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Roca, S.; Trifunović, S.; Završnik, D.;
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Abstract: The pyrimidine heterocycle plays an important role in anticancer research. In particular,
the pyrimidine derivative families of uracil show promise as structural scaffolds relevant to cervical
cancer. This group of chemicals lacks data-driven machine learning quantitative structure-activity
relationships (QSARs) that allow for generalization and predictive capabilities in the search for new
active compounds. To achieve this, a dataset of pyrimidine and uracil compounds from ChEMBL were
collected and curated. A workflow was developed for data-driven machine learning QSAR using an
intuitive dataset design and forwards selection of molecular descriptors. The model was thoroughly
externally validated against available data. Blind validation was also performed by synthesis and
antiproliferative evaluation of new synthesized uracil-based and pyrimidine derivatives. The most
active compound among new synthesized derivatives, 2,4,5-trisubstituted pyrimidine was predicted
with the QSAR model with differences of 0.02 compared to experimentally tested activity.

Keywords: QSAR; synthesis; antiproliferative activity; HeLa cell line; pyrimidines; uracil derivatives;
drug design

1. Introduction

Pyrimidine is a building block of nucleobases in deoxyribonucleic acid (DNA) and
ribonucleic acid (RNA) [1]. Pyrimidine is an aromatic nitrogen-containing heterocycle
and an important pharmacophore in many new drug substance discovery studies. The
activities of pyrimidines are mostly related to antiviral and anticancer activity [2,3]. The
pharmacological activity range of approved drug substances containing pyrimidine is large,
which is why the pyrimidine heterocycle is an important scaffold in scientific research [4].
The most well-known is the natural pyrimidine derivative, the uracil (U) nucleobase, which
represents the main building block of RNA and binds to the adenine nucleobase (A) through
two hydrogen bonds in a Watson–Crick base pair [2].

One of the uracil-based drug substances approved for anticancer treatment is 5-
fluorouracil (5-FU), fluorinated pyrimidine analogue, an antimetabolite-inhibiting thymidy-
late synthase (TS) enzyme [5]. 5-FU is in use for the treatment of colorectal, breast, aerodi-
gestive tract, head, neck, [6] and cervical [7] cancer. Well-known anticancer pyrimidine
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analogues are drug substances cytarabine, gemcitabine and methotrexate, which are also
classified as antimetabolites. According to the mechanism of action, they compete with
natural substances in binding with receptors or enzymes and/or incorporation into cancer
DNA/RNA [8]. Among alkylating agents, it is worthwhile to mention uramustine or uracil
mustard, a C-5-substituted uracil derivative for lymphatic cancers. Its mechanism of action
is related to DNA damage and cell death (apoptosis) [9].

Cervical cancer is one of the leading causes of cancer-related deaths affecting women
worldwide. It is the fourth most common cancer in women globally with around 660,000 new
cases and around 350,000 deaths in 2022 [10]. Despite many scientific efforts to prevent cancer,
such as the HPV vaccine and preventive screening, new drug substances are still needed
when the cancer is already developed. Most cases of cervical cancer occur in developing
countries [10]. Persistent infections with oncogenic types of human papillomavirus (HPV)
are major risk factors for the development of cervical cancer. High-risk or oncogenic HPV
types include types 16, 18, 31, 33, 35, 39, 45, 51, 52, 56, 58, 59, 68, 73, and 82 [11] with
the HPV E6/E7 oncoprotein overexpression [12]. HPV16 and HPV18 account for the
largest proportion (70%) of HPV positive cervical cancer cases [13]. Human cervical
cancer cells can be classified by HPV type as HeLa (HPV18, endocervical adenocarcinoma),
SiHa (HPV16, cervical squamous cell carcinoma), CaSki (HPV16, cervical squamous cell
carcinoma), TMCC-1 (HPV18, endocervical carcinoma), ME-180 (HPV68, cervical squamous
cell carcinoma), SW756 (HPV18, squamous cell carcinoma), C4-I (HPV18, cervical squamous
cell carcinoma), C4-II (HPV18, cervical squamous cell carcinoma), and MS751 (HPV18,
HPV45, epidermoid carcinoma) [14].

Common drug substances used for cervical cancer treatment can be divided as cell
cycle non-specific drugs (cisplatin, carboplatin, oxaliplatin), cell cycle specific drugs (pa-
clitaxel, vincristine, gemcitabine, 5-fluorouracil) and drugs based on molecular targets
including VEGFR (bevacizumab, sunitinib, pazopanib), EGFR (cetuximab, lapatinib, gefi-
tinib, erlotinib), blocking signal transduction (CCI-779, gendicine), and targeting PD-L1
(pembrolizumab) [15]. Cisplatin [16] is one of the most frequently used drug substances
in chemotherapy treatment for cervical cancer. It is as alkylating agent by its mecha-
nism of action. Cisplatin has also been used in combinations with paclitaxel and with
5-fluorouracil [17].

5-fluorouracil (5-FU) or 5-fluoropyrimidine is an antimetabolite drug substance for
chemotherapy used for cervical cancer treatment. It prevents DNA replication, thereby
interrupting the cell cycle and causing cell death. The main mechanism is the inhibition of
thymidylate synthase enzyme, which has an important role as precursor for DNA synthesis,
disrupting the nucleoside synthesis and interfering with DNA replication and cancer cell
death. Also, the bioactive form of 5-FU interferes with uracil, affecting regular function
and the RNA synthesis process [6]. 5-FU is an essential medicine in cancer therapy, used
for many types of cancer, but with certain limitations [17].

To overcome physicochemical properties and a high toxicological profile, many pro-
drugs of 5-FU for oral use have been developed [17]. Prodrugs of 5-fluorouracil include
nucleoside analogues prodrug 5-fluorouridine (colorectal cancer), doxifluridine (5′-deoxy-5-
fluorouridine, colorectal, ovarian, melanoma and breast cancer), floxuridine, (gastrointesti-
nal adenocarcinoma), tegafur (FTO, advanced gastric and colorectal cancer), capecitabine
(advanced gastric, breast and colorectal cancer), tegafur-uracil (UFT, dihydropyrimidine
dehydrogenase (DPD) inhibitor), S-1 (tegafur and 2 enzyme inhibitors (gimeracil (CDHP)
and oteracil potassium (OXO)), and BOF-A2 (Figure 1). Eniluracil aims to enhance the
efficacy of 5-FU in cancer treatment by inhibiting DPD and prolonging exposure to the
drug. Among other uracil analogues it is worthwhile mentioning that trifluridine and
tipiracil are also approved as uracil analogues for chemotherapy, used for the treatment of
colorectal cancer (Figure 1) [18,19].
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Figure 1. Substituted uracil derivatives and 5-FU prodrugs in cancer research.

