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Abstract: Peroxiporins are a specialized subset of aquaporins, which are integral membrane proteins
primarily known for facilitating water transport across cell membranes. In addition to the classical
water transport function, peroxiporins have the unique capability to transport hydrogen peroxide
(H2O2), a reactive oxygen species involved in various cellular signaling pathways and regulation
of oxidative stress responses. The regulation of H2O2 levels is crucial for maintaining cellular
homeostasis, and peroxiporins play a significant role in this process by modulating its intracellular
and extracellular concentrations. This ability to facilitate the passage of H2O2 positions peroxiporins
as key players in redox biology and cellular signaling, with implications for understanding and
treating various diseases linked to oxidative stress and inflammation. This review provides updated
information on the physiological roles of peroxiporins and their implications in disease, emphasizing
their potential as novel biomarkers and drug targets in conditions where they are dysregulated, such
as inflammation and cancer.
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1. Introduction

Aquaporins are a family of integral membrane proteins facilitating water and small
polar molecule permeation across membranes, driven by osmotic or solute gradients [1,2].
These highly selective channels are vital in maintaining water balance in tissues and organs
and are found in various organisms, including animals, plants, and microorganisms.

AQPs are structured in membranes as homotetramers, consisting of four identical
monomers with a molecular weight of around 28 kDa, each monomer acting as an in-
dependent pore. The monomer is formed by six highly hydrophobic transmembrane
domains and two half-helices containing asparagine–proline–alanine (NPA) motifs that
are the signature of the AQP family, and N-terminal and C-terminal sequences facing the
cytosol. The aquaporin channel achieves selectivity through two filters within the pore:
(i) a size-selective filter made of aromatic/arginine (ar/R) residues near the extracellular
entrance, which dictates the size of molecules that can pass (2.8 Å for classical aquaporins
and 3.4 Å for aquaglyceroporins), and (ii) a charge-selective filter composed of two highly
conserved NPA motifs that act as dipoles, preventing ion passage through the channel
(Figure 1A). Additionally, a central pore located in the middle of the tetramer has been
proposed in some classes of AQPs to serve as a pathway for the flux of gases or charged
particles, such as ions [3].

The AQP homologues identified in humans are grouped according to their primary
structure and selectivity into three main groups: (i) classical or orthodox AQPs (AQP0, 1, 2,
4, 5, 6, 8) are considered primary water channels, although AQP6 and AQP8 also transport
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anions and ammonia; (ii) aquaglyceroporins (AQP3, 7, 9, 10), which also permeate small
non-charged molecules such as urea and glycerol; and (iii) unorthodox or S-aquaporins
(AQP11 and 12), named superaquaporins due to the very low homology with other AQP
subfamilies, which can transport water and glycerol across intracellular membranes [1,4–6].
However, the molecular similarity of hydrogen peroxide (H2O2) with water suggested that
at least some AQPs could simultaneously facilitate H2O2 passage. The permeability to
H2O2 emerged as a feature of a new sub-group named peroxiporins (AQP0, 1, 3, 5, 6, 7, 8, 9,
11) [7–17] which is being progressively expanded as new peroxiporins are being identified
(Figure 1).
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meate hydrogen peroxide (H2O2). (B) Top view of the homotetrameric representation of the peroxi-
porin AQP8. (C) Side view of the AQP8 monomer with the two conserved asparagine–proline–ala-
nine NPA motifs (purple colored) and cysteine–histidine–arginine arrangement (pink, turquoise, 
and orange colored, respectively) based on a predictive structure generated in Phyre2 web portal. 
(D) Detail of the monomer side view. The arrow indicates the conformational change induced by 
C53 persulfidation changing the shape of the (ar/R) filter, likely causing the aromatic ring of H72 to 
control the gating of AQP8. AQP8 predictive structure was generated using the Phyre2 web portal. 
Final figures were generated using UCSF Chimera version 1.15 software. 
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Figure 1. Peroxiporin features. (A) Graphical illustration of a peroxiporin channel displaying the
two selectivity filters (size ar/R and charge NPA), and the human AQP homologues known to perme-
ate hydrogen peroxide (H2O2). (B) Top view of the homotetrameric representation of the peroxiporin
AQP8. (C) Side view of the AQP8 monomer with the two conserved asparagine–proline–alanine NPA
motifs (purple colored) and cysteine–histidine–arginine arrangement (pink, turquoise, and orange
colored, respectively) based on a predictive structure generated in Phyre2 web portal. (D) Detail of
the monomer side view. The arrow indicates the conformational change induced by C53 persulfi-
dation changing the shape of the (ar/R) filter, likely causing the aromatic ring of H72 to control the
gating of AQP8. AQP8 predictive structure was generated using the Phyre2 web portal. Final figures
were generated using UCSF Chimera version 1.15 software.



Int. J. Mol. Sci. 2024, 25, 8381 3 of 18

Experimental and computational studies have made efforts to unveil the molecular
basis of H2O2 conductance and regulation through AQPs. The pore width of each AQP
homologue at the ar/R region may explain, at least in part, their ability to accommodate
the H2O2 molecule, facilitating permeation [11]. Moreover, AQPs with higher water
permeability are expected to display higher H2O2 conductance. The combination of the
widened selectivity filter with a larger rate of channel permeability may dictate the ability
to permeate H2O2 in addition to water. Nonetheless, the residue arrangement at the
vicinity of the selectivity filter and channel conformation may favor H2O2 interactions to
form hydrogen bonds and facilitate diffusion [11,18]. However, the transport specificities
of two plant aquaporins (AtPIP2;4, SoPIP2;1) compared with human AQP1 show that
despite equal efficiency for water transport of the three homologues, the plant AQPs show
higher efficiency for H2O2, which could not be explained by the monomers’ structural
differences [19].

