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Abstract: Glutamate is the most important excitatory neurotransmitter, which is relevant for the study
of several diseases such as amyotrophic lateral sclerosis and Alzheimer. It is the form L-glutamic acid
(Glu) takes at physiologically relevant pHs. The surface-enhanced Raman spectra of Glu obtained
at pH values ranging from 3.3 to 12 are collected in the presence of silver and gold colloids and on
solid substrates. The observed bands are compared with the positions of calculated normal modes
for free neutral glutamic acid, glutamic acid monohydrate, glutamic acid bound to gold and silver
atoms, and sodium glutamate. Although gold atoms prefer to bind to the NH2 group as compared to
carbonyl groups, silver atoms prefer binding to hydroxyl groups more than binding to the amino
group. SERS spectra of glutamic acid solutions with a pH value of 12, in which both carboxylic
groups are deprotonated, indicate a complexation of the glutamic acid dianion with the sodium
cation, which was introduced into the solution to adjust the pH value. Further research towards an
optimal substrate is needed.

Keywords: glutamate; glutamic acid; surface-enhanced Raman spectroscopy; AuNP; AgNP;
CRYSTAL09; normal modes

1. Introduction

The dianion of glutamic acid—glutamate—serves as a neurotransmitter in humans.
It is released from synaptic vesicles and taken up by neurons or astrocytes to terminate
the signal [1]. Glutamate is the most important excitatory neurotransmitter in the central
nervous system of mammals and the most abundant free amino acid in the brain [2]. In
emergency situations, cerebrospinal fluid samples are taken from patients to determine
glutamine levels in order to diagnose uncontrollable epileptic seizures [3]. The detection
and measurement of extracellular glutamate levels is of great practical importance, as excess
glutamate can lead to excitotoxicity and contribute to conditions such as amyotrophic lateral
sclerosis and Alzheimer’s disease [4]. In addition, glutamate concentration is an indicator
of central nervous system injury [5] and is sensitive to it.

Currently, the most accurate laboratory methods used for monitoring glutamate levels are
high-performance liquid chromatography (HPLC) and gas chromatography-mass spectrome-
try (GCMS), while enzymatic electrochemical sensors can detect and/or quantify glutamate in
some biofluids [4]. Nonenzymatic electrochemical sensors based on metal nanoparticles have
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not yet reached the required detection limit (glutamate concentrations in plasma are between
1 and 100 µM, but variations from 1 µM to 10 µM in cerebrospinal fluid are important [1].
Optical sensing methods such as surface-enhanced Raman spectroscopy (SERS) utilize metal
nanoparticles, either in colloids or on substrates, to facilitate the creation of hotspots for
analyte binding [6,7]. Detection of pharmaceutical pollutants [8,9], fluoride anions [10], or
antimicrobial agents of the hydrazone type [11] were reported, together with herbicides such
as di- or trichlorophenoxyacetic acid [12]. Designers of SERS substrates aim at quantifying
the nanoparticle concentration [13] or at developing 2D materials such as SnS2, MoS2, or
WSe2 [14]. Studies where SERS was used for the detection of artificial dyes to screen additives
in food [15] or pigments in artwork preservation were published [16]. Model molecules are
often chosen for studying the SERS effect in detail, for example, 4-aminothiophenol [17] or
pyridine [18]. Theoretical modeling approximates metal nanoparticles or substrates by Agn or
Aun clusters or slabs [9,10,12,16,18,19]. A review by Jensen et al. dedicated to modeling the
SERS mechanism has recently been published [20].

Raman spectroscopists have been interested in amino acids both in their crystalline and
liquid states for quite some time [21–27]. The detection limit of amino acids in aqueous
solution at acidic pH by standard Raman spectroscopy was set at 7 mM by Numata et al. [28].
One of the first reports on vibrational analysis of L-glutamic acid (Glu) was that of Shurvell and
Bergin on Raman spectra of saturated aqueous solutions at pH 0.5 to 12.5, including spectra of
polycrystalline L-Glu and monosodium glutamate [29]. Dhamelincourt and Ramírez obtained
polarized micro-Raman and FTIR spectra of solid Glu [30]. López Navarrete et al. provided
infrared and Raman spectra for deuterated L-Glu and 15N-L-Glu [31], while Ramírez and
López Navarrete performed normal coordinate calculation for the neutral form of glutamic
acid [32]. The infrared spectra of the neutral form of Glu isolated in an argon matrix were
compared with the scaled 4–31 G frequencies calculated ab initio in a later publication by
López Navarrete et al. [33]. More recently, Yuan et al. studied the spectral and dissociation
processes of Glu in an external electric field [34], while Voges et al. investigated the solubility
of L-Glu in aqueous solutions in dependence on pH [35]. Williams et al. analyzed peptide
fragments containing L-glutamic acid both by Raman spectroscopy and computationally
using DFT methods [36]. It has been found that polyglutamic acid in the form of octamers can
bind to metallic nanoparticles [37–41]. Sodium polyglutamate polymer can reversibly change
its conformation in water [42].

Of greater interest to us is the ability of a single Glu molecule to bind to a metal nanoparticle,
whether in a colloid or on a solid substrate. In their pioneering study on silver colloids, Suh and
Moskovits interpreted spectra of glycine and alanine solutions with a pH of 6.92 as originating
from binding of amino acids to silver nanoparticles (AgNPs) with both amino- and carboxy
termini [43]. Chumanov et al. [44] presented the SERS spectrum of glutamic acid at neutral pH for
the first time and observed the strongest band at 1367 cm−1, which they assigned to the symmetric
stretching of the COO- group. Further bands occurred at 620, 830, 952, 1048, and 1230 cm−1.

Stewart and Fredericks were able to record SERS spectra of 19 amino acids, including
glutamic acid, using an electrochemically prepared silver surface [45], with the proposed binding
via the –COO− group. Xiaoming Dou et al. investigated the effects of pH on the binding of
glycine to gold [46] and silver nanoparticles [47]. They reported rapid glycine coagulation at
a pH of 3.9 in silver colloids. However, the silver colloid they prepared using the Creighton
method contained positively charged metal particles, while other groups reported negatively
charged particles [48,49]. The Creighton method was also used by O’Neal et al. to study
micromolar glutamate concentrations detectable with SERS [5]. The band at 830 cm−1 was
filtered out as the one that could help distinguish glutamic from aspartic acid [5]. SERS spectra
of basic solutions of L-glycine, L-proline, L-cysteine, L-phenylalanine, and their dipeptides were
obtained by Podstawka et al. [50]. Again, the -COO- symmetric stretching band at 1388 cm−1

was the strongest band in the SERS spectrum of glycine at pH 9.8, and the middle band at
1036 cm−1 could be explained as the C-N stretching of the –NH2 group bound to the silver
particle surface [50]. Sengupta et al. [51] applied SERS to characterize bioaerosol and chose
D-glutamic acid, D-alanine, and L-lysine as three amino acids present in bacterial walls. All
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three amino acids mentioned yielded very similar spectra, with bands of glutamic acid being
most intense at 1640, 1401, and 1379 cm−1 [51].