The significance and development of uracil derivatives as bioactive agents has been
extensively reviewed elsewhere [2,8]. Mainly, the research of new uracil derivatives is
related to the modification of the substituents at the N-1, N-3, C-5, and C-6 positions of
the pyrimidine ring. One good example of such development is the 2,4,5-trisubstituted
pyrimidine derivative containing bromine (2,4-diaminopyrimidines substituted at fifth
position (5-Br) [8]) that is a selective Aurora A kinase inhibitor, which has been used as a
potential target for cancer therapy. This pyrimidine derivative expresses the highest activity
against HeLa cell lines (IC50 = 0.9 µM) [20].

From the studies published in the literature, it appears that there is practically no
research that would specifically model pyrimidine and uracil derivatives based on a data-
driven approach for diverse chemical space. For example, data driven, machine learning
QSAR studies on pyrimidine nucleosides [21] and uracil derivatives [22,23], which are
HIV-1 antiviral agents, can be found in the literature. Our own recent research focused on
the derivation and analysis of QSAR in the study of datasets of the uracil and pyrimidine
branch of HIV-1 nucleoside analogue reverse-transcriptase inhibitors (NRT inhibitors) [24].
There are also only a few works on data-driven modelling of cervical cancer cell lines. For
example, models have been derived for HeLa adenocarcinoma cell line measurements using
the 3D COMFA and CoMSIA QSAR approach to find models describing the interactions
of a series of thiopyranopyrimidines [25] and pyrimidine–urea compounds derived from
L-carvone [26].

Although generalizations about molecular interaction mechanisms of pyrimidine and
uracil-based anticancer agents with targets using data-driven models have been limited,
experimental data presented in the literature show possibilities. For example, measure-
ments in anticancer activity of pyrimidine and uracil derivatives against HeLa cells are
reported by many researchers [2,27–32]. Among them, cancer chemotherapy enzyme
inhibitors, which are 5-, 6-substituted uracil derivatives with small sidechain, play an
important role in drug substance development [27]. Previous reports [27–29] of C-5 and
C-6 substituted uracil derivative activity against HeLa cells highlight the need for a further
investigation of the chemistry and potential anticancer activity of this class of compounds.
For example, Gazivoda Kraljević et al. [27] synthesized N-alkylated C-6-isobutyl and
propyl pyrimidine derivatives. Antiproliferative activity against HeLa cervical cell lines
showed an activity range of IC50 = 0.3–29.7 µM, only for N-alkylated C-6-isobutyl substi-
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tuted analogues. N-methoxymethylated 5-methylpyrimidin-2,4-dione with di(benzyloxy)
isobutyl at C-6 showed the best activity IC50 = 0.3 µM (Figure 2i). Active derivatives
all contain a di(benzyloxymethyl) unit and are more lipophilic than the inactive deriva-
tives. 2,4-dimethoxypyrimidine derivatives and pyrimidine-2,4-diones linked together
with di(benzyloxy)isobutyl sidechain at C-6 showed antiproliferative activity against HeLa
cervical cell lines, where pyrimidin-2,4-dione derivative showed significant potency against
tested HeLa cervical cell lines. However, derivatives with C-6 propyl substitution did not
show any results for antiproliferative activity against HeLa cervical cell lines.
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Figure 2. The structures of most active uracil derivatives in analyzed publications: (i) reference [27],
(ii) reference [28], (iii) reference [29].

Similarly, Meščić et al. [28] showed antiproliferative activity against the HeLa cervi-
cal cell line by C-5-substituted linear, branched, aromatic, cyclopropyl-alkynyl and het-
eroaryl N-acyclic uracil derivatives, the activity of which is given in the range between
IC50 = 7.8–79.1 µM. Among synthesized C-5-heteroaryl uracil derivatives containing sul-
fur, the best antiproliferative activity against HeLa cervical cell line of IC50 = 7.8 µM was
achieved (Figure 2ii).

Another C-5 substituted group of compounds with antiproliferative activity against
the HeLa cervical cancer cell line are pyrimidine and furo [2,3-d]pyrimidine L-ascorbic acid
derivatives with activity range IC50 = 3.0–60.0 µM [29]. The highest activity against HeLa
cervical cancer cell lines among this group of derivatives was shown by C-5-alkynyluracil
derivative with p-substituted phenylacetylene group, IC50 = 3.0 µM (Figure 2iii).

As can be concluded from the above literature summary, 5-FU is an important struc-
tural scaffold for the identification of anticancer compounds, including cervical cancer, so it
is of great importance to be able to predict the activity of structurally diverse chemical space
of uracil derivatives. It is also known from the above that there are not many pyrimidines-
based QSAR models for studying structural determinants (interaction mechanisms) related
to and predicting the antiproliferative effect determined using the HeLa cell line, especially
not for diverse substituted chemical space among pyrimidine and uracil-based compounds.
Therefore, the focus of this research is on a more detailed review and curation of the chemi-
cal space covered by the experimental data of C-5,- C-6-substituted uracil and pyrimidine
derivatives, and the investigation of the relationships between the structure and properties
of the molecules using the data-driven machine learning QSAR approach and utilizing
derived relationship for predictive task.