Importantly, a reversible gating mechanism that involves the persulfidation of a
critical cysteine residue in the channel (C53) was identified for AQP8, which may explain
the possible control of H2O2 gradients caused by extracellular NADPH oxidases (NOX) that
release H2O2 into the extracellular space upon activation of tyrosine kinase receptors [20].
Treatment with H2S (primarily produced by cystathionine β-synthase) induced the blockage
of H2O2 influx in unstressed cells. Molecular modeling indicates that the persulfidation
of C53 may influence the peroxiporin conductance in several ways. It could cause steric
hindrance with the aromatic ring of the nearby histidine located at the narrowest part of the
channel (H72) (Figure 1C,D) or disrupt the hydrogen bonds formed by this histidine with
H2O2, which are essential for its transport through the pore. It is reasonable to assume that
H2O2 molecules, when transported through AQP8, promote C53 sulfenylation, making
it susceptible to the H2S primarily produced by cystathionine β-synthase (CBS). This
mechanism can control H2O2 permeation across membranes, reducing cellular oxidative
stress and potentially regulating downstream signaling pathways. A predictive structure
of AQP8 and the proposed mechanism of regulation by H2O2 are represented in Figure 1.

Oxidative stress is both a cause and consequence of cancer development. DNA
damage resulting from reactions with oxidizing agents can lead to mutations and the dys-
regulation of key molecules that control cell proliferation [21]. During cancer progression,
cells undergo metabolic changes due to mutations, rapid growth, and alterations in the
microenvironment, such as hypoxia and nutrient deprivation. These changes influence
the redox balance within the cell, creating a vicious cycle where the overexpression of
H2O2-producing enzymes increases intracellular H2O2 levels, which in turn elevates the
antioxidative defense mechanisms. H2O2 stimulates signaling pathways involved in cell
proliferation and pathways promoting its detoxification, allowing cancer cells to regulate
H2O2 levels effectively. Enhanced antioxidative protection also provides a defense against
cancer therapies, adding another layer of complexity to treatment.

In this overview, we examine the role of peroxiporins—membrane channels that
regulate H2O2 flux—and their impact on oxidative stress as a promising target for con-
trolling cancer growth. By modulating peroxiporin activity, it may be possible to disrupt
the oxidative balance in cancer cells, inhibit tumor growth, and enhance the efficacy of
existing treatments. This review underscores the potential of targeting peroxiporins in the
development of innovative anti-cancer therapies.

2. Peroxiporins in Redox Homeostasis

Oxygen and oxidative metabolism have been shown to be strategic advantages for the
organisms that adopted this energy-generating pathway. On the other hand, oxygen is also
toxic, and its toxicity is achieved through the formation of reactive oxygen species (ROS).
ROS are highly reactive molecules and free radicals, such as superoxide anion (•O2

−),
hydroxyl radical (OH), and H2O2, which easily oxidize biological molecules, thereby
changing their activity and function [22]. ROS levels are augmented in stress conditions
by numerous exogenous factors. Interestingly, ROS are also produced endogenously,
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either by imperfections in cellular processes or to support certain processes. Yet, studies
imply that endogenous ROS production is not due to imperfections; rather, these ROS
actually play a role in the processes that stimulate their production. Electron leakage
from mitochondrial complex I is such a process. ROS, mainly •O2

− and H2O2, formed by
complex I are quenched by the redox-sensitive cysteines of signaling molecules, thereby
modifying the cellular response to O2 levels [23]. Moreover, since H2O2 prompts reversible
modifications of thiol groups, whereas •O2

− prompts irreversible modifications [24], the
dismutation of •O2

− by superoxide dismutase (SOD) also controls the signaling intensity
and pathways. By regulating the level of these ROS, the antioxidative defense system
provides fine-tuning of signaling [23]. Another example of controlled ROS production
is the activity of NOX, in which NOX1 to NOX5, DUOX1, and DUOX2 produce ROS
as their primary function to support cellular processes and reactions [25]. Interestingly,
although the NOX protein family produces H2O2, each member has specific and distinctive
roles in cellular signaling due to their subcellular and organ-specific localization [26].
H2O2 produced by NOX4 is transported into the cells by peroxiporins (AQP3 and AQP8),
crucial players in redox signaling [12]. Additionally, NOX2 is coupled with AQP3 in
the plasma membrane, creating a local increase in H2O2 that supports epidermal growth
factor/receptor (EGF/EGFR) signaling [27]. Further, co-immunoprecipitation experiments
showed that in addition to AQP3, NOX2 interacts with AQP5 and AQP8 [28]. H2O2
produced by NOX2 enters the cell via peroxiporins and supports Fenton’s reaction, lipid
peroxidation, and results in ferroptosis [28]. Another source of ROS is the endoplasmic
reticulum (ER), where H2O2 is used for protein folding. The above-mentioned NOX4 is
localized in the ER, although it can be found in mitochondria and the nucleus [29]. Here,
as a source of H2O2, NOX4 contributes to the regulation/oxidation of PTP1B and thus
the regulation of EGFR signaling [30] and, to a much lesser extent, to oxidative protein
folding [31]. Oxidative protein folding is rather dependent on endoplasmic reticulum
oxidoreductin 1α (ERO1α). When ERO1α is downregulated, the resulting need for H2O2 is
compensated by its influx from the mitochondria through AQP11 [31].