Seventeen amino acids, including glutamic acid, at a concentration of 6.8 mM were
analyzed by Guicheteau et al. using both normal Raman and SERS for bacterial identifi-
cation [52]. The authors used solutions mixed with silver colloids, and the SERS spectra
were recorded after the droplets dried on aluminum slides [52]. Sawai and coworkers [53]
applied an electric field of 20 V/cm to the silver film on a glass substrate immersed in
a solution of 1 mM glutamic acid. They provided SERS spectra for the concentration
range from 1 nM to 1 mM and showed the time-dependent spectral changes for 1 µM
concentration. Daizy Philip [54] opted for citrate-reduced gold nanoparticles with a size
of approximately 35 nm and tested them with glutamic acid. The most prominent bands
she observed were at 1365, 1239, and 1008 cm−1, corresponding to –COO- sym. stretching,
δ(CH2) wagging, and C–N stretching vibrations, respectively. More recently, Lee et al.
used frequency modulation of the exciting laser beam and detected SERS signals in order
to better distinguish SERS spectra of attomolar concentrations of glutamate and other
neurotransmitters from the background noise [55].

Since published results on SERS spectra of glutamic acid demonstrated a large diversity
of observed Raman bands, we undertook an investigation of the binding of glutamic acid
to the surface of silver and gold nanoparticles in order to gain a better understanding of
the relation of the spectroscopic signals with the chemical state of the analyte. Also, since
most previous studies used colloids, we tested some of the commercial substrates available
in order to check the similarity of observed SERS spectra with that from the literature.

This study was supported with the ab initio calculation of normal modes of free
glutamic acid, glutamic acid monohydrate, glutamic acid bound to gold and silver atoms,
and sodium glutamate and vibrations of glutamic acid in the crystalline state where it takes
zwitterionic form. The purpose of calculations was to estimate the extent of shifting of
vibrational modes with respect to those of free molecules and to obtain a more confident
assignment of the observed SERS bands. Previous calculations of vibrational modes were
performed for a free molecule only.

2. Materials and Methods

The powder of polycrystalline L-glutamic acid with purity >99% was purchased from
Kemika d.d., Zagreb, Croatia, and used without further purification. The polymorph was
identified as β-glutamic acid using Raman measurements [56]. The first stock solution with a
concentration of 10 mM was prepared by weighing 73.5 mg of powder and mixing it with
50 mL of extrapure water demineralized to a conductivity of 0.055 µS/cm using the SG RO
6 Sp ultrapure water system. The pH of the solution was 3.5. The second stock solution of
10 mM was prepared using MQ water by the Stakpure OmniaLab DS 60 instrument, and its
pH was 3.3. From these solutions, all other solutions were prepared by proportional dilution.

The pH of the solutions was determined using an Edge Blue pH meter from Hanna
Instruments. Solutions with a pH of 3.3 and 3.5 correspond to water solutions of Glu
prepared in two different series of experiments. Solutions having pH values of 7, 10, or 12
were prepared by adding appropriate amounts of NaOH.

Silver and gold colloids were prepared by laser ablation in liquid to avoid the presence of
contaminants such as organic stabilizers on the surface of the NPs. The NPs were obtained by
laser ablation synthesis using 1064 nm laser pulses (6 ns, 50 Hz) from a Q-switched laser focused
with a lens of f = 100 mm to a fluence of 5 J/cm2 on a 99.99% pure metal plate of Au or Ag
immersed in a 10−4 M NaCl solution in double-distilled water [57,58].

Gold and silver colloids were prepared for transmission electron microscopy according
to a previously described procedure [59]. The average size of silver particles was 26 ± 6 nm
and of gold particles was 15.5 ± 3.9 nm (Figures S1 and S2 in the Supporting Information).

The morphology of the purchased Ocean Insight 532 nm substrates was examined
using the Jeol JSM 7000F scanning electron microscope (SEM) at 10 kV and 1000× or
15,000× magnification (Figure 1).
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Figure 1. (a) Scanning electron microscopic image of the OceanInsight RAM-SERS Ag substrate at
1000× magnification. The bar is 10 µm. (b) Optical image of the OceanInsight RAM-SERS Ag substrate,
where the bar is 20 µm. (c) Optical image of the SersitiveAgAu substrate, where the bar is 20 µm.

Four samples were prepared for absorbance in the UV–VIS region by taking 200 µL
of each sample (pure AuNPs 0.135 mg/mL, pure AgNPs 0.016 mg/mL, 1 mM pure water
solution of glutamic acid, and 10 mM water solution of Glu with a pH of 12) and diluted
with 2 mL of MQ water in a quartz cuvette with an optical path length of 1 cm, which was
then placed in the scattering chamber of the Perkin Elmer Lambda 25 UV–VIS spectrometer.
The spectra were recorded at the interval of 190–1000 nm. Mixtures of Glu and colloids were
prepared by mixing 200 µL of Glu and 200 µL of Ag or Au colloid with 2 mL of MQ water.

Dynamic light scattering (DLS) experiments with 1 mM and 10 mM solutions were
performed on samples at pH 3.5 and 12. The average hydrodynamic diameters of pure
AuNPs and Glu-AuNP particles in 1:1 v/v water mixtures were measured using Malvern
Panalytical’s Zetasizer Ultra instrument equipped with a 632.8 nm He-Ne laser and utilizing
multiangle dynamic light scattering (MADLS) technology. MADLS performs the analysis
at three different scattering angles (174.70, 90.00, and 12.780 degrees) and summarizes the
data into a single integrated measurement. The measurements were performed in DTS0012
standard 10 mm diameter plastic cells. The hydrodynamic diameters were calculated based
on intensity distributions. The results are given as averages of 3 measurements. Zeta potential
measurements were performed by electrophoretic light scattering in folded capillary cells
DTS1080. The values of the zeta potentials are given as the mean of three measurements.