2. Results and Discussion
2.1. QSAR Model of Pyrimidine and Uracil Derivatives

The derived relationship (Equation (1), Figure 3a, http://dx.doi.org/10.15152/QDB.261,
accessed on 21 August 2024) between statistical parameters reveals the predictive ability of the
QSAR model. The BMLR algorithm resulted in a model that had consistent internal validation
parameters (R2 = 0.85, R2

CV = 0.797, F = 29.35, s2 = 0.0485, N = 31, n = 5). External validation

http://dx.doi.org/10.15152/QDB.261
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metrics were not as consistent (R2
test = 0.64), which can be clearly attributed to the shorter

range of experimental values and deviations in data points compared to the training set.
The five molecular descriptors selected in the model best describe the structural variation
that has an impact on the antiproliferative activity of pyrimidine derivatives on cervical
cancer HeLa cell lines.

pIC50(hela) = −4.66 × AATSC2s − 1.99 × MDEN − 23 + 3.45 × ATSC4c
+0.21 × ATSC3e − 15.28 × AATSC6p + 4.7326

(1)
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Figure 3. Experimental and predicted pIC50 for the derivatives against HeLa cervical cell lines (a)
and standardized residuals vs. leverages (b).

According to the coefficients of the descriptors, AATSC6p, AATSC2s and MDEN-23
have a negative influence on antiproliferative activity, while ATSC4c and ATSC3e have a
positive influence on the activity of the examined pyrimidine derivatives. In t test absolute
values, the most significant descriptor is AATSC2s (t test = −8.23321) and the second-best
descriptor is MDEN-23 (t test = −5.72486), followed by ATSC4c (t test = 5.41163), ATSC3e
(t test = 4.53965), AATSC6p (t test = −3.62229).

2.2. Analysis of Molecular Descriptors

The model includes four Broto–Moreau autocorrelation descriptors weighted by dif-
ferent properties belonging to the type of 2D topological descriptors. Autocorrelation
descriptors represent the topology of the molecular structure together with physicochemi-
cal properties (i.e., atomic masses, polarizabilities, electronegativities, etc.) [33]. The number
before the last symbol represents the number of consecutively connected edges consid-
ered in the calculation of the descriptor and is called the autocorrelation vector of lag n,
corresponding to the number of edges in the unit. The fifth descriptor in the model is the
molecular distance–edge (MDE) vector.

AATSC2s is the average centered Broto–Moreau autocorrelation - lag 2/weighted by I-
state [33] so-called “intrinsic state” that considers atom valence electrons, principal quantum
number and sigma electron count, by adding weight heteroatoms with low bond order
and high π-electron count. Atomic masses and electronic distribution of the atoms in
the molecule have significant impact on antiproliferative activity. The descriptor has a
negative correlation with the antiproliferative activity, meaning that active compounds
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should have lower AATSC2s values. The most active compound 5 with IC50 = 0.3 µM has
the lowest value of AATSC2s descriptor (for the structure see Figure S1). Compound 8 with
IC50 = 71.5 µM has the highest value of the descriptor (for the structure see Figure S2).

MDEN-23, molecular distance edge between all secondary and tertiary nitrogens, determines
the topological distances (2D) between type 2 for secondary (-NH-) and type 3 for ternary
(-N<) nitrogen atoms. MDE vectors are types of descriptors that are based on the two most
fundamental structural variables: one for distance between atoms in the molecular graph,
and another for edges of the adjacency in the graph [34]. The descriptor has a negative
correlation with the antiproliferative activity, meaning that active compounds should
have lower MDEN-23 values. The most active compound 5 has both N substituted with
ethoxy group, compared to other compounds which are -NH substituted. The most active
compound 5 with IC50 = 0.3 µM has the lowest value of MDEN-23 descriptor. Compounds
7, 11, 12, 21, 22 with IC50 = 76.3 µM, IC50 = 63.8 µM, IC50 = 58.9 µM, IC50 = 60.0 µM and
IC50 = 56.0 µM, respectively, have the highest values of the descriptor (for structures see
Figures S2 and S3).

ATSC4c, centered Broto–Moreau autocorrelation - lag 4/weighted by charges, is a 2D topo-
logical descriptor [33]. The descriptor has a positive correlation with the antiproliferative
activity, meaning that active compounds should have higher ATSC4c values. The most ac-
tive compound 5 with IC50 = 0.3 µM has the highest value of ATSC4c descriptor. Compound
21 with IC50 = 60.0 µM has the lowest value of the descriptor.

ATSC3e is the centered Broto–Moreau autocorrelation - lag 3/weighted by Sanderson elec-
tronegativities [33], describing the distribution of molecular electronegativity within a topo-
logical structure. More electronegative atoms/substituents are favorable for the activity.
The descriptor has a positive correlation with the antiproliferative activity, meaning that
active compounds should have higher ATSC3e values. Compound 10 with IC50 = 64.5 µM
has the lowest value of the descriptor. Compounds with among the highest activity, such as
compounds 39 and 38 with IC50 = 3.0 µM and IC50 = 4.0 µM, respectively, have among the
largest values of ATSC3e descriptor. If the Sanderson electronegativities at 3 lag topological
distance between pairs of atoms in the molecule increases, the antiproliferative activity
will increase.

AATSC6p is the average centered Broto–Moreau autocorrelation - lag 6/weighted by polariz-
abilities [33]. Polarizability is related to electron mobility and is a tendency of the electron
cloud of an atom or molecule to be distorted from its normal shape by an external electric
field. Consequently, polarizability decreases if the size of the atom (substituent) decreases,
which is in correspondence with more electronegative atoms/substituents. Polarizability
is related to the size of the atom/substituent which correlates with the electronegativity
descriptor (more electronegative atoms, less polarizability means higher activity). The
highest value of the descriptor has less active compounds 21 and 22 with IC50 = 60.0 µM
and IC50 = 56.0 µM, respectively (for structures see Figure S2). Compounds 5, 20, 37 and 38,
39 with IC50 = 0.3 µM, IC50 = 7.8 µM, IC50 = 8.0 µM, IC50 = 4.0 µM and IC50 = 3 µM, respec-
tively, have among the lowest values of the descriptor (for structures see Figures S1–S3).
The descriptor has a negative correlation with the antiproliferative activity, meaning that
active compounds should have lower AATSC6p values.

The analysis shows that the theoretical molecular descriptors of the model codify the
electronic properties (valence electrons, charges, electronegativities, polarizability) of atoms
in the molecules. This makes it possible to elaborate that electronic properties of different
substitutions on the pyrimidine ring and the ring itself are crucial structural determinants
of various possible mechanisms in the biomolecular interaction sites.