As ROS can be detrimental to the surrounding molecules and the cell, the intracellular
levels of ROS are controlled to maintain their positive effects and prevent side effects.
Therefore, cells developed complex defense mechanisms, either nonspecific or specific, but
also intertwining and able to compensate for the others’ deficiencies [32]. The first line of
defense is composed of small, non-specific scavengers such as vitamin C and vitamin E,
glutathione (GSH), thioredoxin (Trx), ubiquitin, transferrin, ferritin, bilirubin, α-lipoic acid,
melatonin, melanin, uric acid, and β-carotene [22]. The next line of defense, which also
uses small molecules (e.g., GSH and Trx), are enzymatic cascades that lead to the complete
detoxification of ROS. The GSH and Trx systems are thiol-based systems that react to the
wide selection of electrophiles, neutralizing them completely. These systems are recycled
through the activity of their specific peroxidases and reductases to restore the initial state
of the thiols and use the NADPH generated by the pentose-phosphate pathway [33]. The
first enzymatic cascade leading to the complete detoxification of specific ROS, namely
•O2

−, includes SOD1, SOD2, and SOD3 localized in the cytoplasm, mitochondria, and
extracellular matrix, respectively, generating H2O2 which is further neutralized by catalase
(CAT) to water and oxygen [34]. In addition to CAT, other enzymes can neutralize H2O2,
such as glutathione peroxidases (GPX) and peroxiredoxins (Prx). The synthesis of these
small peptides and enzymes is regulated by redox-sensitive antioxidant transcription
factors (Figure 2).

To maintain redox homeostasis, cells have a network of signaling pathways and tran-
scription factors that coordinate the cellular response to oxidative stress. Redox-responsive
signaling pathways are usually localized near sources of ROS generation where they are
activated and promote cell survival and metabolic adaptation [35]. The overexpression of
ROS-producing proteins such as NOX [36] is found in several types of cancer [37]. This
overexpression leads to increased ROS levels, which activate signaling pathways that
contribute to cancer proliferation, thereby supporting various hallmarks of cancer (re-
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viewed in [37,38]). Simultaneously, elevated ROS levels in cancer cells trigger antioxidative
responses, including cell cycle arrest, DNA repair, apoptosis, and the activation of redox-
responsive transcription factors, thereby enhancing the cancer cells’ defense mechanisms
against ROS.
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Figure 2. Maintenance of cellular redox homeostasis. Hydrogen peroxide (H2O2) is formed under
physiological conditions in the cell by the activity of NADPH oxidases (NOX), by “leakage” of the
electron transport chain in the mitochondria, and also in the endoplasmic reticulum (ER). Its fate is
determined by the nearest molecules, as it can be: (1) exported by peroxiporins or (2) processed by
detoxifying enzymes such as thioredoxins (Trx), peroxiredoxins (Prx), or glutathione (GSH) and its
enzymatic cascade, which are under the control of the redox-sensitive transcription factors, such as
the NRF2 and FOXO family.

The activation of a transcription factor must be strictly modulated even in the state of
oxidative stress. It is proposed that different transcription factors respond to ROS levels
in a concentration- and/or time-dependent manner. NRF2 (Nuclear Factor Erythroid
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2-Related Factor 2) is the first-line defense transcription factor, responding to low and
moderate ROS levels; higher levels are needed to activate AP-1 (Activator Protein 1)
and NF-κB (Nuclear factor kappa B), along with FOXO (Forkhead box O) and HIF-1
(Hypoxia-Inducible Factor-1); finally, as the last response, there is the activation of TP53
(Tumor Protein P53) [39]. This hierarchical defense strategy ensures a controlled response
to variable levels of ROS within the cell, preventing the simultaneous activation of all
transcription factors. Additionally, different transcription factors are activated in different
ways, and the activation of a transcription factor can occur by controlling its synthesis and
degradation or by controlling the activity of a preexisting transcription factor [40]. Surely,
other transcription factors are involved, directly or indirectly, in the cellular response to
oxidative stress that are not mentioned here, but their detailed discussion falls out of the
scope of this paper. It is worth mentioning that the role of a major antioxidant transcription
factor, NRF2, as a first responder to cellular ROS is achieved through KEAP1 (Kelch-
like ECH-associated protein 1). The KEAP1-dependent degradation via ubiquitination
and proteasomal degradation regulates NRF2 activity in unstressed conditions. In the
presence of ROS or electrophiles, redox-sensitive cysteine residues on KEAP1 are modified,
restricting its activity. Subsequently, newly synthesized NRF2 directly translocates to
the nucleus where it heterodimerizes with small MAF proteins and binds to antioxidant-
responsive elements (AREs) within the regulatory region of multiple antioxidant genes [41],
such as NAD(P)H quinone oxidoreductase (NQO1), heme oxygenase (HO), Trx, Prx, GPX,
and many others [42]. The constitutive transcription and fast degradation of NRF2, in
combination with the highly sensitive ROS sensing by KEAP1, guarantees a rapid response,
even in the presence of low levels of ROS, making NRF2 in charge of the initial cellular
response to ROS.