Two types of commercial substrates were used, one with silver—OceanInsight RAM-
SERS-Ag type and the other with Ag and Au (SersitiveAgAu substrate) (Figure 1). They
were chosen because spectra of bare substrates either had no bands between 1500 cm−1

and 2800 cm−1 (OceanInsight) or the bands were very weak (Sersitive). A droplet of 5 µL
of solution was left to dry on the substrate before measurement was undertaken. In every
spectrum of the bare substrate, a strong band at 236 cm−1 was observed, indicating binding
of metal nanoparticles to the layer below.

Fourier-transform infrared spectra of polycrystalline Glu mixed with KBr pressed into
pellets were recorded with a Spectrum GX at the interval of 370–4000 cm−1 with a resolution
of 4 cm−1 and 20 repetitions, using corrections for the subtraction of the spectrum of the
surrounding water vapor.

Two spectrometers were used for the Raman measurements. The first spectrometer used was
a T64000 Horiba JobinYvon Raman spectrometer in triple subtractive mode with green excitation
by a 532 nm laser under a wide-angle objective with 50× magnification. The second spectrometer
used was a Renishaw InVia with a 20× or 50× objective and excitation lasers of 532 nm and
785 nm. The laser power was mostly 0.3 mW, and the accumulation time was 1 to 5 s with four to
sixteen repetitions. The baseline of all spectra was subtracted using either LabSpec 5 or the Wire
5.5 program. The Raman spectrum of a 1 mM solution in a metal container was also recorded
to check the sensitivity of the system. With four repetitions and an accumulation time of 4 s, no
vibrational bands other than those of water were detected. When recording spectra of colloids, a
droplet of a 1:1 v/v mixture of Glu solution and a colloid was put on a silicon substrate. Therefore,
the 520.7 cm−1 silicon band is visible in the spectra of colloids.
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Computational Methods

The normal modes of free Glu, Glu monohydrate, sodium glutamate, Glu-Au, and Glu-Ag
molecules were calculated by optimizing the geometry and then calculating the frequencies using
the Gaussian 16 program suite with B3LYP functional [60]. At first, 6–31++G(d,p) basis set was
used for Glu, Glu-H2O, and sodium glutamate. For Glu-Au and Glu-Ag, the lanl2dz basis set
was chosen, and the geometry optimization for Glu and Glu-H2O was repeated with this basis
set to compare the binding energies of Glu to water and metal atoms. A selected list of normal
modes that are most illustrative of Glu binding, scaled by a factor of 0.968, is shown in Table 1.
All frequencies were found to be positive (see Tables S1–S5 in the Supporting Information). The
scaling factor was chosen from the ratio of the calculated wavenumber for the symmetric COO−

stretch of sodium glutamate (1437 cm−1) and the observed band at 1392 cm−1 in the SERS
spectrum of Glu at pH 12.

Table 1. Comparison of selected scaled calculated vibrational modes of neutral glutamic acid,
glutamic acid monohydrate, and glutamic acid bound to Au and Ag in the interval 1300–1780
cm−1. A complete list of calculated modes with potential energy distribution is given in Supporting
Information, Tables S1–S4.

Calculated Vibrations of
Neutral Form of L-Glutamic Acid

(Scaled by 0.968)

Calculated Vibrations of
Glutamic Acid Monohydrate

(Scaled by 0.968)

Calculated Vibrations of
Glutamic Acid Bound to Au

(Scaled by 0.968)

Calculated Vibrations of
Glutamic Acid Bound to Ag

(Scaled by 0.968)
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Table 1. Cont.

Calculated Vibrations of
Neutral Form of L-Glutamic Acid

(Scaled by 0.968)

Calculated Vibrations of
Glutamic Acid Monohydrate

(Scaled by 0.968)

Calculated Vibrations of
Glutamic Acid Bound to Au

(Scaled by 0.968)

Calculated Vibrations of
Glutamic Acid Bound to Ag

(Scaled by 0.968)

504 O7=C6-C8 bend 507 O7=C6-C8 bend

493 O7=C6-C8 bend.

476 O7=C6-C8 bend.

422 O10=C19-O14 bend 426 O10=C19-O14 bend 429 O10=C19-C15 bend. 425 O10=C19-C15 bend.

401 N-C8-C11 bend 413 N-C8-C11 bend 407 N-C8-C11 bend 403 Torsion N2-C8

The stable configurations of neutral glutamic acid, Glu-H2O, Glu-Au, and Glu-Ag are
shown in Figure 2. All configurations, including sodium glutamate depicting atom notations,
are available within Supplementary Information. There exists an intramolecular hydrogen bond
O1-H3···N2 in neutral Glu that manifests itself in different values of O1-H3 stretching vibration
compared to ν(O14-H18), which is predicted lower by 370 cm−1 (Table S1). Also, the value of
ν(C6=O7) is predicted at 1691 cm−1, compared to 1633 cm−1 predicted for ν(C19=O10). The
O=C-O bending vibrations are also expected at different wavenumbers for two carboxyl groups
as follows: δ(O7=C6-O1) at 561 cm−1 and δ(O10=C19-O14) at 526 cm−1.
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of theory (see Tables S1–S4 in the Supporting Information).

While searching for stable configurations of gold atom bound to Glu, two configura-
tions were obtained as follows: the first with the Au atom closest to carbonyl O7, which
gave Eopt = −686.995775 Ha and the energy of Au-Glu binding −0.00714 Ha = −0.194 eV,
and the second one where the gold atom was closest to the NH2 group. The optimization
energy of the second configuration was Eopt = −686.998604 Ha, and the binding energy of
Au was equal to −0.997 Ha = −0.271 eV. For the second configuration, normal modes were
calculated (Figure 2 and Table S3).

Considering the binding of the silver atom, again it was found that Ag can form a stable
configuration either by approaching the NH2 group or bonding to the hydroxyl O1 atom. The
optimization energy of Glu-Ag when Ag was closest to NH2 was −697.309048 Ha, and the energy
of Ag-Glu binding was −0.0015 Ha = −0.041 eV. When the silver atom was closest to O1, the
Eopt = −697.311979 Ha, and the Glu···Ag binding energy was −0.00444 Ha = −0.121 eV. For the
more stable Glu-Ag configuration, we calculated normal modes (Figure 2 and Table S4). We can
conclude that both gold and silver atoms can bind to amino and carboxyl groups; Au prefers to
bind to the amino group, and Ag prefers to bind to the hydroxyl oxygen atom of the carboxyl
group closer to NH2.

