black hole interior resulting from
the Kruskal extension should not be trusted. Such an alternative view of classical
gravity, if correct, makes the firewall perfectly compatible with classical physics, which
resolves the firewall problem.

Hence the conclusion is similar to that in Secs. 3 and 4. The toy version of the
firewall problem originates from taking the diffeomorphism invariance too seriously.
When one takes into account that this invariance is only emergent, while the funda-
mental theory does not have this invariance, the toy firewall problem disappears in
an obvious way.

6 Towards emergent 4-dimensional diffeomorphism

invariance

The motivation for studying the toy models with 1-dimensional diffeomorphism invari-
ance is to teach us something about the real 4-dimensional diffeomorphism invariance,
namely, about real classical, semiclassical and quantum gravity. So the question is,
how the ideas of the toy models can be generalized to 4-dimensional diffeomorphism
invariance? Unfortunately, we do not have a full answer to that question. A full
answer would be tantamount to having a full theory of quantum gravity, which, of
course, we do not have. Nevertheless, inspired by the toy models, we sketch an idea
how such a generalization might look like. What we present here can be thought of
as a gist of a research program based on a series of educated guesses1, which at the
current level is very far from a fully developed theory.

Our starting point of view is that the spacetime curvature emerges from a massless
spin-2 field [38, 39, 40, 41, 42], and not the other way around. Roughly, this means
that in the formula

gµν(x) = ηµν + φspin-2
µν (x), (73)

relating the curved spacetime metric gµν(x) to the flat Minkowski metric ηµν and
the massless spin-2 field φspin-2

µν (x), the quantities on the right-hand side are more
fundamental than that on the left-hand side. Philosophically, such a view complies
much better with string theory than with loop quantum gravity. In the fundamental
theory, the formula (73) is expected to be valid only in some approximative sense.

We assume that there is some fundamental action A[φ] without diffeomorphism
invariance, where φ = φ(x) is a collective symbol for all fundamental dynamical fields

φ = {φmatt, φspin-2, . . .}. (74)

Here φmatt are the usual “matter” fields of spins 0, 1
2
and 1, the field φspin-2 is the

massless spin-2 field, and the ellipses are possible other fields beyond the Standard

1“Educated guess” is (supposed to be) a well balanced term, between the over-pretentious “con-
jecture” and over-cynical “wishful thinking”.
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Model of particle physics. The x denotes a spacetime position in 4 or more dimen-
sions. From the action A[φ] one can derive the symmetrized energy-momentum tensor
Tµν [φ; x], which is conserved when the equations of motion

δA/δφ(x) = 0 (75)

are satisfied. In classical physics the fields φ(x) attain some definite values Φ(x),
where Φ(x) is a definite solution of (75). Thus we can define

Eµν(x) ≡ Tµν [Φ; x], (76)

which is a generalization of the definite energy E appearing in (8). For example, in
a classical vacuum in Minkowski spacetime, the Eµν(x) may take the form

Eµν(x) = −Ληµν , (77)

where Λ is a constant. But whatever the Eµν(x) is, in classical physics we can always
write

Tµν [φ; x]− Eµν(x) = 0, (78)

which is a generalization of (8). In some limit one expects that Tµν [φ; x] can be
decomposed as

Tµν [φ; x] = T matt
µν [φ; x] + T spin-2

µν [φ; x] + . . . . (79)

With this decomposition, (78) looks very much like the Einstein equation (41) written
in the non-geometric spin-2 language.

Now the idea is to think of (78) as a constraint derived from a new action Ã[φ, g],
where g(x) = {gµν(x)} is a symmetric tensor field. By analogy with (9), one expects
that the new action Ã[φ, g] is diffeomorphism invariant, so that the diffeomorphism-
covariant equation

δÃ/δgµν(x) = 0 (80)

reduces to (78) when the gauge for gµν is chosen appropriately. One also expects
that, in a certain limit, the action Ã[φ, g] reduces to the usual gravitational action
with the matter term, the Einstein-Hilbert term, and the cosmological term. This is,
roughly, how the 4-dimensional diffeomorphism invariance is expected to emerge at
the classical level. However, the fundamental action that needs to be quantized in
this scheme is A[φ], not Ã[φ, g].

With this approach, it it easy to see that there is no problem of time in quantum
gravity, simply because the fundamental action A[φ] does not have a Hamiltonian
constraint. The Hamiltonian H derived from A[φ] does not need to vanish on-shell.
Likewise, there is no cosmological constant problem, in the sense that energy (asso-
ciated with H) of the quantum ground state does not have physical consequences.
Finally, the quantum time evolution defined by e−iHt/h̄ is unitary, so all quantum pro-
cesses, including Hawking radiation, are compatible with unitarity. Nevertheless, at
this level, it is not clear how exactly the information paradox associated with Hawk-
ing radiation resolves. Since the quantum theory lacks diffeomorphism invariance,
the firewall scenario discussed in Sec. 5.4 scenario seems plausible. In the same spirit,
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since quantum gravity is not fundamentally geometrical in this picture, inherently
geometrical proposals involving wormholes, such as ER=EPR [43] and black hole is-
lands [44], seem less plausible. Nevertheless, at the current level of understanding of
the ideas sketched above, it is impossible to make definite precise claims about the
quantum nature of black holes.