Another important redox-sensitive transcription factor, responding to higher levels
of ROS, is a group of FOXO transcription factors that act as homeostasis regulators in
metabolic and oxidative stress [43]. They regulate cell cycle arrest, DNA repair, apoptosis,
and importantly, antioxidant protection by upregulating CAT and SOD2 [44]. Depending
on the ROS source and type of modification, FOXO transcription factors can be activated
or inactivated. They can be modulated through the regulation of cytoplasmic/nuclear
shuttling, gene transcription, mRNA stability, and different posttranslational modifications
(phosphorylation, methylation, acetylation, O-glycosylation, and ubiquitination) [44]. This
complex regulation of FOXO transcription factors, often called the FOXO code [45], enables
additional fine-tuning of antioxidant reactions in the cell.

3. Peroxiporins in Oxidative Stress and Signaling

Redox signaling represents one of the fundamental regulatory pathways in the physi-
ology of cells and organisms. H2O2, the most common ROS in cells, acts as a secondary
messenger. The perturbation of physiologic H2O2 cellular content increases cellular oxida-
tive stress, a feature implicated in aging and pathological conditions such as inflammation
and tumorigenesis [46,47]. Due to their function as peroxiporins and their role in oxidative
stress, certain aquaporin homologs have been implicated in the onset of several disease
conditions. Examples of such implications are detailed below.

AQP3 peroxiporin activity is crucial for the stimulation of NF-κB signaling in ker-
atinocytes and in the development of psoriasis [48]. In keratinocytes, NOX2 generates H2O2
in response to TNFα, which in turn is transported into the cytosol via AQP3. Increased
intracellular H2O2 regulates protein phosphatase 2A activity, activating the NF-κB signal-
ing pathway and influencing the etiology of the disease [48]. Moreover, IL-23-induced
psoriasis in the AQP3 knockout (KO) murine model is less aggressive than in WT mice and
is accompanied by impaired NF-κB activation and low intracellular H2O2 accumulation.
AQP3 was also reported to play an important role in the etiology of Vitiligo [49,50]. Using
primary cells derived from lesional and non-lesional skin biopsies of Vitiligo patients,
AQP3 expression was shown to negatively correlate with the progression of the disease,
along with NRF2 and NQO1. AQP3-silenced human primary keratinocytes showed similar
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results to lesional biopsies, and NRF2 was further reduced upon H2O2 treatment. Moreover,
ROS-rich conditioned media from AQP3-silenced keratinocytes treated with H2O2 induced
human primary melanocyte apoptosis, suggesting that in Vitiligo, apoptotic melanocytes
are a result of AQP3 deficiency in keratinocytes [49]. These reports highlight the key role of
AQP3 peroxiporin in skin pathophysiology.

AQP11 is an important protein in maintaining endoplasmic reticulum physiological
function and has been detected in high levels in kidney proximal tubule epithelial cells. The
first segment of the proximal tubule stains strongly positive for AQP11 and is characterized
by an intense glucose flux. Mice with the AQP11 recessive mutation C227S, an alteration
that affects the maintenance of the AQP11 oligomeric structure, demonstrated higher
mitochondrial injury than WT mice. Glucose treatment, which induces ROS production,
increased AQP11 expression in WT mice, but this was lost in the heterozygote mice.
Proximal tubule cells with the AQP11 recessive mutation respond to glucose by elevating
the production of ROS, thus suggesting that AQP11 plays a protective role in glucose-
induced oxidative stress in the kidney proximal tubules [51]. Although no pathological
conditions have been correlated with altered AQP11 in humans, AQP11 rs2276415 variation
was characterized as a genetic factor of predisposition to develop kidney diseases such as
chronic kidney disease [52], transplantation failure [53], or type 2 diabetes [54]. So far, no
functional assessment of the AQP11 rs2276415 variation, a missense mutation G102S, has
been carried out; however, the amino acid substitution is located immediately after the
first pore-forming NPC motif, suggesting the promotion of translation and folding defects,
since a previous mutation from NPC to NPA led to oligomerization failure [55].

Peroxiporins also play a crucial role in maintaining lens transparency. Studies have
shown that KO mice for AQP0, AQP1, and AQP5 exhibited reduced oxidative damage to
the lens induced by H2O2. This indicates that these aquaporins facilitate the transport of
H2O2 into the lens cells, where it is scavenged by GPX1 to maintain oxidative homeostasis.
The absence of GPX1 impairs this process, leading to a decrease in H2O2 transport. The fact
that GPX1 KO lenses exhibit H2O2 accumulation underscores the role of GPX1 in regulating
H2O2 permeation through membranes via AQPs. Further supporting the importance of
peroxiporins, an AQP5 KO hypoglycemic mouse model demonstrated significant impair-
ment in lens transparency, accompanied by increased H2O2 production and accumulation,
compared to WT mice [7]. This suggests that AQP5 is particularly critical in preventing
oxidative damage and maintaining lens clarity under hypoglycemic conditions. The in-
creased H2O2 levels in these knockout models highlight the protective role of AQPs in
mitigating oxidative stress within the lens. These findings collectively unveil peroxiporins
as promising new targets for the prevention or treatment of age-related lens cataracts. By
modulating the activity of specific AQPs, it may be possible to develop therapeutic strate-
gies aimed at preserving lens transparency and preventing cataract formation associated
with oxidative stress.