The remaining question is as follows: how does binding of a single water molecule affect
glutamic acid? Again, a search for stable Glu···H2O configurations was conducted, and two stable
configurations were found. In the first configuration, one water molecule forms a hydrogen bond
to carbonyl O7, and the Eopt = −627.976346 Ha. The binding energy of water to Glu (here it
remains in neutral form) was −0.01317 Ha = −0.358 eV. The optimization energy for the second,
more stable configuration where water binds to the NH3

+ group was Eopt = −627.980744 Ha, and
the binding energy of water was −0.01757 Ha = −0.476 eV. For the second configuration, normal
modes were calculated (see Figure 2, Table S2, and Supporting Information).
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The partial optimization of the atomic positions of crystalline β-polymorphic glutamic acid
with fixed cell parameters was initially carried out using density functional theory, which is
implemented in the CRYSTAL09 program [61]. The correlation functional of Lee, Yang, and
Parr [62] with generalized gradient approximation and the exchange functional of Becke [63],
commonly known as the B3LYP functional, were used. The basis functions for oxygen, carbon,
hydrogen, and nitrogen atoms were taken from the study by Gatti et al. [64]. The parameters of the
unit cell were a = 5.1586 Å, b = 6.9477 Å, c = 17.2861 Å, and α = β = γ = 90◦, with Z equal to 4 [65].
The positions of the atoms within the unit cell were optimized using the keyword OPTGEOM,
with the old wave function mixed 70% with the new experimental function (keyword FMIXING).
Each molecule has 19 atoms, resulting in 76 atoms in the unit cell and 225 optical phonons that
are all active in Raman and 168 of them in infrared spectra. In Table 2, calculated vibrations in
the interval 1350–1780 cm−1 are presented, while insight into every vibrational motion can be
obtained by uploading the CRYSTAL09 output to an online website [66].

Table 2. Comparison of selected calculated vibrational modes of glutamic acid in zwitterionic form
as found in crystal with vibrations of sodium glutamate in the interval 1350–1780 cm−1. A complete
list of calculated modes with potential energy distribution among modes is given in Supplementary
Information (output of the CRYSTAL09 program, Table S5).

Calculated Vibrations of L-Glutamic Acid Crystal Observed Bands
L-Glutamic Acid Powder

Sodium Glutamate
Molecule
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1724, 1734, 1735, 1735
1732 ν(C=O) + δ(NH3
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1701, 1701, 1707, 1707
1664 δ(H-N-H) + νasym(COO-)

A B3 B2 B1

1687, 1690, 1690, 1692
1658 1645 δ(NH3

+)B1 A B3 B2

1626, 1627, 1640, 1649 1632, 1616 1615 νasym(COO−) + δ(NH3
+) 1626

δ(NH2)
scissoringA B3 B1 B2

1570, 1571, 1580, 1582
1579 δsym(NH3

+)
A B3 B1 B2

1531, 1532, 1534, 1538
1509 δ(C-O-H) 1539

νasym
(COO-)A B2 B3 B1

1492, 1494, 1495, 1496
1512 δ(CH2) scissoringB2 A B1 B3

1458, 1466, 1468, 1477

1452 δ(CH2) 1437
δ(CH2)

scissoring
B3 B3 B1 B2

1452, 1453, 1453, 1456
A B2 A B1

1419, 1420, 1426, 1430
1441 1424 δ(CH2) wag + δ(COH)B3 B1 A B2

1411, 1411, 1415, 1416
1411 δ(CH2) wag + δ(HNC) 1408

δ(CH2)
scissoringA B2 B1 B3

1389, 1393, 1393, 1398
1409 νsym(COO−) + δ(HCC) 1392 νsym(COO-)

A B3 B1 B2

1376 1376 1363 δ(HCC)
bending

1349, 1349, 1352, 1356
1352 1352

δ(CH2) twist +
δ(NH3

+) rock 1347
δ(HCC)
bendingB2 A B1 B3

3. Results and Discussion

A scheme depicting the protonation state of Glu at three different pH values is shown
in Figure 3 [67].
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Figure 3. Scheme depicting transformations of L-glutamic acid at its characteristic pKa values.

In Figure 4, two SERS spectra of 1 nM solution having pH 3.3 and the theoretical
calculated SERS spectrum of Glu-Ag are compared. The spectra contain more bands in the
1500–1700 cm−1 interval than one would expect if there were only one type of binding site
and one molecular species in solution. Specifically, for solution with pH 3.3, one expects one
C=O stretching vibration, one antisymmetric stretching of CO2

-, and three NH3
+ bending

vibrations per one type of binding site, and from Figure 4, one can immediately see that
there are eight observed bands in that interval (see Table 3).
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Figure 4. Comparison of the SERS spectra of 1 nM Glu at pH 3.3 on OceanInsight Ag substrate
(top and middle) with the calculated scaled (0.968) theoretical SERS spectrum of Glu-Ag at the bottom.
Laser excitation: 532 nm.

Our intention is to correlate the observed bands in the SERS spectra with the different
protonation states of the carboxyl and amino groups. For that purpose, we compared
calculated vibrational spectra of neutral Glu, polycrystalline Glu, Glu-H2O, Glu-Au, and
Glu-Ag (see Tables 1 and 2). The stable polymorph of Glu crystallizes in the space group
P212121 with four molecules per unit cell [65] and has the structure of zwitterion, displayed
in Figure 3 as the structure between pKa 2.19 and 4.25 [67].

Although the molecule is neutral, charged groups such as –NH3
+ and –COO− interact

via Coulombic interactions, which promotes the stability of the crystal. Rotations coupled
with translations along the three perpendicular crystal axes generate four symmetrically
equivalent molecules in the unit cell of the crystal. All vibrational modes are active in the
Raman spectrum (A, B1, B2, and B3), while B1, B2, and B3 are active in the infrared spectra
of the polycrystalline sample. The experimental spectra are shown in Figure 5.
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In Table 2, positions of calculated and observed bands for glutamic acid in the crys-
talline state and sodium glutamate (Na-Glu) in the 1350–1780 cm−1 interval are compared.
Glu in the form of crystalline powder was determined to be in the form of β-glutamic
acid polymorph [56,65]. The description of the calculated crystal modes in Table 2 shows
that the ν(COO−) and ν(C=O) modes are coupled with the δ(NH3

+) bending modes of all
molecules in the unit cell. The ν(C=O) modes, although mixed in nature, are expected in the
interval 1724–1735, while the asymmetric stretching νasym(COO−) coupled to the δ(NH3

+)
bending is predicted in the intervals 1701–1707 cm−1 and 1626–1649 cm−1. The symmetric
stretching νsym(COO−) couples with δ(HCC) in the range of 1389–1398 cm−1. From the
description of the calculated modes given in Table 2, one expects rather pure δ(NH3

+)
bending modes in the 1687–1692 cm−1 and 1570–1582 cm−1 intervals. The observed strong
infrared bands for Glu powder at 1663 and 1645 cm−1 are attributed to the δ(NH3

+) +
νasym(COO−) and δ(NH3

+) modes, and the same assignment applies to the strong Raman
bands at 1632 cm−1 and the strong infrared bands at 1615 cm−1. The nature of vibrations
we obtained in Table 2 agrees with the sequence of normal modes obtained for zwitterionic
Glu by Ramírez and López Navarrete [32].

