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Abstract
Research on microbial communities associated with wild animals provides a valuable reservoir of knowledge that could 
be used for enhancing their rehabilitation and conservation. The loggerhead sea turtle (Caretta caretta) is a globally 
distributed species with its Mediterranean population categorized as least concern according to the IUCN Red List of 
Threatened Species as a result of robust conservation efforts. In our study, we aimed to further understand their biology in 
relation to their associated microorganisms. We investigated epi- and endozoic bacterial and endozoic fungal communi-
ties of cloaca, oral mucosa, carapace biofilm. Samples obtained from 18 juvenile, subadult, and adult turtles as well as 8 
respective enclosures, over a 3-year period, were analysed by amplicon sequencing of 16S rRNA gene and ITS2 region 
of nuclear ribosomal gene. Our results reveal a trend of decreasing diversity of distal gut bacterial communities with the 
age of turtles. Notably, Tenacibaculum species show higher relative abundance in juveniles than in adults. Differential 
abundances of taxa identified as Tenacibaculum, Moraxellaceae, Cardiobacteriaceae, and Campylobacter were observed 
in both cloacal and oral samples in addition to having distinct microbial compositions with Halioglobus taxa present only 
in oral samples. Fungal communities in loggerheads’ cloaca were diverse and varied significantly among individuals, 
differing from those of tank water. Our findings expand the known microbial diversity repertoire of loggerhead turtles, 
highlighting interesting taxa specific to individual body sites. This study provides a comprehensive view of the loggerhead 
sea turtle bacterial microbiota and marks the first report of distal gut fungal communities that contributes to establishing 
a baseline understanding of loggerhead sea turtle holobiont.

Keywords Caretta caretta · Wild microbiome · Reptile microbiota · Conservation efforts · Mycobiota

Introduction

Microbial communities associated with animal hosts play cru-
cial roles in various aspects of the host’s development, physi-
ology, immune response, metabolism, and reproduction, and 
may have an impact on the host’s evolutionary potential [1, 
2]. While the importance of sea turtle epibiosis with macro-
epibionts (> 1 mm) such as barnacles has long been recog-
nized [3], research on the microbial epibionts and endobionts 
of sea turtles has only recently gained attention [4–6]. Sea 
turtles hold a unique ecological role as keystone species, con-
necting terrestrial and coastal habitats, but they are also highly 
vulnerable to anthropogenic threats, such as climate change, 
disruption of feeding and breeding habitats, egg poaching, and 
accidental bycatch [7–9]. To lessen some of the pressure sea 
turtles face today, global conservation efforts have focused on 
safeguarding female turtles and their nesting areas, together 

 * Sunčica Bosak 
 suncica.bosak@biol.pmf.unizg.hr

1 Department of Biology, Faculty of Science, University 
of Zagreb, Horvatovac 102a, HR-10000 Zagreb, Croatia

2 Ruđer Bošković Institute, Bijenička 54, HR-10000 Zagreb, 
Croatia

3 Campus Universitario, University of Bari “Aldo Moro”, Via 
Orabona 4, 70125 Bari, BA, Italy

4 Department of Veterinary Medicine, University of Bari “Aldo 
Moro”, Str. Prov. Per Casamassima Km 3, 70010 Valenzano, 
BA, Italy

5 Diagnostic and Research Institute of Hygiene, Microbiology 
and Environmental Medicine, Medical University of Graz, 
Neue Stiftingtalstraße 6, 8010 Graz, Austria

http://crossmark.crossref.org/dialog/?doi=10.1007/s00248-024-02388-x&domain=pdf
http://orcid.org/0000-0003-2518-4494
http://orcid.org/0009-0002-0477-4962
http://orcid.org/0000-0001-5673-4511
http://orcid.org/0000-0003-3869-8742
http://orcid.org/0000-0002-0559-6849
http://orcid.org/0000-0002-0164-6730
http://orcid.org/0000-0002-4604-2324


 K. Filek et al.79 Page 2 of 16

with the rehabilitation of injured and sick turtles [8]. Moti-
vated by the aim of enhancing the rehabilitation and conser-
vation of wild animals and their associated microbiomes, the 
studies of sea turtle gut, skin, egg, and nest microbiomes have 
become a forefront in sea turtle conservation research, build-
ing upon cultivation-based and pathogen-oriented research in 
the veterinary domain [10–12].

Loggerhead sea turtles (Caretta caretta) are a widely dis-
tributed species and are classified as vulnerable by the IUCN 
Red List of threatened species [13]. However, the Mediter-
ranean subpopulation of loggerheads is categorized as “Least 
Concern” due to long-term successful conservation efforts 
[8, 13]. Currently, loggerhead sea turtles’ microbiota is the 
second most studied, preceded only by green turtles (Chelo-
nia mydas) [6]. Previous studies that used culture-dependent 
approaches have identified the most common pathogens asso-
ciated with mucosal surfaces, skin lesions (such as bacterial 
families Aeromonadaceae, Pseudomonadaceae, Enterobac-
teriaceae), and hatchling failure (Fusarium spp.), with the 
presence of antibiotic resistance genes indicating loggerheads 
as sentinels of antibiotic pollution in the Mediterranean [11, 
14–22]. Recent investigations using next-generation sequenc-
ing approaches to study the loggerhead microbiota shed light 
on the bacterial community structure and composition of the 
gastrointestinal tract [5, 23, 24], the impact of rehabilitation 
on mucosal bacteriomes [24, 25], the effects of plastic pol-
lution on the gut bacteria [26], variations in microbial com-
munities driven by localities [27, 28] or turtle anatomy [28, 
29], and host-microbial coevolution patterns [30]. On the 
other hand, the fungal communities associated with marine 
reptiles, including sea turtles, have received limited attention 
using cultivation-independent approaches, despite the vulner-
ability of sea turtles to infections caused by Fusarium spp. 
during early development [18]. Recent work by Guo et al. 
[31] provided initial insights into the fungal communities 
found on carapace (healthy and ulcerated), in faeces, and in 
the seawater of green turtle juveniles undergoing rehabilita-
tion; however, comprehensive surveys of endobiotic fungal 
communities in loggerhead sea turtles have not yet been con-
ducted. Given the ecological significance of loggerhead sea 
turtles in the Mediterranean basin ecosystem, their role as 
sentinels for pollution, and their potential to act as vectors 
for zoonotic diseases, a comprehensive approach including 
eukaryotic microorganisms is necessary to understand the 
loggerhead sea turtle microbiota. This knowledge will con-
tribute to the advancement of current conservation practices 
and future microbial stewardship efforts [32].