7 Discussion and conclusion

In this paper we have constructed toy versions of the problem of time in quantum
gravity, of the cosmological constant problem, and of the black hole firewall problem.
Within the models, the problems originate from taking the 1-dimensional diffeomor-
phism invariance too seriously. This 1-dimensional diffeomorphism invariance, real-
ized as time-reparametrization invariance, is emergent, rather than fundamental, and
when one takes it into account the problems disappear in a rather natural way. The
problem of time disappears because quantum energy is uncertain in the absence of
fundamental time-reparametrization invariance. The cosmological constant problem
disappears because a shift of energy by a constant does not have physical conse-
quences in the absence of fundamental time-reparametrization invariance. The black
hole firewall problem disappears because a firewall at the horizon may be completely
compatible with classical physics when the diffeomorphism invariance is interpreted
as emergent, rather than fundamental.

We stress that our resolution of the problem of time in Sec. 3 requires that the
whole Universe is in a state of uncertain energy. Can this requirement be relaxed?
Let us discuss various possibilities, together with their shortcomings. Naively one
might think that the whole Universe should have a well defined energy, but that a
subsystem S can still have a non-trivial time dependence because the subsystem S
does not need to have a well defined energy. However, if the whole Universe is time-
independent, then any subsystem of it is also time-independent. To see this explicitly,
suppose that the whole Universe is in the energy eigenstate |ψ(t)〉 = e−iEt/h̄|ψ(0)〉.
Then the density matrix of the whole Universe is

ρ(t) = |ψ(t)〉〈ψ(t)| = |ψ(0)〉〈ψ(0)| = ρ(0), (81)

which is clearly time-independent. Hence the state ρS of the subsystem S is given by
the partial trace over the rest R of the Universe (defined by all degrees of freedom
except those of S)

ρS = TrRρ(0). (82)

Clearly, the right-hand side of (82) is time-independent, for any decomposition of the
whole Universe into a subsystem S and the rest R. Indeed, if the energy of the whole
Universe is well defined, then the subsystem S can have uncertain energy only when it
is an open system entangled with R, but the state of the open system is not described
by the Schrödinger equation, so the uncertainty of its energy does not imply time
dependence. Open systems often behave classically due to decoherence caused by the
environment [45], but decoherence itself is a time-dependent process, so there cannot
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be any decoherence if the whole Universe is time-independent. All this shows that a
subsystem cannot depend on the time t if the whole Universe does not depend on t.
When the wave function of the Universe is an energy eigenstate, a t-dependence can
be incorporated by various non-minimal interpretations of quantum mechanics [46],
e.g. by assuming that macroscopic classicality is fundamental (rather than emergent
from quantum mechanics), or by postulating additional t-dependent variables, or by
modifying the Schrödinger equation, but any such quantum interpretation introduces
an additional level of controversy. Finally, it is possible to associate a dependence
on “time” with a subsystem by redefining the notion of “time” itself. The best
known example is the Page-Wootters “time” [47] (with many variations, such as
[48, 49]), based on the idea that a wave function which does not depend on the
external time t may still depend on the configuration variable qc corresponding to
the clock observable, suggesting that qc itself can be interpreted as “time”. Such
approaches are interesting in its own right, but are orthogonal to the approach of
the present paper. Let us just say that, in our view, it is not clear why would a
dependence on qc be interpreted as a time evolution, in a sense in which we usually
associate evolution with the dependence on t. To illustrate the problem, consider
a t-independent wave function ψ(qc, qp), where qc is the position of a clock needle,
while qp is the position of something else, say a pencil. Since the dependence of ψ
on qp is usually not interpreted as any kind of evolution, it is not clear why would
the dependence on qc be interpreted so. Hence we conclude that having the whole
Universe in a state of uncertain energy is the most straightforward approach to explain
the time evolution, while all other possibilities lead to additional problems.

Next note that the physical irrelevance of vacuum energy in the context of the
cosmological constant problem is compatible with the Casimir effect. The description
of Casimir effect in terms of vacuum energy is just an effective macroscopic descrip-
tion, while the fundamental microscopic origin of Casimir effect lies in van der Waals
forces [50, 51, 52]. In particular, it can be understood in terms of a toy model [52]
similar to that of the present paper.

In our toy models, the solutions of the problems of time and of the cosmological
constant are rather generic; the solutions do not depend on details of the models. In
particular, even though the cosmological constant problem is discussed for quantum
harmonic oscillators, the solution of the problem works in essentially the same way
for any other interaction V (q) that leads to a non-zero quantum ground state energy.

By contrast, our solution of the toy black hole firewall problem is not so generic,
it depends on details of the model. Perhaps different models could suggest totally
different solutions of the black hole information paradox, without any hints for the
existence of firewalls. Or perhaps some models would describe classical states resem-
bling black holes, but without any hints how to solve the information paradox. More
research is needed to better understand how the lack of fundamental diffeomorphism
invariance may, or may not, help to solve the information paradox.

More importantly, it is not at all clear whether such toy 1-dimensional ideas can,
and should, be generalized to the real 4-dimensional diffeomorphism invariance of
general relativity. In Sec. 6 we have sketched how such a generalization might look
like, but it is far from a fully developed theory. Nevertheless, the conceptual simplicity
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of solutions of the toy problems seems suggestive, so we believe that this conceptual
simplicity could at least serve as a source of inspiration for further research.

In any case, we believe that our analysis of the toy models with emergent diffeo-
morphism invariance may influence how physicists think about general relativity at
an intuitive level. A change of intuition may also induce new technical results and,
hopefully, contribute to better understanding of semiclassical and quantum gravity.

Acknowledgements
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