Considering now normal coordinate analysis of free glutamic acid, we find it possesses
an intramolecular hydrogen bond (Figure 2), which was not mentioned in the earlier ab initio
study by López Navarrete et al. [33] who used a 4–31 G basis set in addition to semiempirical
MNDO and AM1 methods. Based on those calculations, López Navarrete et al. assigned the 1781
and 1635 cm−1 bands observed in the FTIR spectrum of glutamic acid in the argon matrix as
carbonyl stretching (which they calculated at 1778 and 1765 cm−1) and δ(NH2) bending vibration
(theoretical value at 1634 cm−1). Also, they observed a band at 612 cm−1 and assigned it to
δ(O=C–O) in plane bending (their calculated values for the two corresponding modes were
618 and 599 cm−1). Our results predict two carbonyl stretching modes, the ν(C6=O7) being 58
wavenumbers higher thanν(C19=O10) (Table 1). At the lower end of the spectrum, two δ(O=C–O)
bending modes are predicted at 561 and 526 cm−1, while two δ(O=C-C) modes are expected
at 504 and 422 cm−1. The 561 and 504 cm−1 modes are associated with the C6=O7 bond and
the 526 and 422 cm−1 modes with the C19=O10 group. Our computations predict that binding
of gold to amino group will reduce the ν(C6=O7) by 28 cm−1 and introduce mixing of δ(NH2)
and ν(C19=O10) modes (Table 1). For Glu-Au, the bending mode δ(O7=C6–O1) is predicted
at 555 cm−1, δ(O10=C19–O14) at 532 cm−1, δ(O7=C6–C8) at 476 cm−1, and δ(O10=C19C15) at
429 cm−1. The silver atom was found to prefer binding to hydroxyl oxygen O1, and the bending
mode δ(O7=C6–O1) calculated at 676 cm−1 agrees with the observed one at 680 cm−1 (Figure 4
and Table 1). A δ(HNC) bending mode at 814 cm−1 and a ν(C–C) stretching mode at 802 cm−1

are predicted for Glu-Ag (Table S4).
In Table 3, one can compare assignments of observed bands in SERS spectra of Glu at

pH 3.3, 7, and 10, as displayed in Figure 4, Figure 6, and Figure 7.
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Figure 6. Comparison of the SERS spectrum of 1 µM Glu at pH 3.5 (top) and the SERS spectrum of
100 pM Glu at pH 7 (middle), both on SersitiveAgAu substrate, with excitation at 785 nm. Calculated
scaled (0.968) theoretical SERS spectrum of Glu-Au is at the bottom.
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Figure 7. Comparison of the SERS spectrum of 1 µM Glu at pH 10 with the SERS spectrum of 0.1 mM
Glu at pH 12. Both spectra were recorded with 532 nm on OceanInsight Ag substrate.

The carbonyl stretching vibration appears at 1732 cm−1 in the Raman spectrum of the
polycrystalline powder and at 1714 cm−1 in the SERS spectrum of Glu at pH 3.3 (Figure 4).
For Glu at pH 7, one expects two antisymmetric stretching of CO2 and three NH3

+ bending
vibrations per one type of binding site, while strong bands at 1627, 1602, and 1562 cm−1

appear on top of a broad band centered roughly at 1600 cm−1. Shurvell and Bergin assigned
the 1610 cm−1 band observed in the aqueous solution of Glu at pH 7 and the 1570 cm−1 band
observed in the spectrum of solution having pH 12.5 to the asymmetric COO− stretching
vibration [29]. They are consistent with the weak band of the sodium acetate solution at
pH 14 [68,69]. In contrast, if the calculated normal modes of sodium glutamate are considered,
scaled values of δ(NH2) scissoring at 1621 cm−1 and νasym(COO−) at 1539 cm−1 are found.
The bands at 1615 and 1538 cm−1 observed in the SERS spectrum of 0.1 mM Glu at pH 12 we
can assign to these modes (Figure 7 and Figure S3 in the Supplementary Information).
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Differences in the observed spectra of Glu take place on changing pH and/or concen-
tration. While calculated Raman spectra of Glu-Ag and Glu-Au served as a basis for the
assignment presented in Table 3, the fact is that they were calculated for Glu in the neutral
form, forming complexes with noble metal atoms, while SERS spectra were obtained at
pH values at which at least one carboxyl group is deprotonated. Taking this into account,
we assign a 1400 cm−1 medium and a strong 1365 cm−1 band observed in the 1 nanoM
spectrum of Glu at pH 3.3, 1398, and 1365 cm−1 bands found in the spectrum of 0.1 nanoM
spectrum of Glu at pH 7 (Figure 6) and 1388 cm−1 band observed in the spectrum of 1µM
spectrum of Glu at pH 10 to the symmetric stretching of COO− (Figure 7 and Table 3). Suh
and Moskovits assigned the 1371 and 1361 cm−1 bands observed in the SERS spectrum of
glycine to νsym(COO−) [43], while Chumanov et al. assigned this mode to the 1367 cm−1

band in the SERS spectrum of Glu [44].

Table 3. Comparison of SERS spectra of glutamic acid at pH 3.3, 7, and 10 shown in Figure 4, Figure 6
and Figure 7. The assignment considers shifts of hydrated glutamic acid due to binding to Ag or Au.