2.3. Validation and Applicability Domain

The applicability domain of the model was analyzed using leverages and standardized
residuals (Figure 3b). Overall, standardized residuals show only moderate outliers in the
training and test sets, and one compound has leverage higher than the critical leverage
(h* = 0.581) in the test set.
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The training set has two moderate outliers, compounds 22 and 39; one of them is very
close to 2σ line and second to 3σ line (for structures see Figure S3). Training set compound
5 (Figure S1) exceeds critical leverage but is very close, concluding that this compound did
not have influence on the development of the model. The test set has one outlier higher
than critical leverage, compound 3, and one moderate outlier, compound 23 (Figure S3).
Compound 3 most certainly influenced the external validation statistics, but as it has a very
small, standardized residual, then similar compounds can still be predicted with the model.
Pyrimidine derivatives used for the modelling come from three different publications but
are synthesized and measured under the same conditions for antiproliferative activity
by the same research group. By analyzing their structure, we can see that they are quite
different according to their N-1, N-3, C-5, and C-6 substitutions of pyrimidine ring. The test
set contains representatives from all three groups described as pyrimidines with an acyclic
sidechain at position C-6, N-acyclic uracil analogues with linear and aromatic moieties at
C-5 and C-5 alkynyl, and furo [2,3-d]pyrimidine-substituted pyrimidine of L-ascorbic acid.
By analyzing the structures of these outliers, we notice that three of them (compounds 22,
23, 39) belong to the one branch of the C-5 alkynyl-substituted pyrimidine of L-ascorbic
acid derivatives (for structures see Figure S3).

Compound 3 from the test set contains 2,4-dimethoxypyrimidine and di(benzyloxy)iso-
butyl sidechain at C-6. Higher than critical leverage can be explained by substitution at
different positions compared with other compounds from the test set which do not contain
C-6 substitution and are mostly N-1-substituted compounds, with different linear and
aromatic substitution at the C-5 position. Structural diversity can be an explanation of the
appearance of these outliers. The test set was selected in a way that contains representatives
of all pyrimidine derivatives in equal number to different groups of input data.

2.4. Synthesis of New Compounds

The precursor, 5-(3-hydroxypropyl)pyrimidine-2,4-dione, for syntheses of 5-halopropy-
luracil and 5-halopropylpyrimidine derivatives was synthesized and reported previously [35,36].
Reagents and conditions for the syntheses are presented in Figure 4.
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5-(3-hydroxypropyl)uracil

Figure 4. Synthetic pathway, reagents, and conditions for 5-halopropylpyrimidines (40-43): (i) HI,
−5 ◦C, 90 min; (ii) POCl3, reflux, 1 h; (iii) 1 M NaOMe/MeOH, reflux, 6 h.

On the IR spectra of compounds 40–43 (Figures S4–S7), characteristic bands for com-
mon structural elements such as C=C and C–H (ring) stretching were observed in the
range of 1665–1383 cm−1 and bending was observed in ranges 1469–1334 cm−1 (CH2) and
1015–681 cm−1 (C=C–H, CH2). Of the specific bands for individual compounds, the IR spec-
trum of compound 40 shows N–H stretching bands at 3163–2920 cm−1 as well as carbonyl
stretching at 1730 cm−1. In addition to these, bands at 951 cm−1 for CH2–I bending and
562–440 cm−1 for C–I stretching were observed. The IR spectrum of compound 41 showed
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CH2–Cl bending bands at 1096 cm−1 and C–Cl stretching bands at 728–681 cm−1. The IR
spectrum of compound 42 had characteristic bands of ether group stretching at 1231 and
1056 cm−1 and C–Cl stretching at 745–687 cm−1, while the IR spectrum of compound 43
showed a specific band of CH3 stretching at 2957 cm−1 as well as ether group stretching at
1207 and 1019 cm−1, CH2–Cl bending at 1074 cm−1 and C–Cl stretching at 654–481 cm−1.

Based on the chemical shifts, multiplicities and coupling constants, all recorded
NMR spectra were assigned, and they matched with the investigated compounds 40–
43 (Figures S8–S19). The aliphatic proton nuclei of all compounds, as well as the methoxy
groups of 43, were observed in the spectra in the range of 4.41–1.91 ppm and the aromatic
protons in the range of 8.74–7.22 ppm. The NH groups of 40 were observed at about
11.0 ppm. The position of the 13C nuclei in the spectra is also consistent with their position
in the molecule: aliphatic in the range of 69–8 ppm depending on the substituted halogen
element or pyrano ring and aromatic in the range 169,110 ppm.

Spectra obtained by recording mass spectroscopy gave an insight into the molecular
mass of the synthesized compounds based on the data related to the molecular ion of the
individual compound and completed identification of the compounds (Figures S20–S23).
The results correspond to the calculated molecular weight of the tested compounds with
variations of up to 0.5%. It can also be concluded that the compounds are more basic
than acidic because they prefer positive ionization (they are protonated) when recording
mass spectra.

2.5. Antiproliferative Activity of Synthesized Compounds

The antiproliferative activity against human HeLa cervical cancer cell line for four
new synthesized derivatives was measured. Compounds were tested under the same MTT
assay protocol and within the same research group as datapoints used for modelling. Since
anticancer drugs are used as multicancer drugs, newly synthesized compounds, besides
HeLa cervical cell lines, were also tested for human cancer cell lines MCF-7 (breast cancer
cell line), CFPAC-1 (ductal pancreatic adenocarcinoma cell line) and SW620 (human colon
adenocarcinoma cell line). The results of the antiproliferative activity are presented as the
concentration of the compound that inhibits the proliferation of tumor cells by 50% (IC50,
Table 1).

Table 1. IC50 values (µM) of tested compounds.