The objective of this study was to investigate the bacte-
rial and fungal communities associated with loggerhead sea 
turtles found in the Adriatic Sea. More specifically, we aimed 
to analyse the bacterial communities in the cloacal, oral, and 
enclosure samples, as well as fungal communities of cloacal 
and enclosure tank water samples using amplicon sequencing 

targeting the V3-V4 (V34) region of 16S rRNA gene and the 
ITS2 region of nuclear ribosomal genes, respectively. Further-
more, when available, we aimed to compare the bacterial com-
munities of carapace biofilm samples corresponding to turtles 
in this study out of which some were previously analysed as a 
part of our earlier study on sea turtle epibiosis [28]. By com-
bining these datasets, we provide a comprehensive overview 
of the environmental, surface, and internal microbiota of the 
loggerhead turtles, establishing a baseline for future holobiont 
approaches to studying the loggerhead sea turtles.

Methods

Loggerhead Sea Turtle Sampling

Loggerhead sea turtles investigated in this study were found 
at various locations along the Adriatic Sea coast from 2019 
to 2021 (Fig. 1a) and transported to two locations where 
the sampling was conducted: at the Sea Turtle Clinic (STC) 
of the Department of Veterinary Medicine of University of 
Bari “Aldo Moro” in Italy and the Sea Turtle Rescue Center 
Aquarium Pula in Croatia. The turtles were sampled imme-
diately upon their arrival to the rehabilitation centres or dur-
ing/after rehabilitation, and prior to release (Table S1). A 
total of 18 loggerhead sea turtles and 8 respective enclosures 
were included in the sampling. Turtles were classified as 
juveniles (n = 10), subadult (n = 4), and adults (n = 4) accord-
ing to their size [33] and sex determination was based on 
observable physical characteristics when possible (Table 1; 
Fig. 1b). Additional information about sampling procedures 
and the loggerhead population surveyed in this study can be 
found in Supplementary Methods and Table S2.

The endozoic samples were collected from cloacal and 
oral cavities in triplicate by sterile synthetic swabs (Aptaca 
Nuova) as described in Filek et al. [25]. When available, 
enclosure tank water was collected in sterile containers, 
vacuum filtered on 0.2-μm sterile Whatman polycarbon-
ate membrane filters (Sigma-Aldrich), and stored in 2-ml 
tubes in 96% EtOH. All samples were stored at −20 °C 
until DNA extraction and further processing. Addition-
ally, corresponding epizoic carapace biofilm samples were 
obtained by randomly brushing the entire carapace using 
a toothbrush (Dentalux Classic, hard, Lidl) according to 
[28, 34] and the collected material was resuspended in 
96% EtOH, and stored at −20 °C (Table 1). Each endozoic 
sequencing sample ID that is referred to in this manu-
script has a 16S or ITS prefix, sampling event number, 
and suffix corresponding to sampling site: C — cloaca, 
O — oral cavity, W — tank water; for example, sample 
ID ITS0084C represents cloacal sample of fungal ITS2 
sequences for sampling event 0084 (turtle ID010; Table 1). 
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Fig. 1  Locations and body measurements of loggerhead sea turtles 
with corresponding IDs. (a) Map of locations where loggerhead sea 
turtles were found prior to transport to rehabilitation centres and sam-
pling. (b) Relationship of loggerheads’ weight in kilogrammes and 

curved carapace length in centimetres (CCL). The sex of each turtle 
is indicated by shape [female triangle, male square, and not deter-
mined (ND) circle], while age range was determined as follows: juve-
niles ≤ 59.9 cm, subadults 60–69.9 cm, adults ≥ 70 cm

Table 1  Information about 
loggerhead sea turtles and their 
corresponding endozoic (16S 
rRNA gene and fungal ITS2 
region) and epizoic (16S rRNA 
gene) samples (V4 — Kanjer 
et al. [28], V34 — this study). 
The turtles were retrieved at 
various locations in the Adriatic 
Sea and were admitted to Sea 
Turtle Rescue Center Aquarium 
Pula (Croatia) unless indicated 
otherwise (TTyrrhenian Sea; 
STCThe Sea Turtle Clinic at 
University of Bari, Italy). The 
abbreviations are as follows: 
Clo, cloaca; Orl, oral cavity; 
TW, tank water; Car, carapace; 
NA, not available; ND, not 
determined

Turtle ID Turtle name Sampling event Endozoic 16S/
ITS2 sample 
presence (+) or 
absence (-)*

Epizoic 16S  
sample ID 
(region)

Sex Age range

Clo Orl TW Car

ID010 Merry Fisher 0084 +/+ -/- +/+ TB139 (V4) Female Subadult
ID047 Žal 0064 +/+ +/- +/+ TB115 (V4) ND Juvenile
ID056 Samba 0073 +/+ +/- +/+ TB117 (V4) Female Adult
ID057 AngeloT, STC 0074 +/+ +/- -/- NA Male Adult

0092 +/+ +/- -/- TB119 (V4)
ID068 KanoohSTC 0087 +/+ +/- -/- TB145 (V4) ND Juvenile
ID069 KanfusSTC 0088 +/+ +/- -/- NA ND Juvenile
ID070 FutonSTC 0089 +/+ +/- -/- TB149 (V4) ND Juvenile
ID071 CosmynSTC 0090 +/+ +/- -/- TB151 (V4) ND Subadult
ID073 Marvin 0093 +/+ +/- +/+ TB155 (V4) ND Juvenile
ID074 Ryan 0094 +/+ +/- -/- TB157 (V4) ND Juvenile
ID093 Ella Ravka 0113 +/+ +/- -/- TB159 (V34) ND Subadult

0119 +/+ +/- +/+ NA
ID096 Maro 0117 +/+ +/- +/+ TB167 (V34) Female Subadult

0118 +/+ +/- +/+ NA
ID097 Freewings 0120 +/+ +/- +/+ NA ND Juvenile
ID098 Maksimus 0123 +/+ +/- +/+ TB175 (V34)** ND Juvenile
ID117 Karlo Albano 0141 +/+ +/- -/- TB215 (V34) Male Adult
ID118 Oliver Raul 0142 +/+ +/- -/- TB217 (V34) ND Juvenile
ID119 Martin 0143 +/+ +/- -/- TB219 (V34) ND Juvenile
ID122 Luka Amadeo 0146 +/- +/- -/- NA Male Adult
*Each sample ID has a 16S or ITS prefix, sampling event number, and suffix corresponding to sampling 

site: C, cloaca; O, oral cavity; W, tank water; for example, sample ID ITS0084C represents cloacal 
sample of fungal ITS2 sequences for sampling event 0084

**Carapace sample was collected at a different sampling event (a month prior to endozoic sampling)
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Epizoic samples have a TB prefix and numbering unrelated 
to sampling event.