1 nanoM pH 3.3
OceanInsight Ag

532 nm
Assignment

0.1 nanoM
pH 7

Sersitive AgAu
785 nm

Assignment

1 microM
pH 10

OceanInsight Ag
532 nm

Assignment

1714 w ν(C=O)

1653 ms δ(NH3
+) + νasym(CO2

−)

1627 s δ(NH3
+) 1629 m δ(NH2)

1625 ms δ(NH3
+) + νasym(CO2

−)

1598 ms δ(NH3
+) + νasym(CO2

−) 1602 s δ(NH3
+) 1597 m νasym(CO2

−)

1576 ms δ(NH3
+) + νasym(CO2

−) 1575 m νasym(CO2
−)

1551 ms νasym(CO2
-) 1562 m,sh νasym(CO2

-) 1556 m νasym(CO2
−)

1532 m νasym(CO2
−) second site

1513 s δ(NH3
+) + νasym(CO2

−)

1467 s δ(CH2) scissoring 1474 s δ(CH2) scissoring 1463 s δ(CH2) scissoring

1447 m, sh δ(CH2) scissoring

1437 m,sh δ(CH2) scissoring

1400 m νsym(CO2
−) 1398 m νsym(CO2

−)

1365 s νsym(CO2
−) 1362 s νsym(CO2

−) 1388 mw νsym(CO2
−)

1312 ms δ(CH2) wagging 1301 ms δ(CH2) wagging

1268 m, sh C19-O14-H18 bend. 1264 m, sh, br C19-O14-H18 bend.

1239 m, sh CH2 twisting 1239 ms, sh CH2 twisting

1195 m, sh CH2 twisting 1190 m HCC + HNC bend. 1189 m, sh CH2 twisting

1180 m HNC bending

1127 m HNC bending

1114 m,br C19-O14-H18 bend +
ν(C–C) str.

1090 m C6–O1 str. 1106 m C6-O1 str.

1047 m, br ν(C–O) str. 1060 ms ν(C–O) str.

1002 w HCC bend. 1002 w HCC bend.

989 w HNC bending

928 mw ν(C–C) str. 934 ms ν(C–C) str. 923 mw ν(C–C) str.

915 mw ν(C–C) str. 903 w ν(N-C) str. +HNC bend. ν(C–C) str.
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Table 3. Cont.

1 nanoM pH 3.3
OceanInsight Ag

532 nm
Assignment

0.1 nanoM
pH 7

Sersitive AgAu
785 nm

Assignment

1 microM
pH 10

OceanInsight Ag
532 nm

Assignment

867 w ν(C–C) str.

855 m, br ν(C–C) str. 853 ms ν(C–C) str.

822 mw,sh ν(C–C) str 835 w O10=C19 out of plane 823 m ν(C–C) str.

778 m δ(CH2) rocking

768 m δ(CH2) rocking 768 m δ(CH2) rocking 772 vw δ(CH2) rocking

756 m δ(CH2) rocking

680 m δ(CO2
−) bending 681 m δ(CO2

−) bending 678 s δ(CO2
−) bending

652 m, sh

628 m O7=C6–O1 bending

612 s O7=C6–O1 bending 613 w O7=C6–O1 bending

566 w O10=C19–O14 bending 555 w O10=C19–O14 bending

522 w Water libration 527 w

483 w O7=C6–C8 bending 485 w O7=C6–C8 bending 487 mw O7=C6–C8 bending

450 ms

439 ms

405 w N2-C8-C6 bending 406 w N2-C8-C6 bending 412 w N2-C8-C6 bending

352 w skeletal mode

236 vs Ag ··· O1 stretching 225 vs Au ··· N2 stretching 236 vs Ag ··· O1 stretching

The 1625 cm−1 band of Glu at pH 3.3 is assigned to the δ(NH3
+) + νasym(COO−)

mode based on the calculated value of 1605 cm−1 for Glu-H2O, while the 1615 cm−1 band
observed in SERS spectrum of Glu at pH 12 is assigned to the NH2 scissoring mode based on
the normal modes of Na-glutamate (Table S5 in the Supplementary Information). Binding
of Glu to gold has the effect of enhancing the bands corresponding to δ(NH3

+) modes
observed at 1602 and 1627 cm−1 (Figure 4 and Table 3).

The reason for selective amplification of the SERS band intensities is explained
in Figure 3 of Yamamoto and Itoh [70]. The most amplified part of the SERS spectrum is the
one that coincides with the plasmonic resonance energy of the metal nanoparticles of the
substrate; this parameter changes from colloids to solid substrates and differs to a lesser
extent for different hotspots on irregular surfaces of a given solid substrate. The electric
field created by the substrate and surrounding molecules can have a great effect on the
number of bands appearing in a SERS spectrum, as Aranda et al. demonstrated in the case
of pyridine (Figure 4 in ref. [18]).

To clarify the nature of the binding of Glu to nanostructured Ag and Au metal surfaces,
DLS experiments were performed, which yielded similar particle sizes both for gold
nanoparticles in the colloid, in mixtures with water, and in mixtures of 1 mM glutamic
acid at pH 3.5 and pH 12 (Table 4). In all cases, it was found that particles were negatively
charged at the slipping layer, and their zeta potential was found to be lower than −30 mV,
indicating that particles were stable [71].

The UV-VIS spectra of Glu 1 mM, Au NPs, Ag NPs, and the 1:1 mixture of NPs and
Glu at pH 3.5 are shown in Figure 8A–D. The spectra of Glu exhibit an absorption edge at
wavelengths below 300 nm, while the absorption spectra of the aqueous solutions of Au
and Ag NPs show only the surface plasmon bands expected for spherical nanoparticles,
centered at 523 nm for Au and 403 nm for Ag, respectively, as well as the shoulders due
to interband transitions at shorter wavelengths (Figure 8A,B) [72]. As is typical for pure
metal NPs obtained by laser ablation in water, there are no other absorption bands in the
UV region, such as the bands due to organic stabilizers or synthesis by-products of metal
NPs obtained by chemical methods [73]. The spectra of Au- and Ag-NP remain unchanged
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even after 1 h in the aqueous solution. However, when the Glu solution is added to the
Au and Ag NPs, a change in the surface plasmon band can be observed (Figure 8A,B),
which consists of a decrease in peak intensity and an increase in plasmon absorption in the
red spectral region. Fitting the experimental spectra with a code based on the Mie theory
for spherical nanoparticles and the Gans model for non-spherical particles (MG fit) was
performed [72]. Figure 8C,D shows that these spectral changes are due to the increase in
the proportion of non-spherical particles (i.e., aggregates of NPs) in the mixture (39% for
Au and 72% for Ag) compared to the bare NPs (24% for Au and 69% for Ag).

Table 4. Hydrodynamic diameters and zeta potential values of Au colloid samples.