Compounds MCF-7 CFPAC-1 HeLa SW620

40 >100 >100 80.2 >100
41 5 8.77 4.24 6.17
42 >100 81.31 >100 >100
43 >100 >100 55.67 >100

Pyrimidine derivatives often show an antitumor effect because they act as antimetabo-
lites. For 5-halopropyl derivatives (40, 41 and 43), the expected mechanism of action is, in
addition to being antimetabolic, also alkylating, given that they have a halogen-leaving
group at the C-3′ atom of the propyl chain and can thus lead to DNA alkylation. In in vitro
conditions, only compound 41 (Table 1) showed a significant antiproliferative effect on the
tested tumor cells at concentrations lower than 10 µM (4.24–8.77 µM) but in a non-selective
manner. Compounds 40 and 43 inhibited HeLa cells but at relatively high concentra-
tions (80.20 µM and 55.67 µM). Previous research on similar compounds showed that
5-(2-chloroethyl)-2,4-dichloropyrimidine, the 5-ethyl analogue of compound 41 (Figure 5),
exhibited strong antiproliferative activity (IC50 < 10 µM), especially and quite selectively
towards the HCT116 cell line (IC50 = 0.8 ± 0.2 µM) [37].
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In the same study [37], the authors examined in more detail the mechanism of action
of 5-(2-chloroethyl)-2,4-dichloropyrimidine by flow cytometry analysis of potential cell
cycle disorders. The compound was tested at two concentrations close to or slightly above
the IC50 (1 and 5 µM) on HCT116 cells. The results showed that the compound at a
higher concentration (5 µM) strongly stopped the G2/M phase at both timepoints, so most
cells could not progress through mitosis and eventually apoptosis occurred, which was
evidenced by the accumulation of subG1 cells (apoptotic cells). Accumulation of cells in
G2/M phases (G2/M phase arrest) indicates damage in the cell that occurs during S phase
(DNA replication) or before mitosis (abnormal formation of the mitotic spindle). In G2
time, due to unreplicated DNA, a signal is generated that leads to the arrest of the cell
cycle and thus prevents the initiation of the M phase before the end of the S phase. It is
usually triggered by agents that induce DNA damage or damage to the mitotic spindle.
Since the compounds 5-(2-chloroethyl)-2,4-dichloropyrimidine and 5-(3-chloropropyl)-2,4-
dichloropyrimidine (41) are structurally like the pyrimidine antagonist 5-fluorouracil, this
perturbation mechanism of the cell cycle is quite unusual. Namely, antimetabolite drugs,
such as pyrimidine antagonists, stop/delay the cell cycle in G1 or early S phase [38–40]. The
assumption is that the chloroalkyl substituent, which is present in other known alkylating
agents (nitrogen mustard, uramustine), is probably responsible for DNA alkylation, thus
causing more severe DNA damage, which causes G2/M phase arrest and apoptosis. Similar
results were previously described, which show a significant influence of chlorine atoms on
biological activity, i.e., that an increase in chlorine content also increases the antiproliferative
effect of the 2,4-dichloro-6-methylpyrimidine structural analogue with a 5-(2-chloroethyl)
chain [41].

2.6. Predicted Physicochemical, Pharmacokinetic, and Drug-Likeness Properties of Synthesized
Compounds

To be efficacious as a medication, a biologically active molecule needs to reach its
intended target in the body at a sufficient concentration and remain in a bioactive state long
enough for the anticipated biological processes to take place. During the drug development
process, the evaluation of absorption, distribution, metabolism, and excretion (ADME) is
increasingly conducted at an early stage, when there are numerous considered compounds
but limited access to physical samples. To address this, computational models serve as
viable alternatives to experimental methods. Various physicochemical, pharmacokinetic
and drug-likeness properties of synthesized compounds 40–43 were computed using the
SwissADME web tool [42] (Table 2). Predicted values indicate good oral bioavailability,
and none of the compounds violate any of the major parameters in drug-likeness rules
(exceptions are #atoms < 20 and MW < 200 for the Ghose and Muegge drug-likeness
thresholds). Lipophilicity values are within the desirable range of 1–3. Gastrointestinal
absorption is predicted as high, and none of the compounds is marked as P-gp substrate.
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Table 2. Physicochemical, pharmacokinetic and drug-likeness properties of synthesized compounds
40–43.

Properties Compound 40 Compound 41 Compound 42 Compound 43

Physicochemical

Mw (g/mol) 280.06 225.50 170.60 216.66
Num. rotatable bonds 3 3 0 5

Num. H-bond acceptors 2 2 3 4
Num. H-bond donors 2 1 0 0

Molar Refractivity 55.23 51.43 41.19 54.39
TPSA (Å2) 65.72 25.7 35.01 44.24

Log Po/w (iLOGP) 1.41 2.36 1.89 2.73

Pharmacokinetics

GI absorption High High High High
BBB permeant No Yes Yes Yes
P-gp substrate No No No No

Drug likeness

Lipinski Yes; 0 violation Yes; 0 violation Yes; 0 violation Yes; 0 violation

Ghose Yes No; 1 violation:
#atoms < 20

No; 1 violation:
#atoms < 20 Yes

Veber Yes Yes Yes Yes
Egan Yes Yes Yes Yes

Muegge Yes Yes No; 1 violation: MW
< 200 Yes

Bioavailability Score 0.55 0.55 0.55 0.55

3. Blind Validation of Model Applicability

The blind validation of the derived model was carried out with newly synthesized
pyrimidine derivatives. Among the four newly synthesized derivatives, 5-(3-hloropropil)-
2,4-dichloropyrimidin (compound 41) exerted promising anticancer activity (IC50 = 4.24 µM).
The most active compound among the new synthesized derivatives, 5-(3-hloropropil)-2,4-
dichloropyrimidin, was predicted with differences of 0.02 compared to experimentally evalu-
ated activity (Table 3). A consistent prediction with the model was also obtained for compound
43, which was determined to be clearly inactive by the model, and which is in excellent
agreement with the experimental values. For the rest of the blind validation compounds,
the difference between the prediction and the experiment was too large, which in the case of
compound 40 can be attributed to an iodine substituent that was missing from the training
data, and in the case of compound 42 an aliphatic ring was fused to the pyrimidine, which
configuration was also missing from the training data. Although the structures of the
pyrimidines used in deriving the model are quite different, the blind validation confirms
that the model is a predictive model because among the new synthesized C-5 acyclic pyrim-
idine molecules, the most active one is correctly predicted by the model. This confirms
further applicability of the model in the design of new pyrimidine derivatives using the
proposed QSAR model to improve biological activity and drug-likeness properties of new
candidate molecules.

Table 3. External validation of QSAR model, comparison of external and predicted values.