DNA Extraction and Sequencing

Total DNA from swabs and filters was extracted using the 
DNeasy PowerSoil kit (Qiagen) following the manufactur-
er’s instructions with several modifications: (1) the samples 
were incubated in C1 solution at 65 °C for 1 h; (2) instead of 
bead beating, PowerBead Tubes were vortexed horizontally 
for 10 min at maximum speed; and (3) all downstream incu-
bation times at 2–8 °C were increased to 15 min.

The methods used for epizoic carapace biofilm samples 
that were sequenced for V4 region (ID010–ID074) were 
described by Kanjer et al. [28]. The DNA from biofilm 
scrapings (ID093–ID122) analysed only in this study was 
extracted via DNeasy PowerLyzer PowerSoil extraction 
kit (Qiagen) following the manufacturer’s instructions and 
modified as follows: (1) after addition of C1 solution, the 
samples were incubated at 70 °C for 10 min; (2) bead beat-
ing was performed at 30 Hz for 1 min in TissueLyzer Retsch 
Qiagen; (3) 50 µl of C6 solution was used for DNA elution 
and incubated for 5 min at room temperature prior to cen-
trifugation. Nuclease-free water (W4502, Sigma-Aldrich) 
was used as the negative control for the DNA extraction step 
and was processed using the DNA extraction kit in paral-
lel to all the samples. The quality and quantity of extracted 
DNA were evaluated by BioSpec-nano (Shimadzu).

The extracted DNA from both endozoic and epizoic sam-
ples was stored at −20 °C and sent for Illumina MiSeq v3 
300 × 2 bp paired-end sequencing to Microsynth, Switzerland. 
Primers used for sequencing the V34 region of 16S rRNA 
gene were 341F and 805R [35], and primers for fungal ITS2 
region of the nuclear ribosomal gene were ITS3 and ITS4 
[36].

Bioinformatics and Statistics

The obtained sequences had non-biological sequences 
trimmed by the sequencing facility and checked for quality 
with FastQC [37]. Sequencing data is available at EMBL 
ENA at accessions PRJEB62752 and PRJEB68298 for 16S 
rRNA gene, PRJEB62762 for ITS2 region sequences, and 
from Kanjer et al. [28] PRJEB51458. The sequences were 
imported and analysed in QIIME 2 (versions 2021.8 and 
2023.2) [38].

Statistical analyses were performed within QIIME 2 
environment and with R. Alpha diversity indices, including 
Shannon’s entropy, Pielou’s evenness, Faith’s phylogenetic 
diversity, and observed ASVs, were calculated via q2-diver-
sity plugin. The Kruskal-Wallis rank-sum test was employed 
to determine differences between selected groups, followed 
by post hoc pairwise comparisons using the Wilcoxon 

rank-sum exact test. For beta diversity analyses, rarefied 
data (sequencing depth determined by alpha rarefaction 
curves) were explored using the q2-diversity plugin with 
Bray-Curtis, Jaccard, unweighted UniFrac, and weighted 
UniFrac distances [39]. Compositional data analysis on 
non-rarefied datasets was performed by calculating robust 
Aitchison distances using the q2-deicode plugin or the R 
package vegan v.2.6-4 [40–42]. Principal coordinate analy-
sis (PCoA) was conducted on Bray-Curtis, Jaccard, and all 
UniFrac distances, while principal component analysis was 
performed for robust Aitchison (rPCA) using q2-diversity 
and q2-deicode, respectively. To assess the relative impact 
of factors (age range, sex, and duration of rehabilitation) on 
microbial communities, a multi-way permutational multi-
variate analysis of variance (Adonis2 PERMANOVA) with 
9999 permutations was employed (Anderson, 2001) in R 
by using vegan v.2.6-4 and pairwise Adonis v.0.4.1 pack-
ages [43]. Resulting p-values from all pairwise tests were 
adjusted using the Benjamini-Hochberg false-discovery 
rate (FDR) correction for multiple comparisons (reported as 
q-values). Differential abundance analysis was used to iden-
tify differentially abundant (DA) features in sample site pairs 
by using the ANCOMBC package “ancombc2” function in R 
[44, 45]. Default parameters were used and pairwise testing 
was enabled (with Holm’s method for adjusting p-values, 
reported as q-values), except for DA testing in V4-trimmed 
sequences where the “struc_zero” was set to “TRUE” to 
exclude structural zeros based on sampling sites. Log fold 
change (LFC) indicates the scale of differential abundance 
between differentially abundant features. Features with 
p-value < 0.05 were reported as differentially abundant, and 
q-value < 0.05 as significantly differentially abundant.

Data exploration and visualizations were conducted by 
using R v.4.3.0 in RStudio (R Core Team 2023) with pack-
ages listed above and in Supplement and qiime2R v.0.99.6 
[46], tidyverse v2.0.0 [47], ggplot2 v3.4.2 [48], Microsoft 
Excel, and Adobe Illustrator. Additional details of sample 
processing and data analyses are available in the Supple-
mentary Methods.

Results

Endozoic and Tank Water Bacterial Communities

Altogether, 50 endozoic and water samples (plus one nega-
tive control) were sequenced, and 7,110,067 high-quality 
sequences were obtained (median frequency per sample was 
107,522, min. 2, max. 911,443). Denoising yielded a total 
of 11,105 ASVs. After filtering mitochondrial and chloro-
plast sequences, the number of ASVs decreased to 10,946. 
Forty-three samples yielded enough high-quality reads (at 
minimum sequencing depth above 10,000) for downstream 
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analyses (19/21 cloacal, 16/20 oral, and 8/9 tank water 
samples).