In the human brain, AQP0, AQP1, AQP9, and AQP11 have been described in the cortex
and hippocampus and their expression correlated with aging and Alzheimer’s disease
grade. Experiments using 1321N1 astroglia cells and SHSY5Y differentiated neurons in
inflammatory and hypoxia conditions showed upregulated AQP0, AQP1, and AQP11
transcripts. AQP0 and AQP11 were also increased at the protein level, localized in the
plasma membrane and endoplasmic reticulum, respectively [56]. The peroxiporin roles
were assessed by quantifying lipid peroxidation levels after the H2O2 challenge, resulting
in diminished lipid peroxidation in lipopolysaccharide (LPS)-treated cells. These results
highlight the potential of increasing brain peroxiporin activity to alleviate age-related injury
and neurodegeneration.

Recently, experimental data revealed the AQP6 peroxiporin activity in mesothelioma
cells [16]. The prolonged exposure to increased levels of ROS in tumoral environment cells
boosts cell proliferation and migration and thus cancer progression, which culminates in
cell death by ferroptosis. In malignant pleural mesothelioma cells confronted with heat
stress, AQP6 silencing resulted in decreased H2O2 efflux and impaired cell proliferation,
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revealing AQP6 as an H2O2 channel and its protective feature towards ferroptosis [16].
These experiments suggest that AQP6 is a crucial player in the etiology and also the
resistance to chemotherapy in mesothelioma.

AQP3 and AQP5 were shown to mediate H2O2 transport in pancreatic ductal adeno-
carcinoma BxPC3 cells. The lower H2O2 diffusion measured in AQP3- and AQP5-silenced
pancreatic cells was correlated with reduced cell migration, which could be recovered
by additional exogenous oxidative stimuli [14]. In this model, AQP5 showed a highly
efficient peroxiporin activity compared to AQP3, revealing the major role of AQP5 in
the dynamic fine-tuning of the endogenous concentration of H2O2 and possibly an influ-
ence on cancer initiation and progression [14]. Additionally, AQP5 peroxiporin activity
was correlated with cell-cell adhesion, cell stiffness, and increased membrane permeabil-
ity [57]. Moreover, AQP3 was found to be an oncogenic factor in lung adenocarcinoma,
due to its peroxiporin activity and ability to increase intracellular ROS levels, essential
for the etiology of the disease [58]. The study describes the inactivation of PTEN as a
response to AQP3-associated intracellular ROS accumulation and subsequent activation
of the AKT/mTOR pathway with consequent inhibition of autophagy and induction of
cell proliferation. Altogether, these data highlight the role of peroxiporins in oxidative
mechanisms underlying adenocarcinomas.

AQP8 expression was detected in both plasma and mitochondrial membranes of
β-cells in the endocrine pancreas [59]. Although H2O2 regulates cell growth, in type-
1 diabetes mellitus the excess of intracellular ROS accumulation in β-cells leads to the
failure of insulin secretion. In RINm5F β-cells, AQP8-KO resulted in cell death, which
was prevented by re-expressing AQP8 into the cells. Instead, AQP8-overexpressing cells
showed higher proliferative features and increased insulin content, highlighting the role of
AQP8 in H2O2 homeostasis in pancreatic β-cells and the development of type-1 diabetes
mellitus [59].

Peroxiporins have emerged as promising targets for enhancing therapies, making
them a focal point in redox research. The following sections explore the implications and
targeting potential of peroxiporins in inflammation and cancer.

3.1. Peroxiporins in Inflammation

Increasing evidence demonstrates the involvement of AQPs in the inflammatory
process, particularly since the activation of immune cells and the inflammatory response
was described as a result of rapid cell volume changes induced by modifications in the
osmotic microenvironment, with a consequent increase in cell hydraulic permeability, cell
size, and cytoskeleton modifications [60].

Several peroxiporins have been detected in cells from innate and adaptative immu-
nity [61,62], and crucial physiological roles have been demonstrated using in vitro and
in vivo models. AQP5 and AQP7 are expressed in dendritic cells and participate in anti-
gen uptake and endocytosis [63,64]. In fact, AQP3-dependent H2O2 influx may control
the endocytosis process in CD8+ T cells [65]. AQP3 also participates in phagocytosis in
macrophages and macropinocytosis in dendritic cells [66,67]. AQP9 was detected in the
lamellipodium edges of leukocytes, suggesting an essential role in cell shape changes and
mobilization upon chemokine gradients [68]. Additionally, AQP7 was shown to participate
in antigen processing and migration towards a chemoattractant [64]. AQP3 and AQP9,
the most relevant AQPs in the immune system, are involved in cell migration together
with AQP5 [69]. AQP3 affects T cell and macrophage migration and is essential for their
physiological function in system defense [70], while AQP5 and AQP9 regulate migration
in neutrophils [69]. AQP1 was also correlated with cell migration and lamellipodium
formation in macrophages, suggesting an influence on M0/M2 phenotype switching and
motility regulation [71].