Compound Exp. pIC50 Pred. pIC50 Residuals

40 4.1 5.05808 −0.958081
41 5.37 5.38919 −0.0191896
42 4 6.63909 −2.63909
43 4.25 3.7424 0.507605
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4. Materials and Methods
4.1. Pyrimidine Derivatives

Data for uracil and pyrimidine derivatives were extracted from the ChEMBL database [43]
and manually curated. The data were derived from three publications [27–29] which, after
curation, contributed five (Assay CHEMBL3296503), 15 (Assay CHEMBL3761940) and 19
(Assay CHEMBL894562) compounds, respectively (http://dx.doi.org/10.15152/QDB.261,
accessed on 21 August 2024, Figures S1–S3). In all three publications, the compounds were
tested under the same MTT assay protocol for antiproliferative activity against HeLa cervical
cell lines after 72 h, and the measurements were carried out within one research group. After
detailed data curation, duplicates inspection and verification with the original literature,
39 pIC50 (negative logarithmic expression of the half maximal inhibitory concentration
(IC50)) [44] datapoints with the exact values were selected for modelling. Activity range
among selected compounds was 4.1–6.52 (http://dx.doi.org/10.15152/QDB.261, accessed
on 21 August 2024).

Since it is a diverse but smaller type of data, the training and testing datasets were
prepared using an intuitive-rational approach [24], so that the structural variability of each
original article and the scale of the experiment were considered. The subset for each article
was ordered by increasing activities, and compounds were chosen symmetrically for the
test set, respecting the rule that the most active and the least active compounds remain in
the training set (http://dx.doi.org/10.15152/QDB.261, accessed on 21 August 2024). In
this way, the dataset was divided into a training set containing 31 derivatives and a test set
containing 8 derivatives (approximately 20% of compounds). Consequently, the training
and test sets included a well-distributed diversity of structures and activity among all data
(http://dx.doi.org/10.15152/QDB.261, accessed on 21 August 2024).

4.2. Computational Characterization of Pyrimidine Derivatives

The chemical structure of 39 pyrimidine derivatives was characterized with 1D/2D
theoretical molecular descriptors calculated with PaDEL-descriptors (version 2.21) [45] from
canonical Simplified Molecular-Input Line-Entry System (SMILES) which were created
with OpenBabel software (version 2.4.1) [46] using 3D geometry of molecules. For the
3D molecular geometry, molecular mechanics calculations were performed with Merck
molecular force field (MMFFs) [47] and a conformational search with torsional sampling in
Monte Carlo Multiple Minimization (MCMM) [48] using MacroModel 12.1 Schrödinger
LLC, Portland, OR (version 2019-3) [49].

4.3. Development of Quantitative Structure–Activity Relationships

Correlation between the structure of the molecule and its anticancer activity using the
calculated molecular descriptors was derived with CODESSA PRO (version 1.0, Gainesville,
FL) [50]. Molecular descriptors in the model were selected with the stepwise forward
selection procedure coded into the Best Multi-Linear Regression (BMLR) approach [50]. In
BMLR, at first the molecular descriptors are analyzed and descriptors with missing values
removed. Then, the best two parameter regressions according to their statistical significance
and noncollinearity criteria (R2 < 0.6) are generated. The selected two-parameter models
are further improved by adding descriptors and checking their statistical significance. In
the model development, descriptor scales are normalized and centralized, while the result
is provided in natural scale. The final model has an optimal description of the dataset
within a given descriptor space [50]. BMLR was previously applied on anti-oncological
active spiro-alkaloids against HeLa cells [51]. We have previously successfully applied
theoretical molecular descriptors and BMLR in the QSAR content to model xanthene
derivatives against HeLa cell lines [52], physico-chemical [53,54], toxicological [55–57],
biomedical [24,58] and material properties [59]. We also have previously successfully
performed antiproliferative activity measurements in HeLa cervical cell lines together with
QSAR model development for HeLa cell lines [60,61].

http://dx.doi.org/10.15152/QDB.261
http://dx.doi.org/10.15152/QDB.261
http://dx.doi.org/10.15152/QDB.261
http://dx.doi.org/10.15152/QDB.261
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4.3.1. Internal and External Validation of the Model

Internal and external validation of the QSAR model was monitored using several
statistical parameters, where the robustness and predictiveness of the model were defined
with the number of the data in the training set (N), the number of the molecular descriptors
used in the QSAR model (n), squared correlation coefficient (R2), leave-one-out cross
validation coefficient (R2

CV), Fisher criteria (F), squared standard error of regression (s2)
and squared correlation coefficient of the test set (R2

test) [50]. A training set consisting
of 31 pyrimidine derivatives was used for internal validation. External validation was
performed by monitoring R2

test, the statistical parameter related to the test set which contains
8 pyrimidine derivatives. Applicability domain was analyzed using a leverage approach.

4.3.2. Blind Validation of the Model: Newly Synthesized Pyrimidine Derivatives

For further investigation of the applicability of our model, we used four newly syn-
thesized pyrimidine derivatives evaluated for antiproliferative activity against HeLa cell
lines. Datasets for modelling and synthesized pyrimidine derivatives were tested under
the same protocol for antiproliferative activity against HeLa cells. Molecules were synthe-
sized independently from QSAR model development and tested for model predictivity for
pyrimidine and uracil analogues.

4.4. Availability of the Model

QSAR models and related data can be made available in various data formats [62]
according to the best practices for QSAR model reporting [63]. To follow best practices,
the QSAR Data Bank format [64] is used and models with data are stored in the QsarDB
repository [65,66], like our recent example [67]. A digital object identifier (DOI) is assigned
for the models and data [68].

4.5. Chemistry

All chemicals were purchased from Sigma-Aldrich (Steinheim, Germany), and reagents
were used as received from the manufacturers. Determination of the melting temperature
of the synthesized compounds was performed on a Koffler instrument (Reichert, Austria).
Melting temperatures were determined by the instantaneous melting method. The values
obtained in this way are “uncorrected”. The temperature range in which the melting
temperature for the apparatus can be measured is from 10 ◦C to 400 ◦C ± 0.1 ◦C.