Sample Peak 1/nm Population 1
(%) Peak 2/nm Population 2

(%) Zeta Potential/mV

Pure Au colloid 19.5 ± 0.5 99.8 73.9 ± 3.2 0.2 −39.81 ± 1.96

Au + H2O 1:1 15.8 ± 1.6 99.9 70.6 ± 2.7 0.1 −42.2 ± 2.7

1 mM Glu
pH = 12 8.67 ± 1.3 100.0 −36.98 ± 2.55

Au + 1 mM Glu 1:1,
pH = 12 13.6 ± 1.3 100.0 −41.2 ± 0.4

Au+1mM Glu 1:1,
pH = 3.5 14.9 ± 1.0 100.0 −37.6 ± 2.8
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Figure 8. The UV-VIS spectra of Glu 1 mM, Au NPs (left), and Ag NPs (right) at pH 3.5.
(A) Comparison of the UV-VIS spectra of Glu, bare Au, and the 1:1 mixture of Glu 1 mM and
Au NPs. (B) The comparison of the UV-VIS spectra of Glu, bare Ag, and the 1:1 mixture of Glu 1 mM
and Ag NPs. The decrease in intensity of the plasmon peak and the increase in absorbance in the red
region are observed in the spectra of the mixtures in (A,B). (C,D) Mie–Gans fit (open circles) of the
spectra in (A,B), showing that the proportion of non-spherical nanoparticles increases in the mixtures
of Glu with NPs (39% for Au and 72% for Ag) compared to the bare NPs (24% for Au and 69% for
Ag) due to the aggregation of the NPs. The spectra have been shifted for clarity.



Biosensors 2024, 14, 522 14 of 19

The UV-VIS spectra of Glu 1 mM, Au NPs, Ag NPs, and the 1:1 mixtures of NPs and
Glu at pH 12 are shown in Figure 9A–D. A peak at 293 nm appears in the spectra of the
Glu-containing solutions, which was not observed at pH 3.5 (Figure 8A,B). The peak that
would correspond to sodium glutamate is expected at 210 nm [74]; therefore, the peak
we observed could correspond to the multiple aggregates of the buffering agent NaOH
with Glu. After 1 h, the absorbance of the Glu-containing solutions continued to develop
with an increase in the 200–250 nm range, and this absorbance is assigned to monosodium
glutamate [74]. Instead, the spectra of the bare Au and Ag NPs remain unchanged even
after 1 h in the aqueous solution. After mixing with Glu and ageing for 1 h, no changes
are observed in the absorbance of the NPs compared to the unmixed NPs. The absorbance
of Glu is also equivalent to that of the compound alone, as it shows the same change in
the 200–250 nm range after one hour of ageing. The fitting of the experimental spectra
(Figure 9C,D) confirmed that no changes occurred and that mixing or ageing did not lead
to aggregation of the NPs.

Biosensors 2024, 14, x FOR PEER REVIEW 15 of 20 
 

 
Figure 9. UV–VIS spectra of Glu 1 mM, Au NPs (left), and Ag NPs (right) at pH 12. (A) Comparison 
of the UV–VIS spectra of Glu, bare Au, and the 1:1 mixture of Glu 1 mM and Au NPs. (B) The 
comparison of the UV–VIS spectra of Glu, bare Ag, and the 1:1 mixture of Glu 1 mM and Ag NPs. 
(C,D) Mie–Gans fit (open circles) of the spectra in (A,B), indicating that the proportion of non-spher-
ical nanoparticles in the mixtures of Glu with NPs even after 1 h (27% for Au and 69% for Ag) 
corresponds to that of the bare NPs (27% for Au and 70% for Ag), that is, that the aggregation of the 
particles does not increase due to the interaction with Glu. The spectra have been shifted for clarity. 

The SERS spectrum of 1 mM Glu at pH 12 obtained with the Au colloid shows no 
discernible bands above 1600 cm−1 due to a huge, very broad band centered around 2700 
cm−1, which is attributed to photoluminescence of silicon under a 785 nm laser beam (Fig-
ure 10). The observed bands are as follows: 1593 cm−1—assigned to δ(NH2), 1533 cm−1—
assigned to νasym(COO−), 1435 cm−1—assigned to δ(CH2) bending, 1379 cm−1—assigned to 
νsym(COO−), and the three bands at 837, 939, and 978 cm−1 to ν(C–C) stretching vibrations. 
Some of the bands are close to the ones observed in SERS spectra of Glu with Au colloids 
by Philip, like the 1365 cm−1 band she assigned to the CH2 wag but is assigned to the CO2- 
symmetric stretching (Table 3). 

 
Figure 10. SERS spectrum of 1 mM solution of L-Glu at pH 12 obtained when mixed 1:1 v/v with 
gold colloid and dropped on Si plate. Excitation line: 785 nm. 

Figure 9. UV–VIS spectra of Glu 1 mM, Au NPs (left), and Ag NPs (right) at pH 12. (A) Comparison
of the UV–VIS spectra of Glu, bare Au, and the 1:1 mixture of Glu 1 mM and Au NPs. (B) The
comparison of the UV–VIS spectra of Glu, bare Ag, and the 1:1 mixture of Glu 1 mM and Ag NPs.
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spherical nanoparticles in the mixtures of Glu with NPs even after 1 h (27% for Au and 69% for Ag)
corresponds to that of the bare NPs (27% for Au and 70% for Ag), that is, that the aggregation of the
particles does not increase due to the interaction with Glu. The spectra have been shifted for clarity.

The SERS spectrum of 1 mM Glu at pH 12 obtained with the Au colloid shows no discernible
bands above 1600 cm−1 due to a huge, very broad band centered around 2700 cm−1, which is
attributed to photoluminescence of silicon under a 785 nm laser beam (Figure 10). The observed
bands are as follows: 1593 cm−1—assigned to δ(NH2), 1533 cm−1—assigned to νasym(COO−),
1435 cm−1—assigned to δ(CH2) bending, 1379 cm−1—assigned to νsym(COO−), and the three
bands at 837, 939, and 978 cm−1 to ν(C–C) stretching vibrations. Some of the bands are close to
the ones observed in SERS spectra of Glu with Au colloids by Philip, like the 1365 cm−1 band she
assigned to the CH2 wag but is assigned to the CO2

- symmetric stretching (Table 3).
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Overlapping of bands is also observed in SERS spectra of Glu obtained with silver
colloids (Figure 11). The observed band at 927 cm−1 can be compared with the 930 cm−1

band reported by Stewart and Fredericks [45].

Biosensors 2024, 14, x FOR PEER REVIEW 16 of 20 
 

Overlapping of bands is also observed in SERS spectra of Glu obtained with silver 
colloids (Figure 11). The observed band at 927 cm−1 can be compared with the 930 cm−1 
band reported by Stewart and Fredericks [45]. 

 
Figure 11. Comparison of SERS spectra of 0.1 µM Glu solution at pH 3.5 with the SERS spectrum of 
0.1 mM Glu at pH 3.5, both obtained using Ag colloid and 532 nm laser. 