AQP3 and AQP9 implications in immune cell activation and response upon external
aggression were also described [72]. The depletion of AQP9 in a murine model resulted in
deficient neutrophil and T cell activation [73], while in macrophages AQP9 is a key player
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for the sensing system towards infection by Pseudomonas aeruginosa [74]. Such activation
induces AQP9 upregulation with consequent changes in cell shape and motility, confirming
its pivotal participation in infection, inflammation, and clearance/disease progression [74].
In vitro LPS stimulation also induces AQP1, AQP3, and AQP9 upregulation [72,75,76], and
patients with inflammatory diseases show increased AQP9 in activated leukocytes [77].
In dendritic cells, AQP3, AQP5, and AQP9 are associated with cell priming [78] and
proliferation [61]. In THP-1 monocytic cells, AQP3 is implicated in IL-6, pro-IL-1β, and
TNFα transcription via TLR4 engagement upon LPS priming [79], and the activation of
the NLRP3 inflammasome, known to be upregulated in sepsis [80], is influenced by AQP3
expression [79]. The upregulation of AQP3 might enable the well-characterized fast volume
changes described to precede IL-1β secretion [81].

Sepsis is a systemic inflammatory disorder caused by a deregulated response to
infection. Recently, AQP3 and AQP9, the most representative AQPs in macrophages and
neutrophils, respectively, were shown to respond differently in the sepsis clinical condition.
An AQP3 increase in macrophages is associated with survival, while AQP9 in neutrophils
is inhibited during a prolonged inflammatory state and its expression was considered
an independent risk factor for sepsis lethality [82]. Several other studies reported an
altered AQP expression in sepsis patients or related complications. Leukocyte AQP1
expression was found to be increased in septic patients compared with non-septic patients
in intensive care units [75]. AQP9 was augmented in neutrophils in systemic inflammatory
response syndrome patients [77]. Increased AQP5 in white blood cells correlates with
higher mortality [83]. Cardiac dysfunction is a common disorder in the setting of sepsis. In
the LPS-induced sepsis murine model, cardiac function is impaired along with increased
levels of AQP1 and proinflammatory cytokines [84].

In osteoarthritis, a degenerative disease caused mainly by chondrocyte apoptosis and
cartilage matrix degradation, AQPs have been detected in cartilage cells with an impact on
the regulation of cartilage physiology [85]. In fact, in Sprague Dawley rats with surgically
induced osteoarthritis, AQP1 was positively correlated with caspase-3 activity, suggesting
its influence on caspase-3 activation resulting in chondrocyte apoptosis [86].

In asthma, where chronic inflammation of the airways is triggered by factors including
oxidative stress, AQP3 peroxiporin activity is thought to be pivotal in the initiation of the
inflammatory process. In a murine model of ovalbumin-induced asthma, AQP3 associates
with chemokine production (CCL24 and CCL22) in alveolar macrophages and with the
transmigration of T cells [87].

In Crohn’s disease and colitis, transcellular fluid movements and water absorption are
affected as a result of chronic inflammation in the colon. Apart from being crucial in water
homeostasis, AQPs such as AQP3 and AQP8 are found impaired in 2,4,6-trinitrobenzene
sulfonic acid (TNBS)-induced colitis and associated with increased intestinal inflammation
and injury [88]. In Crohn’s disease and ulcerative colitis human biopsies, the detected
downregulation of AQP8 suggests a defense mechanism against severe oxidative stress.
In a murine model of 5-fluorouracil (5-FU)-induced diarrhea, AQP8 inversely correlated
with pro-inflammatory cytokines (TNF-α, IL-1β, IL-6, IL-17A, and IL-22) [89]. AQP3,
an important isoform in the colon regulating water fluxes through the epithelial cells,
is upregulated in diarrhea and its normal function can be restored by suppressing the
protein kinase A (PKA)/cyclic adenosine monophosphate response element binding protein
(pCREB) signaling pathway [90].

In chronic liver injury (CLI), AQP3 is involved in macrophage priming, causing the
inflammatory process. In a CCL4-induced CLI murine model, the administration of anti-
AQP3 monoclonal antibody prevented H2O2 influx and cell activation, resulting in the
blockage of inflammation [91].

3.2. Peroxiporins in Cancer Biology

Aquaporins are central players in the key processes that characterize tumorigenesis
mostly by facilitating water, glycerol, and H2O2 movements between cells and/or com-
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partments. In particular, H2O2 fluxes influence cancer progression, proliferation, and
metastasis by regulating various signaling pathways. Cell proliferation, the mechanism
by which a tumor grows, is intimately associated with glycerol transport by aquaglycero-
porins, providing energy for cell division [92] and cell migration, favoring cell motility and
metastases [93]. Moreover, by mediating H2O2 movements, peroxiporins participate in the
activation of signaling pathways that initiate tumorigenesis.

AQP3 is the most frequently cancer-associated aquaporin, being abnormally expressed
in different types of cancers, such as lung [94], skin [50,95], colon [96], pancreatic [97,98],
gastric [99,100], and liver [101]. Experimentally modulating AQP3 affects several tumoral-
related signaling pathways [102], suggesting that AQP3 targeting can prevent and treat
AQP3-overexpressing tumors [103].

AQP1 is overexpressed in multiple human cancers such as those of brain [104], biliary
duct [105], colon [106], bladder [107], breast [108], lung [109] and prostate [110], and it has
been used as a distinctive clinical prognostic factor.