The highest number of observed features (OF) and 
phylogenetic diversity (Faith’s PD) was found in tank 
water samples (median OF = 603, IQR = 450; median 
Faith’s PD = 42.8, IQR = 53.9), followed by oral samples 
(median OF 473, IQR = 428; median Faith’s PD 40.2, 
IQR = 26.2), and cloacal samples (median OF = 308, 
IQR = 235; median Faith’s PD = 28.4, IQR = 20) (Fig. 2a). 
ASV richness and evenness (Shannon’s index) were high-
est in oral samples (median = 6.28, IQR = 1.33), followed 
by cloacal (median = 5.62, IQR = 1.66) and tank water 
samples (median = 5.44, IQR = 1.67) (Fig.  2b). Alpha 
diversity showed significant differences among sample 
sites (Kruskal-Wallis rank-sum test) for OF and Faith’s 
PD (p-value < 0.01), while pairwise sample site com-
parisons (Wilcoxon rank sum test) showed differences 
between cloaca vs. oral samples and cloaca vs. tank water 
(q-value < 0.05). Shannon’s index showed weak statis-
tical difference among samples sites (p-value = 0.04). 
Pearson’s correlation on alpha diversity indices against 
size of the turtle (CCL) in individual sample site groups 
showed strong negative correlation between cloacal sam-
ples and OF and Faith’s PD (R = −0.67, p-value = 0.002 
and R = −0.59, p-value = 0.007, respectively) (Fig. 2c), 
while Shannon’s index showed weaker negative correla-
tion with CCL (R = −0.53, p-value = 0.021). Oral and tank 
water alpha diversity did not show any correlation effects. 
Further, within cloacal samples, differences were detected 

(Kruskal-Wallis p-value < 0.05) in age range (OF, pairwise 
Wilcox: adult vs. juvenile q-value = 0.024; Faith’s PD, 
pairwise: adult vs. juvenile q-value = 0.024) and sex of the 
turtles (OF, pairwise Wilcox: male vs. ND q-value = 0.004; 
Faith’s PD, pairwise: male vs. ND q-value = 0.018), which 
are directly related to turtles’ size.

Bacterial communities among samples sites differed 
based on PERMANOVA for Bray-Curtis (R2 = 0.09, 
Pr(> F) = 0.001), Jaccard (R2 = 0.08, Pr(> F) = 0.001), 
unweighted and weighted UniFrac (R2 = 0.12, 
Pr(> F) = 0.001; R2 = 0.13, Pr(> F) = 0.001, respectively), 
and robust Aitchison distances (R2 = 0.24, Pr(> F) = 0.002). 
Pairwise PERMANOVA detected differences between all 
sample site pairs for most beta diversity metrics except 
robust Aitchison where only cloaca vs. tank water and 
tank water vs. oral samples pairs were significantly differ-
ent (Pr(> F) ≤ 0.002). Highly ranked ASVs impacting the 
distribution of samples on rPCA biplot were assigned to 
Gammaproteobacteria, order Oceanospirillales, Shewanella 
algae, Vibrio sp., and NS3a marine group (Fig. 2d). Within 
cloacal samples, significant differences in bacterial com-
munities were detected between adults vs. juveniles (Bray-
Curtis, Jaccard, and unweighted UniFrac Pr(> F) < 0.05) 
and ND vs. males (all distances except robust Aitchison 
Pr(> F) < 0.05) or females (Jaccard and weighted UniFrac 
Pr(> F) < 0.05). In oral samples, there were differences 
between early vs. late hospitalization duration (all distances 
except robust Aitchison Pr(> F) < 0.05) and early vs. mid 
(weighted UniFrac Pr(> F) < 0.05) hospitalization durations.
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Fig. 2  Bacterial community structure and diversity in loggerhead 
sea turtles’ cloacal, oral, and tank water samples. Alpha diversity 
boxplots with sample density for Faith’s phylogenetic diversity (a) 
and Shannon’s index (b) per sample site. (c) Pearson’s correlation 

between Faith’s phylogenetic diversity and curved carapace length 
(CCL). (d) Robust Aitchison PCA biplot with highly ranked features 
as loadings. Cloacal samples are depicted by diamonds, oral samples 
by circles, and tank water by inverted triangle shapes
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Cloacal bacterial communities differed between age 
groups based on PERMANOVA for Bray-Curtis (R2 = 0.15, 
Pr(> F) = 0.018), Jaccard (R2 = 0.14, Pr(> F) = 0.008), and 
unweighted UniFrac distance (R2 = 0.16, Pr(> F) = 0.013). 
Pairwise PERMANOVA showed significant differences 
only between adults and juveniles for all above-mentioned 
diversity measures (Pr(> F) ≤ 0.009). The differences 
between adults and juveniles are observed in community 
composition and structure as well: phylum Verrucomi-
crobiota appears more often in juveniles, juveniles also 
have higher RA of Rhodobacterales (Alphaproteobac-
teria), Cardiobacterales (Gammaproteobacteria), Kine-
osporiales (Actinobacteriota), Oligoflexales (Bdellovi-
brionota), Arcobacteraceae (Campylobacterales), and 
more Flavobacteriales (Bacteroidota) than adults. On the 
other hand, adults carry more Bacteroidales (Bacteroi-
dota), Pasteurellales (Gammaproteobacteria), Helicobac-
teraceae and Campylobacteraceae (Campylobacterales), 

and Leptotrichiaceae (Fusobacteriales). The low number 
of samples (≤ 10) in each age group prevented us from fur-
ther differential abundance analyses. Detailed taxonomic 
composition of bacterial communities found in oral, cloa-
cal, and tank water samples is reported in Supplementary 
Results, Table S3 with additional visualizations available 
at Github.

Differential abundance analysis detected 33 significantly 
DA features (post adjusting for multiple testing) out of 
which two were differentially abundant in cloaca (ASV467 
Rhodobacteraceae and ASV4007 Shewanella algae), and 
three in oral samples (ASV9794 Truepera sp., ASV6166 and 
ASV467 both belonging to Rhodobacteraceae) (Fig. 3a). 
Tank water had 28 DA ASVs when tested against cloaca 
or oral samples, most of which belonged to typical marine 
taxa (Cryomorphaceae, NS3a marine group, SAR406 clade, 
Rhodobacteraceae, Nitrincolaceae, etc.). When collapsed to 
species level, 75 significantly DA taxa were detected, out of 
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Pseudomonadota; Alphaproteobacteria
0.262.56**2.30**Alphaproteobacteria
-0.081.79*1.87**Micavibrionaceae
-4.18**-2.41*1.77*Stappiaceae; Labrenzia
-3.58*-0.413.18**Rhodobacteraceae; Aliiroseovarius
-3.53*-0.542.99**Rhodobacteraceae
1.032.35**1.32*Rhodospirillales