4.5.1. Synthesis

5-(3-iodopropyl)pyrimidine-2,4-dione (40): To a cooled solution of 5-(3-hydroxypro-
pyl)pyrimidine-2,4-dione (102.1 mg; 0.6 mmol) in water (10 mL), a solution of hydroiodic
acid (57%, 1 mL) was added. The reaction mixture was stirred for 90 min at −5 ◦C, then
the solvent was evaporated under the reduced pressure, and the residue was purified by
column chromatography (dichloromethane:methanol = 60:1) to obtain a white crystalline
product of 5-(3-iodopropyl)pyrimidine-2,4-dione. White crystals; yield: 59% (0.099 g); mp
= 113–114 ◦C; MW = 280.06 g mol−1; ESI-MS (m/z): 281 (M + H)+; elemental analysis for
C7H9IN2O2: calculated C 30.02%, H 3.24%, N 10.00%; found C 29.81%, H 3.51%, N 9.98%;
IR: 3163–2920 (ν N–H, CH2), 1730 (ν C=O), 1665–1422 (ν C=C and C–H ring), 1450 (δ
CH2), 1015–762 (δ C=C–H, CH2), 951 (δ CH2–I), 562–440 (ν C–I) cm−1; 1H NMR (600 MHz,
DMSO-d6, δ/ppm): 11.04 (1H, s, NH), 10.67 (1H, d, J = 4.65 Hz, NH), 7.22 (1H, s, H-6), 3.23
(2H, t, J = 7.06 Hz, H-3′), 2.24 (2H, t, J = 7.06 Hz, H-1′), 1.91 (2H, quint, J = 7.06 Hz, H-2′);
13C NMR (150 MHz, DMSO-d6, δ/ppm): 164.5 (C-4), 151.3 (C-2), 138.4 (C-6), 110.1 (C-5),
31.7 (C-2′), 27.2 (C-1′), 8.0 (C-3′).

5-(3-chloropropyl)-2,4-dichloropyrimidine (41) and 2-chloro-6,7-dihydro-5H-pyrano
[2,3-d]pyrimidine (42): A mixture of 5-(3-hydroxypropyl)pyrimidine-2,4-dione (680 mg;
4 mmol) and phosphorus oxychloride (17.8 mL; 0.19 mol) was refluxed for one hour.
The solvent was evaporated and ice was added to the residue. The mixture was then
extracted with ether, and the ether layer dried over anhydrous sodium sulfate. After
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drying, the ether was removed under reduced pressure, and the residue was purified by
column chromatography (dichloromethane:methanol = 30:1) which gave two products: 5-(3-
chloropropyl)-2,4-dichloropyrimidine as colorless oil and 2-chloro-6,7-dihydro-5H-pyrano
[2,3-d]pyrimidine as white crystalline. 5-(3-chloropropyl)-2,4-dichloropyrimidine: colorless
oil; yield: 32% (0.29 g); MW = 225.50 g mol−1; ESI-MS (m/z): 225 (M + H)+; elemental
analysis for C7H7Cl3N2: calculated C 37.28%, H 3.13%, N 12.42%; found C 37.67%, H 3.23%,
N 12.51%; IR: 1562–1386 (ν C=C and C–H ring), 1334 (δs CH2), 1096 (δ CH2–Cl), 873-774 (δ
C=C–H, CH2), 728–681 (ν C–Cl) cm−1; 1H NMR (600 MHz, DMSO-d6, δ/ppm): 8.74 (1H, s,
H-6), 3.70 (2H, t, J = 6.40 Hz, H-3′), 2.83 (2H, t, J = 7.60 Hz, H-1′), 2.06 (2H, quint, J = 6.52 Hz,
H-2′); 13C NMR (150 MHz, DMSO-d6, δ/ppm): 161.4 (C-6), 161.1 (C-2), 156.8 (C-4), 132.0
(C-5), 44.4 (C-3′), 30.6 (C-2′), 26.4 (C-1′). 2-chloro-6,7-dihydro-5H-pyrano [2,3-d]pyrimidine
(42): white crystals; yield: 30% (0.2 g); mp = 68 ◦C; MW = 170.60 g mol−1; ESI-MS (m/z):
171 (M + H)+; elemental analysis for C7H7ClN2O: calculated C 49.28%, H 4.14%, N 16.42%;
found C 48.89%, H 3.94%, N 16.37%; IR: 1576–1425 (ν C=C and C–H ring), 1360 (δ CH2),
1231 (νas C–O–C), 1056 (νs C–O–C), 877–773 (δ C=C–H, CH2), 745–687 (ν C–Cl) cm−1; 1H
NMR (600 MHz, DMSO-d6, δ/ppm): 8.32 (1H, s, H-6), 4.41 (2H, t, J = 5.28 Hz, H-3′), 2.73
(2H, t, J = 6.42 Hz, H-1′), 1.95 (2H, quint, J = 6.20 Hz, H-2′); 13C NMR (150 MHz, DMSO-d6,
δ/ppm): 168.5 (C-4), 159.7 (C-6), 157.3 (C-2), 115.7 (C-5), 68.9 (C-3′), 21.1 (C-1′), 20.6 (C-2′).

5-(3-chloropropyl)-2,4-dimethoxypyrimidine (43): To a solution of sodium methoxide
(120 mg; 2.2 mmol) in methanol (15 mL), 5-(3-chloropropyl)-2,4-dichloropyrimidine (90 mg;
0.4 mmol) was added, and the mixture was heated at reflux for six hours. The solvent was
evaporated, and water was added to dissolve the sodium chloride. The oily layer was
extracted with dichloromethane, dried over anhydrous sodium sulfate, and the extract
evaporated under reduced pressure. The residue was purified by column chromatography
(dichloromethane:methanol = 30:1) to produce 5-(3-chloropropyl)-2,4-dimethoxypyrimidine
as colorless oil. Colorless oil; yield: 73% (0.063 g); MW = 216.67 g mol−1; ESI-MS (m/z):
217.1 (M + H)+; elemental analysis for C9H13ClN2O2: calculated C 49.89%, H 6.05%, N
12.93%; found C 50.03%, H 6.22%, N 12.85%; IR: 2957 (ν CH3), 1604–1383 (ν C=C and
C–H ring), 1469 (δ CH2), 1207 (νas C–O–C), 1074 (δ CH2–Cl), 1019 (νs C–O–C), 960–765
(δ C=C–H, CH2), 654–481 (ν C–Cl) cm−1; 1H NMR (600 MHz, DMSO-d6, δ/ppm): 8.12
(1H, s, H-6), 3.92 (3H, s, OCH3), 3.86 (3H, s, OCH3), 3.62 (2H, t, J = 6.33 Hz, H-3′), 2.56
(2H, t, J = 6.33 Hz, H-1′), 1.95 (2H, quint, J = 6.33 Hz, H-2′); 13C NMR (150 MHz, DMSO-d6,
δ/ppm): 168.8 (C-2), 163.7 (C-4), 157.3 (C-6), 113.4 (C-5), 54.2 (OCH3), 53.7 (OCH3), 44.7
(C-3′), 31.2 (C-2′), 23.3 (C-1′).