AQP5 was suggested as an enhancer of cancer cell proliferation, migration, and
survival by interacting with different pathways [111–113]. In general, AQP5 is found upreg-
ulated in skin [114], colon [113,115], lung [116], prostate [117] and ovarian cancers [118–120].
Additionally, AQP7 and AQP9 are overexpressed in malignant ovarian tumor cells com-
pared to benign tumors or normal tissue [121] and deficiently expressed in hepatocellular
carcinoma associated with tumor aggressiveness [101]. AQP9 is overexpressed in glioblas-
toma [122,123], and its downregulation seems to prevent apoptosis, promoting invasion
and epithelial-to-mesenchymal transition [124,125].

Several studies reported the involvement of AQP-facilitated H2O2 influx in cancer
cell models. For instance, AQP3-mediated H2O2 transport was shown to be involved in
EGF-induced cell signaling in squamous cell carcinoma (A431) and lung cancer (H1666) cell
lines, and AQP3 blockage suppresses the cell response to EGF [27]. Additionally, Erk and
Akt activation induced by EGF and modulated by SHP2 and/or PTEN is impaired in AQP3-
silenced cells, resulting in affected cell growth and migration. Interestingly, A431-derived
xenografts showed decreased tumor growth and animals lived longer [27]. In MNT-1
and A375 melanoma cells, AQP3 blockage by gold compounds or transient silencing led
to decreased intracellular ROS accumulation, suppressing cell adhesion, migration, and
proliferation [126].

In breast cancer cells, AQP3 is associated with the induction of CXCL12/CXCR4-
dependent cell migration [127], a critical process in breast cancer progression and metastasis.
Here, H2O2 produced by CXCL12-activated NOX2 enters the cell via AQP3, generating a
localized increase in intracellular H2O2 to function as a second messenger to induce cell
migration. H2O2 is then oxidized by PTEN and PTP1B, resulting in Akt pathway activation.
Additionally, AQP3 expression was directly correlated with motility in both in vitro and
in vivo models, and spontaneous metastasis of orthotopic AQP3-silenced xenografts in the
lung were reduced compared to controls [127].

In pancreatic ductal adenocarcinoma cells BxPC3, AQP3 and AQP5 facilitate H2O2
influx, and silencing these homologs results in impaired cell migration [14,57]. Deficient
AQP5 was associated with more apoptotic cells [57].

In leukemia, AQP8 expression was correlated with a VEGF capacity to trigger in-
creased H2O2 intracellular levels. AQP8-mediated H2O2 permeation induced phosphoryla-
tion of PI3K and p38 MAPK, resulting in cell proliferation [12].

Interestingly, a study in hepatocellular carcinoma reported that AQP9 negatively
impacts cell invasion by preventing the epithelial-mesenchymal transition. Moreover, AQP9
seems to suppress liver cancer stem cell stemness. AQP9 is downregulated by insulin-like
growth factor 2 (IGF2), which is crucial for cancer stem cell stemness maintenance. AQP9
overexpression results in intracellular H2O2 accumulation, attenuation of β-catenin/TCF4
interaction, dissociation of β-catenin from FOXO3a (ultimately resulting in β-catenin
activity inhibition), and cancer stem cell stemness suppression [128].
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3.3. Peroxiporins in the Inflammation-to-Cancer Transformation

A prolonged inflammatory state is closely related to cancer initiation and progres-
sion [129]. Among the external factors associated with tumorigenesis, several induce oxida-
tive stress, such as bacterial or viral infections, obesity, smoking, and alcohol consumption,
increasing cancer risk and stimulating the malignant phenotype. Cancer-associated inflam-
mation can be a result of the initial mutations that characterize tumorigenesis, consequently
contributing to the malignant progression by recruiting and activating immune cells. Exter-
nal factors associated with inflammation-induced immunosuppression provide the optimal
conditions for tumor development [129].

The gastric infection caused by Helicobacter pylori (H. pylori) has been long associated
with the development of gastric carcinomas, playing a key role in its etiology [130]. In-
terestingly, AQP3 overexpression correlates with both H. pylori infection [131] and gastric
carcinoma [132]. Using in vitro and in vivo models, AQP3 protein expression in gastric
cancer samples was found positively correlated with H. pylori infection. In fact, in vitro,
H. pylori infection promoted AQP3 upregulation by activating the extracellular signal-
regulated kinase (ERK) signaling pathway, resulting in increased cell proliferation and
migration. Such an interaction was corroborated in the H. pylori-induced rodent model
of gastric cancer [131]. The study provides insights into how a non-carcinogenic factor
induces AQP3 modulation and how the event can lead to tumorigenesis.

Another study reported that the regulatory mechanisms by which AQP3 is upregu-
lated in H. pylori-mediated carcinogenesis are based on the activation of ROS-dependent
pathways. H. pylori infection induces the upregulation of AQP3 through the transcriptional
regulation of HIF-1α and the increase of ROS in human gastric epithelial AGS and GES-1
cells. Additionally, proinflammatory cytokines produced in response to H. pylori infection,
such as IL-6, IL-8, and TNFα, were AQP3 level-dependent. These data uncover the initia-
tion of carcinogenesis upon activation of the ROS–HIF-1α axis that is later exacerbated by
the ROS–HIF-1α–AQP3–ROS loop [133].

Overall, by addressing the oxidative mechanisms underlying cancer progression
and treatment resistance, peroxiporins strategically offer a novel and potentially effective
approach to enhancing outcomes for patients with inflammation and cancer.