Pseudomonadota; Gammaproteobacteria
1.373.18**1.81*Colwelliaceae; Thalassotalea
-1.97-4.03**-2.07*Shewanellaceae;Shewanella
-2.51-6.53**-4.02**Shewanellaceae;Shewanellaalgae
-2.55*-3.72**-1.17Comamonadaceae
-5.30**-4.59**0.72Cardiobacteriaceae

0.09-3.09*-3.19**Enterobacteriaceae; Citrobacter
-2.59*-0.172.40**Nitrincolaceae; Neptunomonas

Spirochetota
0.49-1.19-1.69**Spirochaetaceae; Treponema

Fig. 3  Differential abundance analysis by ANCOM-BC2 for ASVs 
(a) and taxa collapsed to species level (b) in cloacal, oral, and tank 
water samples. Only differentially abundant taxa in oral or cloa-
cal sample sites are shown. Sample site abbreviations are “Clo” for 
cloaca; “Orl” for oral; and “TW” for tank water samples. The first 
sample site listed in sample site pairs was used as a denominator for 

log fold change (LFC) calculations in pairwise testing, thus the LFC 
value for that body site being < 0. Single asterisk (*) indicates sig-
nificant differential abundance (p-value < 0.05), while double aster-
isk (**) indicates significance after adjusting for multiple testing 
(q-value < 0.05)
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which 13 in cloaca and 15 in oral samples (Fig. 3b). Depend-
ing on the tested sample site pair, several features would be 
DA in both oral and cloacal samples when compared to tank 
water, e.g., genera Marinifilum, Tenacibaculum, and Labren-
zia, members of Cardiobacteriaceae and Comamonadaceae 
families (Fig. 3b).

Endozoic and Tank Water Fungal Communities

Overall, 29 samples (plus one negative control) were 
sequenced, and 2,208,729 high-quality sequences were 
obtained (median frequency per sample was 69,203, min. 
11,722, max. 150,142). Denoising yielded a total of 9547 
ASVs. Based on alpha rarefaction curves, 27 samples 
yielded enough high-quality reads (at minimum sequencing 
depth at 25,000 reads) for downstream statistical analyses 
requiring rarefied data (19/20 cloacal and 8/9 tank water 

samples). All samples except negative control were used in 
compositional data analyses.

Tank water samples had significantly higher num-
ber of observed features and phylogenetic diversity 
(median = 674, IQR = 97.8; Faith’s PD median = 98.0, 
IQR = 10.5) than cloacal samples (median = 509, 
IQR = 372, Faith’s PD median = 66.6, IQR = 51.7) 
(Fig.  4a) based on the Kruskal-Wallis rank-sum test 
(OF p-value = 0.008; Faith’s PD p-value = 0.007). Shan-
non’s diversity was not detected as significantly differ-
ent between sample sites (tank water median = 8.66, 
IQR = 1.31; cloaca median = 6.76, IQR = 2.58) (Fig. 4b). 
There were no significant differences in alpha diversity 
values within cloacal or tank water fungal communities 
when tested for age range, sex, or rehabilitation duration. 
The only beta diversity metric that showed significant dif-
ferences between tank water and cloaca was unweighted 
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Cloaca ~ 
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Chaetosphaeriales;
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-1.19*
Dothideomycetes; Incertae

sedis; Leptodiscella

-1.79*
Sordariomycetes;
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Thelephoraceae;Thelephora

-

1.78*Leotiomycetes;  unidentified

Fig. 4  Structure and composition of fungal microbial communities in 
cloaca and tank water samples. Alpha diversity boxplots with sample 
density for Faith’s phylogenetic diversity (a) and Shannon’s index (b) 
per sample site. (c) Differential abundance analysis by ANCOM-BC2 
for taxa collapsed to species level in cloacal and tank water samples. 
Cloacal sample site was used as a denominator for log fold change 

(LFC) calculations in pairwise testing, thus the cloacal LFC values 
being < 0. Single asterisk (*) indicates significant differential abun-
dance (p-value < 0.05). (d) Relative abundance of fungal phyla in clo-
acal and tank water samples present above 1% in at least one sample. 
Sample IDs ending with “C” belong to cloacal samples, while sample 
IDs ending with “W” belong to tank water samples
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UniFrac (R2 = 0.06, Pr(> F) = 0.042). Unweighted Uni-
Frac PCoA showed unclear sample groupings; however, 
there is a separation of cloacal and corresponding tank 
water samples on PCA1 axis (Fig. S1a, corresponding 
samples connected with dashed lines). Compositional 
data analysis rPCA did not show clear separation of sam-
ples sites, and top ranked ASVs belonged to Preussia 
flanaganii, genus Tetracladium, order Xylariales, genus 
Rhizoctonia, and family Nectriaceae (Fig. S1b). When 
collapsed to species level, cloacal and tank water sam-
ples each had five differentially abundant fungal taxa 
detected. In cloacal samples, DA taxa were Leptodiscella, 
Elaphomyces, Sclerocleista, Gliomastix, and Thelephora; 
and in tank water, they were Cladosporium, unidentified 
Leotiomycetes, unidentified Sordariomycetes (Chaeto-
sphaerilaes), Nectria, and Humicola — although none 
of them was statistically significant after correction for 
multiple testing (Fig. 4c). Cloacal and tank water fungal 
communities were represented mostly by phyla Asco-
mycota (average RA ± standard deviation in cloaca and 
tank water = 57 ± 15% and 53 ± 9%, respectively), Basidi-
omycota (19 ± 9% and 22 ± 3%), Glomeromycota (7 ± 6% 
and 10 ± 12%), Mortierellomycota (2 ± 2% and 3 ± 2%), 

and unidentified Fungi (13 ± 20% and 11 ± 7%) (Fig. 4d). 
Detailed taxonomic composition of fungal communities 
found in cloacal and tank water samples is reported in 
Supplementary Results and Table S4.

Epizoic and Endozoic Bacterial Communities

After trimming epizoic, endozoic, and tank water sequences 
to V4 region of 16S rRNA gene (65 samples in total) and 
denoising, 10,072,866 high-quality sequences were merged 
across all sequencing events (median frequency per sam-
ple was 126,629, min. 0, max. 946,183) and yielded 13,263 
ASVs. Due to reduced resolution after trimming the longer 
V34 region to shorter V4 region, the number of ASVs for 
cloacal, oral, and tank water samples was expectedly lower 
(7725 in V4 vs. 11,105 in V34 sequences).