The discrimination of amino acids by SERS can be challenging. Sengupta et al. [51] 
used µM concentrations of alanine, lysine, and glutamic acid and obtained very similar 
spectra with the strongest bands at 1640, 1401, and 1379 cm−1. The SERS spectra of Glu and 
Asp acids, also mixed in µM concentrations with colloids, differed mainly in the C–C 
stretching vibration as follows: the one at 830 cm−1 was characteristic of Glu, while that of 
Asp acid was at 785 cm−1, as reported by O’Neal [5]. O’Neal [5] and Chumanov [44] ob-
served the band at 830 cm−1 assigned to the C–C stretching, while we assigned the 855 and 
822 cm−1 bands to two C-C stretching modes at pH 3.3 and to 853 and 823 cm−1 bands at 
pH 10 (Table 3 and Figures 4 and 7). Guicheteau et al. [52] reported SERS spectra of dried 
colloidal 6.8 mM Glu solutions having characteristic bands at 814, 946, 1236, 1397, 1549, 
and 1599 cm−1, which are consistent with the bands we observed at 1239, 1393, 1542, and 
1596 cm−1 in the SERS spectrum of Glu at pH 3.5 obtained with silver colloid. 

Our comparison of calculated normal modes of Glu-Au and Glu-Ag with observed 
SERS bands is limited by the fact that models of Glu-metal complexes are not zwitterions, 
while in experimental conditions, Glu is always zwitterionic (scheme in Figure 3). How-
ever, we conclude that binding of silver increases the intensity of the 680 cm−1 band at-
tributed to O=C-O bending mode, while binding of gold increases the intensity of the 458 
cm−1 band assigned to O=C-C bending mode. 

4. Conclusions 
We report an experimental and computational study of the binding of glutamic acid 

to gold and silver substrates by comparing ab initio results of binding gold and silver 
atoms to a free Glu molecule with the experimental spectra of Glu solutions at pH values 
of 3.3, 3.5, 7, 10, and 12. The lowest Glu concentration for which SERS spectra were ob-
served is 0.1 nM at pH 7 using Sersitive substrates and 785 nm laser line as an excitation 
source. Observed variability in SERS spectra of glutamic acid reflects the diversity of bind-
ing sites present in substrates used. 

Figure 11. Comparison of SERS spectra of 0.1 µM Glu solution at pH 3.5 with the SERS spectrum of
0.1 mM Glu at pH 3.5, both obtained using Ag colloid and 532 nm laser.

The discrimination of amino acids by SERS can be challenging. Sengupta et al. [51]
used µM concentrations of alanine, lysine, and glutamic acid and obtained very similar
spectra with the strongest bands at 1640, 1401, and 1379 cm−1. The SERS spectra of Glu
and Asp acids, also mixed in µM concentrations with colloids, differed mainly in the C–C
stretching vibration as follows: the one at 830 cm−1 was characteristic of Glu, while that
of Asp acid was at 785 cm−1, as reported by O’Neal [5]. O’Neal [5] and Chumanov [44]
observed the band at 830 cm−1 assigned to the C–C stretching, while we assigned the
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855 and 822 cm−1 bands to two C-C stretching modes at pH 3.3 and to 853 and 823 cm−1

bands at pH 10 (Table 3 and Figures 4 and 7). Guicheteau et al. [52] reported SERS spectra
of dried colloidal 6.8 mM Glu solutions having characteristic bands at 814, 946, 1236, 1397,
1549, and 1599 cm−1, which are consistent with the bands we observed at 1239, 1393, 1542,
and 1596 cm−1 in the SERS spectrum of Glu at pH 3.5 obtained with silver colloid.

Our comparison of calculated normal modes of Glu-Au and Glu-Ag with observed
SERS bands is limited by the fact that models of Glu-metal complexes are not zwitterions,
while in experimental conditions, Glu is always zwitterionic (scheme in Figure 3). However,
we conclude that binding of silver increases the intensity of the 680 cm−1 band attributed
to O=C-O bending mode, while binding of gold increases the intensity of the 458 cm−1

band assigned to O=C-C bending mode.

4. Conclusions

We report an experimental and computational study of the binding of glutamic acid to
gold and silver substrates by comparing ab initio results of binding gold and silver atoms
to a free Glu molecule with the experimental spectra of Glu solutions at pH values of 3.3,
3.5, 7, 10, and 12. The lowest Glu concentration for which SERS spectra were observed
is 0.1 nM at pH 7 using Sersitive substrates and 785 nm laser line as an excitation source.
Observed variability in SERS spectra of glutamic acid reflects the diversity of binding sites
present in substrates used.

Binding of silver atoms causes selective amplification of the modes associated with
the binding site; here the carbonyl and hydroxyl groups are closer to the amino group. The
energy difference between Glu-H2O and Glu-Au complex is -0.087 eV in favor of binding
with water at the b3lyp/lanl2dz level of theory; hence, glutamic acid is hydrated when it
binds to metal atoms.

At low pH, the assignment was aided by ab initio calculations of crystal phonons,
since the zwitterionic form of the Glu molecule at pH 3.5 has the same protonation state
as in the crystal. At basic pH, the ab initio calculation of the normal modes of the sodium
glutamate molecule provided the basis for the assignment. Analysis of the UV–VIS spectra
of Ag and Au colloids and their solutions with glutamic acid at pH 12 revealed that no
aggregation of the metal particles occurs. Therefore, the width of the spectral bands is
primarily attributed to different types of Glu-metal binding.

Supplementary Materials: The following supporting information can be downloaded at:
https://www.mdpi.com/article/10.3390/bios14110522/s1, Figure S1: Transmission electron mi-
croscopy estimates the size of particles in silver colloid to be 26 ± 6 nm; Figure S2: Transmission elec-
tron microscopy estimates the size of particles in gold colloid to be 15.5 ± 3.9 nm.
Figure S3: Comparison of SERS spectra of Glu at pH 12 for 10-4 M and 10-9 M concentrations
using OceanInsight substrate and 532 nm excitation. Table S1: Potential energy distribution among
normal modes of glutamic acid with the list of internal coordinates; Table S2: Potential energy dis-
tribution among normal modes of glutamic acid monohydrate with the list of internal coordinates;
Table S3: Potential energy distribution among normal modes of glutamic acid bound to a gold atom
with the list of internal coordinates; Table S4: Potential energy distribution among normal modes of
glutamic acid bound to a silver atom with the list of internal coordinates; Table S5: Potential energy
distribution among normal modes of sodium glutamate with the list of internal coordinates.
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