4. Peroxiporins as New Targets to Tackle Oxidative Stress-Related Pathologies

Although the involvement of AQPs in redox signaling and oxidative stress demon-
strates their potential as targets for the development of innovative therapies for inflamma-
tion and cancer, the discovery of peroxiporin modulators has progressed slowly. Several
molecules have been reported to affect H2O2 flux through AQPs. Table 1 compiles the
modulators of peroxiporins reported in the literature, their effect on H2O2 permeability, the
experimental model, and the method used in each case.

The clinically approved AQP1 inhibitor, Bacopaside II, a triterpene saponin natural
compound, impaired AQP1-mediated H2O2 permeability in mice and human myocytes,
attenuating cardiac hypertrophy in a murine model [134]. The organogold (III) compound
Auphen, [Au(1,10-phenanthroline)Cl2]Cl, and its derivatives (CCON and CNHN) have been
shown to have a potent effect in blocking AQP3 peroxiporin activity, reducing H2O2 perme-
ability in melanoma [126] and pancreatic ductal adenocarcinoma cells [14] and impacting
various biologic processes such as cell adhesion, proliferation, and migration. Additionally,
the drug-like small molecule ortho-chloride-containing compound DFP00173 is a selective
and potent AQP3 peroxiporin activity modulator, constituting a very solid isoform-specific
aquaglyceroporin inhibitor with experimental and molecular modeling validation [135].
Interestingly, the increase of AQP6 peroxiporin activity might be a powerful tool to fight
cancer by boosting the effect of chemotherapeutic drugs. In this context, CeO2, Gd2O3,
and Fe3O4-loaded polyacrylic-coated solid nanoparticles were found to increase the H2O2
permeability by modulating AQP3, AQP6, and AQP8, resulting in an innovative tool to
control oxidative stress in cells [136]. Experimental data has also validated HgCl2 and
AgNO3, two broad AQP inhibitors, as peroxiporin activity modulators, impairing H2O2
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permeability via AQP1 [19], AQP3 [12,14], AQP5 [14], and AQP8 [12,137]. In contrast,
H2O2 permeability via AQP6 increases upon HgCl2 treatment [16]. The benzothiadiazole
urea-containing molecule RF03176 is an isoform-specific AQP9 inhibitor of H2O2 perme-
ability [135]. Recently, the compound RG100204 was reported to inhibit murine AQP9
peroxiporin activity in a CHO cell expression system [138]. Additionally, biologics are
rising as safer and more selective modulators. An antibody raised against AQP3 was
shown to be effective in blocking H2O2 permeability and preventing liver injury, revealing
a promising innovative therapy for macrophage-dependent liver injury [91].

In conclusion, the discovery and validation of peroxiporin activity modulators and
the design of new molecules with improved potency and selectivity are seen as a positive
step forward in the development of innovative therapies for oxidative stress-associated
disorders.

Table 1. Modulators of aquaporin-peroxiporin activity.

Aquaporin Modulator Effect on H2O2
Permeability Cell Type/Model Method Reference

AQP1
Bacopaside II Decrease Cardiac myocytes H2DCF-DA [134]

HgCl2 Decrease Liposomes HRP/Amplex Red [19]

AQP3

Antibody anti-AQP3 Decrease CHO-K1 cells CM-H2DCFDA [91]

Au (III) CCON and CNHN Decrease Melanoma cells
(A375, MNT1) H2DCF-DA [126]

Auphen Decrease PDAC cells
(BxPC3) H2DCF-DA [14]

HgCl2 Decrease PDAC cells
(BxPC3) H2DCF-DA [14]

DFP00173 Decrease CHO cells HyPer-3 [135]

AgNO3 Decrease B1647 cells H2DCF-DA [12]

Fe3O4-, Gd2O3-, and
CeO2-loaded nanoparticles Increase Hela cells HyPer7-NES [136,139]

AQP5 HgCl2 Decrease PDAC cells
(BxPC3) H2DCF-DA [14]

AQP6
CeO2-loaded nanoparticles Increase Hela cells HyPer7-NES [136]

HgCl2 Increase Mesothelial cells H2DCF-
DA/HyPer7 [16]

AQP8

AgNO3 Decrease B1647 cells H2DCF-DA [12]

Fe3O4-, Gd2O3-, and
CeO2-loaded nanoparticles Increase Hela cells HyPer7-NES [136,139]

HgCl2 Decrease Sperm cells H2DCF-DA [137]

AQP9
RF03176 Decrease CHO cells HyPer-3 [135]

RG100204 Decrease CHO cells HyPer-3 [138]

5. Final Remarks

Oxidative stress results from dysbalanced redox signaling, affecting human physiology
and influencing several pathological conditions such as systemic inflammation and cancer.
Although recent advances in diagnostic methods and care treatments improved the life
quality and longevity of patients with oxidative stress-related pathologies, the search and
development of more effective diagnostics and therapies are still paramount. Growing
evidence highlights peroxiporins as central players in redox signaling, since alterations in
their expression and activity are correlated with ROS accumulation, the initiation of the
inflammatory process, and the induction of tumor cell phenotypes. Such unique features
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underscore the potential of peroxiporins as both biomarkers for disease and targets for
therapeutic intervention. Further research into the specific mechanisms by which these
aquaporins influence disease progression is paramount, validating their importance in
medical science and the potential for developing new treatment strategies.
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