Carapace samples had the highest median species rich-
ness and diversity (OF median 732, IQR = 420, Faith’s PD 
median = 45.7, IQR = 25.2; median Shannon’s index = 5.94, 
IQR = 2.22), which was followed by tank water, oral, and 
cloacal samples (Fig. 5a and b). The differences between 
sample sites’ alpha diversity were detected as statisti-
cally significant (Kruskal-Wallis rank-sum test); however, 
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Fig. 5  Bacterial community structure and diversity in loggerhead sea 
turtles’ carapace, cloacal, oral, and tank water samples.  Alpha diver-
sity boxplots with sample density for Faith’s phylogenetic diversity 
(a) and Shannon’s index (b) per sample site. (c) Robust Aitchison 

PCA biplot with highly ranked features as loadings. Cloacal samples 
are depicted by diamonds, oral samples by circles, carapace samples 
by squares, and tank water by inverted triangle shapes
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pairwise comparisons showed differences only in Faith’s 
phylogenetic diversity and OF: between cloaca and all 
other sample sites (except tank water based on OF), oral 
cavity and carapace. All beta diversity metrics showed 
significant differences between body sites for Bray-
Curtis (R2 = 0.13, Pr(> F) = 0.001), Jaccard (R2 = 0.10, 
Pr(> F) = 0.001), unweighted and weighted UniFrac 
(R2 = 0.16, Pr(> F) = 0.001; R2 = 0.18, Pr(> F) = 0.001, 
respectively), and robust Aitchison distances (R2 = 0.09, 
Pr(> F) = 0.001). Pairwise PERMANOVA detected differ-
ences between all sample site pairs (Pr(> F) < 0.01). Highly 
ranked ASVs impacting the distribution of samples on rPCA 
biplot belonged to Pseudoalteromonas sp., Vibrio sp., She-
wanella sp., uncultured Saccharospirillaceae, uncultured 
Marinifilum, and uncultured Cardiobacteriaceae (Fig. 5c). 
The taxonomic composition of endozoic samples and tank 
water using the V4 sequences resembled the one detected 
with V34 and it is reported in Table S5. Additional informa-
tion on taxonomic composition of epizoic bacterial com-
munities in carapace samples is reported in Supplementary 
Results.

Differential abundance analysis on ASVs (structural 
zeros excluded) detected 17 significantly DA ASVs across 
all sample sites (Fig. 6). A member of Rhodobacteraceae 
family (v4ASV8861) and Halioglobus sp. (v4ASV11062) 
were consistently DA in oral samples while the same goes 
for Cardiobacterium sp. (v4ASV10814) and a member 
of Enterobacteriaceae family (v4ASV11383) in cloaca. 
In carapace samples, a member of Flavobacteriaceae 
family (v4ASV2446), cyanobacteria Leptolyngbya sp. 
(v4ASV4472), Ahrensia sp. (v4ASV8480), Sphingomona-
daceae (v4ASV9910), Erythrobacter sp. (v4ASV9994), 
Gammaproteobacteria (v4ASV10111), Alteromonas sp. 
(v4ASV10327), Arenicella sp. (v4ASV10634), Psychrobac-
ter sp. (v4ASV12017), and Vibrio sp. (v4ASV12307) were 
DA relative to other sample sites, while Marinomonas sp. 
(v4ASV11704) was DA abundant in carapace tested against 
endozoic samples, but not tank water. In tank water, a mem-
ber of Flavobacteriaceae (v4ASV2446) and NS3a marine 
group (v4ASV2817) were consistently DA (Fig. 6). Differ-
ential abundance analysis on taxa collapsed to species level 
is reported in Supplementary Results and Fig. S2.

Discussion

This study provides an overview of the bacterial and 
fungal communities inhabiting oral and cloacal environ-
ments of loggerhead sea turtles. Additionally, we aimed 
to investigate bacterial communities in carapace samples 
in relation to the gastrointestinal tract and tank water to 
explore possible connections between two habitats. The 

carapace exhibited the highest bacterial diversity, followed 
by oral samples, influenced by the tank water environment, 
and then cloacal samples. Each sampling site had distinct 
microbial communities and cloacal bacterial diversity 
negatively correlated with turtle size and age. Conversely, 
fungal communities in the cloaca were distinct from tank 
water and showed high heterogeneity among individual 
turtles, with no discernible patterns related to age or sex.

Cloacal Bacterial Diversity and Structure Changes 
with the Turtle Age

Similarly to previous studies on cloacal microbiota in 
Adriatic loggerhead sea turtles, we observed changes in 
bacterial richness, diversity, and structure, negatively cor-
relating with loggerheads’ CCL and, consequently, their 
age [24]. According to research on vertebrate gut micro-
biomes, it is expected that the bacterial diversity increases 
with body size in animals with complex digestive systems, 
like ruminants, and decreases in animals with simple guts, 
often omnivores or carnivores [49]. Loggerhead sea turtles 
are omnivores and exhibit an ontogenetic shift from oce-
anic-pelagic habitats as juveniles to neritic-benthic feeding 
grounds as adults. However, in the Mediterranean Sea, 
they employ an “amphi-habitat strategy”, where juveniles, 
subadults, and adults share feeding grounds and similar 
feeding behaviours [50, 51]. Differences in diet, jaw size, 
bite force, and diving ability between juveniles and adults 
may result in distinct diets and digestive physiologies, 
potentially reflected in cloacal bacterial communities as 
increased richness. Studies on loggerhead diet show no 
significant differences in stomach contents among adults, 
subadults, and juveniles, but it is worth noting that softer 
prey like tunicates or jellyfish may not be as detectable due 
to easier digestion and lack of hard remains in morphol-
ogy-based studies [50].

In this study, juveniles exhibited higher abundance and 
more frequent presence of Flavobacteriaceae and Tenacib-
aculum spp. in oral and cloacal samples than subadult and 
adult turtles. Tenacibaculum spp. are marine pathogens pos-
sibly carried by cnidarians and ctenophores as vectors [52, 
53], suggesting a higher proportion of soft prey in juveniles’ 
diet. This study was conducted during non-winter months 
when jellyfish populations increase due to higher water tem-
peratures potentially influencing prey availability. Adults 
likely have access to these prey types but also consume 
more challenging prey inaccessible to juveniles. Notably, in 
other studies, Tenacibaculum spp. were highly abundant on 
loggerhead skin as well [28], indicating their propensity to 
inhabit marine vertebrate surfaces and gastrointestinal tracts, 
irrespective of animal’s diet. While in previous research the 
Mogibacteraceae family detected in faeces correlated with 
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CCL [24], we did not detect it in our data, possibly due to 
different taxonomy databases being utilized (Greengenes 
vs. SILVA in our study). BLAST analysis showed ASVs 

assigned as Peptostreptococcales-Tissieralles closely related 
to Mogibacterium kristiansenii but it still did not exhibit a 
CCL correlation.