4.5.2. Elemental Analysis

Elemental analysis was performed on a Vario EL III C, H, N, S/O Elemental Analyzer
(Elementar, Langenselbold, Hesse, Germany). Infrared (IR) spectra (Figures S4–S7) were
recorded on a Spectrum BX FTIR system (Perkin Elmer, Waltham, MA, USA) as KBr pellets,
in the wavelength range from 4500 to 400 cm−1. IR spectra were recorded on a Spectrum
BX FTIR system (Perkin Elmer, Waltham, MA, USA) as KBr pellets, in the wavelength range
from 4500 to 400 cm−1.

4.5.3. NMR Spectra

NMR spectra (Figures S8–S19) were measured on a Bruker AV600 spectrometer (Bruker,
Rheinstetten, Germany) at 303 K in 5 mm NMR tubes. 1H and 13C NMR spectra were
obtained at 600.135 and 150.918 MHz, respectively, using standard 1H and 13C APT tech-
niques. Samples were measured in DMSO-d6, and chemical shifts (in ppm) were assigned
referring to tetramethylsilane (TMS) as an internal standard. Digital resolutions in the 1H
and 13C spectra were 0.37 and 0.60 Hz, respectively, per point. The signal assignment of the
compounds was performed by one and two-dimensional NMR techniques: 1H-1H COSY,
1H-13C HMQC and 1H-13C HMBC.
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4.5.4. Mass Spectra

Mass spectra (Figures S20–S23) analysis was performed on an LC-MS/MS apparatus
(Agilent Technologies, Waldbronn, Germany) consisting of an HPLC 1200 device with a
binary pump, degasser and autosampler. HPLC was coupled to a 6420 triple quadrupole
mass spectrometer and ESI ionization in positive mode. The samples were dissolved in
methanol to a concentration of about 100 µg mL−1 and injected into the system eluted with
50% methanol.

4.6. In Vitro Testing of Antiproliferative Activity

The test compounds were dissolved in DMSO to create five ten-fold dilutions ranging
from 0.01 to 100 µmol L−1. Various cell lines, including HeLa (cervical cancer), SW620 (col-
orectal adenocarcinoma, metastatic), CFPAC-1 (pancreas ductal adenocarcinoma), and MCF-
7 (breast adenocarcinoma, metastatic), were cultivated as monolayers in Dulbecco modified
Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 2 mmol L−1

L-glutamine, 100 U mL−1 penicillin, and 100 µg mL−1 streptomycin, within a humid
atmosphere with 5% CO2 at 37 ◦C. To evaluate the effect of the test compounds on the
viability and survivability of tumor and control cell lines, the MTT assay was employed.
For this, five thousand cells per well were seeded in a series of standard 96-well plates
on day zero. The test compounds were then added and incubated for 72 h. The working
concentrations of the test compounds were freshly prepared in the nutrient medium on the
day of the test, and the solvent (DMSO) was also tested at the same concentration as the
working concentrations (DMSO concentration never exceeded 0.1%) to check for possible
inhibitory activity. After 72 h of incubation, the rate of cell growth was assessed using
the MTT test. The experimentally determined absorbance values were converted to cell
percentage growth (PG) using formulas proposed by the National Institute of Health, as
described previously [27–29]. This method relies on the number of control cells on the day
of testing and compares the growth of treated cells with the growth of untreated cells in
control wells in the same plate, resulting in differences in percentages from the calculated
expected value.

The IC50 values for each compound were calculated from dose–response curves using
linear regression analysis. The mean test concentrations that yielded PG values above and
below the reference value were adjusted to determine the IC50 values. In cases where all
tested concentrations produced PG values that exceeded the appropriate activity reference
level (e.g., PG value of 50) for a given cell line, the highest tested concentration was
designated as a setpoint (indicated as “>”).

Each test point was conducted in quadruplicate in three individual experiments to
ensure accuracy. The results were subjected to statistical analysis using Analysis of Variance
(ANOVA) and Tukey post-hoc test at a significance level of p < 0.05. Finally, the activities of
the test compounds were assessed by plotting the average growth rate for each cell type
compared to the control in dose–response graphs.

4.7. ADME Predictions

The SwissADME web tool (www.swissadme.ch, accessed on 24 July 2023) was used to
predict physicochemical, pharmacokinetic and drug-likeness properties of the synthesized
compounds.

5. Conclusions

The quantitative structure–activity relationships for uracil and pyrimidine deriva-
tives against cervical anticancer activity were studied. For this. the bioactive chemical
space for cervical cancer among a selected group of uracil and pyrimidine derivatives was
curated and organized using cheminformatic approaches. This allowed for the design
and validation of a descriptive and predictive, statistically significant, QSAR model. Five
molecular descriptors were calculated from a two-dimensional molecular structure and
related to anticancer activity. Activity increased as charges and Sanderson electronega-

www.swissadme.ch
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tivities at 4 lag topological and 3 lag topological distance increased, respectively. I-state
at 2 lag topological distance, molecular distance edge between all secondary and tertiary
nitrogen’s and polarizability at 6 lag of topological distance contributed to decreasing
activity. The model was also blindly validated by synthesis and in vitro antiproliferative
evaluation of novel C-5-substituted pyrimidine derivatives. The most active compound
among the new synthesized derivatives, 5-(3-chloropropyl)-2,4-dichloropyrimidine, was
predicted with differences of 0.02 compared to experimentally evaluated activity. Newly
synthesized compounds allowed us to confirm model applicability for the design of new
pyrimidine and uracil derivatives in HeLa cervical cell line measurement. Redesigning
molecule(s) with the developed QSAR model will also allow to improve biological activity
and drug-likeness properties of synthesized candidate molecules.
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