Sample site: Cloaca Tank waterOralCarapace

LFC in sample site pairs

Orl ~ TWClo ~ TWClo ~ OrlCar ~ TWCar ~ OrlCar ~ Clo Bacteroidota

0.39-0.29-0.68-4.37**-4.76**-4.09**Flavobacteriaceae
(v4ASV2446)

3.65**3.19**-0.463.33**-0.320.13
Flavobacteriaceae

(v4ASV2479)

4.02**3.91**-0.114.06**0.040.16
Flavobacteriaceae; NS3a marine group 

(v4ASV2817)

Cyanobacteria

0.27-0.37-0.64-2.5*-2.77**-2.13*
Phormidesmiaceae; Leptolyngbya sp.

(v4ASV4472)

0.350.540.19-2.35*-2.69**-2.89**Rhizobiaceae; Ahrensia 
(v4ASV8480)

-3.87*-0.513.36**0.224.09**0.74
Rhodobacteraceae

(v4ASV8861)

-0.42-0.52-0.09-3.46*-3.04*-2.95*
Sphingomonadaceae

(v4ASV9910)

0.50.02-0.48-1.81*-2.31**-1.83*
Sphingomonadaceae; Erythrobacter 

(v4ASV9994)

Pseudomonadota; Gammaproteobacteria

-0.16-0.84-0.68-3.84**-3.68**-3.00**Gammaproteobacteria
(v4ASV10111)

2.62.05-0.55-1.35-3.95**-3.40*
Alteromonadaceae; Alteromonas

(v4ASV10327)

0.05-0.14-0.19-2.43*-2.48*-2.28*
Arenicellaceae; Arenicella 

(v4ASV10634)

-0.32-3.55*-3.23*0.490.814.04**Cardiobacteriaceae; Cardiobacterium
(v4ASV10814)

-4.45**-1.043.41*-0.244.2**0.79
Halieaceae; Halioglobus

(v4ASV11062)

-0.08-3.52*-3.43*0.060.143.58**Enterobacteriaceae 
(v4ASV11383)

4.51**4.09**-0.412.63*-1.89*-1.47
Marinomonadaceae; Marinomonas

(v4ASV11704)

-0.37-0.53-0.16-3.59*-3.23*-3.067*
Moraxellaceae; Psychrobacter

(v4ASV12017)

2.823.630.81-0.16-2.98-3.79**Vibrionaceae; Vibrio 
(v4ASV12307)

Pseudomonadota; Alphaproteobacteria

Fig. 6  Differential abundance analysis by ANCOM-BC2 (with struc-
tural zeros excluded) for ASVs in carapace, cloacal, oral, and tank 
water samples. Sample site abbreviations are “Car” for carapace; 
“Clo” for cloaca; “Orl” for oral; and “TW” for tank water sam-
ples. The first sample site listed in sample site pairs was used as a 

denominator for log fold change (LFC) calculations in pairwise test-
ing, thus the LFC value for that body site being < 0. Single asterisk 
(*) indicates differential abundance (p-value < 0.05), while double 
asterisk (**) indicates significance after adjusting for multiple testing 
(q-value < 0.05)
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Loggerhead Cloacal Communities Are a Promising 
Source of Novel Campilobacterota

Members of the Campilobacterota phyla, particularly Arco-
bacteriaceae, Campylobacteraceae, and Helicobacteraceae, 
have recently been found to form unique, cold-adapted com-
munities in ectothermic reptiles [54]. As expected, and based 
on their physiology and lifestyle, the Arcobacter genus, 
which can thrive at atmospheric oxygen levels and prefers 
lower temperatures, was present in all sample sites. How-
ever, it was more abundant in oral than in cloacal samples 
and was rarely detected in tank water. The Helicobacter and 
Campylobacter genera, which are vertebrate-associated, 
were observed in cloacal and occasionally oral samples. 
Notably, one adult male (ID057) showed a higher prevalence 
of Helicobacter, reaching up to 20% relative abundance in 
the cloaca, represented by a single ASV assigned as Helico-
bacter sp. and not found in any other sample. This suggests a 
potential overgrowth or infection despite the relatively good 
clinical status of the individual observed at the time. There-
fore, like other reptiles, loggerhead sea turtles could serve as 
a valuable source of previously undiscovered cold-adapted 
Campylobacter and Helicobacter species, as well as mucosal 
Arcobacter species.

Oral Bacterial Communities Harbour Distinct Taxa 
and Could Reflect Recent Diet

In oral samples, the genera Truepera and Halioglobus 
showed differential abundance. Trueperaceae, a relatively 
new family, includes one isolate Truepera radiovictrix, 
known for radiation resistance and thriving in extreme 
conditions like other Deinococci members [55]. Truep-
era was also a dominant part of the oral microbiota in 
splendid japalure lizards [56], but its role and functions 
in reptile oral microbiomes remain unclear. Tolerance to 
extreme environments and ability to use diverse carbon 
sources may allow Truepera spp. to outcompete other 
taxa on reptilian oral mucosa. The genus Halioglobus is 
typically found in seawater and marine sediments, and 
has been associated with dinoflagellate blooms and starv-
ing, green-lipped mussels [57, 58]. We have previously 
reported Halioglobus in oral samples of loggerhead sea 
turtles [25]. Halioglobus bacteria likely derive from log-
gerhead prey such as mussels or oysters rather than being 
an intrinsic property of sea turtle mucosal surfaces, given 
the limited information on host-associated Halioglobus. 
Similarly, the high relative abundance of the genus Exig-
uobacterium in oral and cloacal samples of one juvenile 
loggerhead (ID069) sampled upon admission may indicate 
recent feeding, as some Exiguobacterium species are com-
monly found on shrimp or algae [59–61].

Carapace Microbiota Is Distinct, yet Can Harbour 
Taxa Specific to Oral or Cloacal Microbiota

The carapace and skin of loggerhead sea turtles harbour 
diverse microbial biofilms, rich in prokaryotes, microeu-
karyotes, and macroeukaryotes like barnacles and algae [3, 
28]. These surface microbial communities vary with the 
turtle’s geographical location, carapace condition, and the 
sampled anatomical site [28, 29]. They can be considered 
as microbial reservoirs and “diversity hotspots” in other-
wise scarce environments [62, 63]. In our study, we found 
expectedly distinct microbial communities in the carapace, 
oral mucosa, and cloaca, although many microbial taxa were 
present across all body sites, including potential zoonotic 
pathogens primarily from the cloaca. Oral and cloacal sam-
ples shared several differentially abundant microbial taxa 
(Tenacibaculum, Cardiobacteraceae, Campylobacter), 
suggesting co-inhabitation of the gastrointestinal tract. The 
carapace microbiota differed significantly from tank water, 
with indication of transfer of certain taxa from carapaces to 
tank water or vice versa. Taxa like Alteromonadaceae and 
Colwelliaceae (Thalassotalea), differentially abundant on 
carapaces in this study, were prominent in enclosure tank 
water in prior studies that did not examine carapace bac-
terial communities [24], possibly originating from captive 
turtles’ carapaces. The implications of the interplay between 
microbes from different body sites on loggerhead sea turtles 
in their natural habitats and during captivity are not yet clear. 
However, it is essential to consider surface microbiota and 
potential opportunistic pathogens, especially when rehabili-
tating severely injured and possibly immunocompromised 
individuals.

Fungal Communities of Loggerhead Cloaca Are 
Highly Heterogeneous and Diverse

Fungal communities in loggerhead sea turtles’ cloaca and 
tank water exhibit high variability among individuals, with 
greater diversity observed in tank water. In this study, we 
could not attribute differences in the composition and struc-
ture of cloacal mycobiota to the turtles’ age, sex, or hospi-
talization status, possibly due to the limited sample size per 
sampling site and condition assessed. Conversely, captive 
juvenile green turtles displayed more consistent mycobiota 
richness and diversity across various sampling sites and 
health conditions, unaffected by environmental fungi [31]. 
The taxonomic composition of cloacal and tank water fungal 
phyla in our study aligns with previously reported marine 
fungi groups found in green sea turtle faeces [31], as well as 
marine algicolous fungi, sediments, and sponges [64]. Due 
to the lower resolution of the ITS2 gene marker and many 
unassigned fungal ASVs beyond the family level, this study 
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offers just a general overview and serves as a foundation for 
further exploration of specific groups of interest.

We sporadically detected pathogenic fungal genera [18], 
with nine pathogenic genera found in both cloaca and tank 
water. Among these, Fusarium species (family Nectriaceae) 
are recognized sea turtle pathogens linked to reduced hatch-
ling success [65]. Our study identified Fusarium oxysporum 
(a known pathogen), Fusarium neocosmosporellium, and 
Fusarium waltergamsii, not previously reported as sea tur-
tle pathogens but related to known pathogenic species in the 
Fusarium solani species complex [18, 66]. Fusarium ASVs 
were relatively less abundant, except in one sample where they 
reached 8%. However, some ASVs assigned to the Nectriaceae 
genus may belong to Fusarium species as ITS region can be 
insufficient in detecting Fusarium species [67], potentially 
affecting our reported abundance of pathogenic fungi in cloa-
cal and tank water samples.

The origin of these fungi — whether they are metaboli-
cally active and intrinsic to the sampled turtle population or 
introduced from the environment as spores or through food 
— is unclear. The impact of these fungi on the host, the inter-
action with the turtle’s immune system and physiology, and 
their potential host association remain unknown. Many fun-
gal ASVs detected in this study belong to primarily terrestrial 
taxa, suggesting possible terrestrial sources during rehabilita-
tion or a lack of marine fungal sequences in taxonomy data-
bases. Additionally, numerous reads were assigned only as 
“Fungi”, indicating either undiscovered fungal taxa, lack of 
representative sequences, or possible turtle host origin.

Low Biomass of Samples Is a Potential Limitation 
to Interpreting Results

Microbial composition results should be interpreted with cau-
tion due to low biomass collected with swabs and fewer fungal 
cells compared to bacterial cells in vertebrate guts [68]. Nega-
tive control (sterile water) sequenced with bacterial primers 
showed a small number of reads that were also detected in 
low-read samples, indicating potential contamination during 
DNA extraction and sequencing specifically for samples with 
low biomass (e.g. kitome) [69, 70]. Surprisingly, the negative 
control sequenced with fungal primers had significantly more 
reads than the bacterial negative control, containing numerous 
ASVs also found in cloacal and tank water samples. Although 
the community structures of cloacal and tank water samples 
differed from the negative control, indicating genuine fun-
gal communities rather than random contaminants, the high 
number of reads from seemingly low-biomass samples or the 
“empty” negative control raises concerns about our sample 
handling and sequencing approach. To our knowledge, no 
studies addressed fungal contamination in DNA extraction 
kits as they do for prokaryotes, making it challenging to pin-
point the exact source of this fungal DNA. For future studies, 

we suggest including additional negative control samples at 
various sampling and processing stages when investigating 
undescribed gut-associated fungal communities.

Conclusion

Loggerhead sea turtle-associated microbial communities are 
crucial for understanding the biology of these endangered 
reptiles and supporting conservation. In this study, we exam-
ined bacterial and fungal communities in juvenile, subadult, 
and adult loggerhead sea turtles. Our findings revealed dis-
tinct microbial communities in the carapace, cloaca, and oral 
mucosa, with characteristic taxa for each site and shared 
taxa between cloacal and oral samples (e.g. Tenacibaculum, 
Moraxellaceae, Cardiobacteriaceae, and Campylobacter). 
Cloacal bacterial communities exhibited decreasing diver-
sity and changing composition with turtle age, likely due 
to shifts in diet as juveniles develop stronger bite force and 
diving capabilities. Microbial exchange with the environ-
ment appears to occur, particularly from turtles to tank 
water, especially from the carapace. Fungal communities in 
cloaca and tank water displayed high heterogeneity across 
individuals, with no age or clinical patterns, possibly due to 
limited samples and low fungal biomass in cloacal samples. 
Loggerhead sea turtles host complex microbial communities, 
including potential bacterial and fungal pathogens, which 
pose risks to handlers or the general public as changing tur-
tle behaviour leads to increased human-turtle interactions. 
Despite growing research on loggerhead microbiomes, 
defining a healthy microbiome beyond bacteria remains 
challenging. Future research should prioritize establishing 
a description of healthy loggerhead microbiomes at different 
developmental stages (from eggs and hatchlings to juveniles 
and adults) to enhance conservation practices and explore 
potential probiotics and prebiotics for addressing their cur-
rent and future needs.
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