2024 SIAM Conference on Parallel Processing and Scientific Computing, March 5-8, 2024, Baltimore, USA

Improving stability and performance: Integration of novel CholeskyQR2 into the ChASE library

Nenad Mijić^{*}, **Davor Davidović**^{*}, Xinzhe Wu⁺, Edoardo di Napoli⁺

*Ruđer Bošković Institute, Croatia

⁺Jülich Supercomputing Centre, Germany

Content

- 1. ChASE eigenvalue solver
- 2. Parallelisation model and scalability issues
- 3. QR factorization \rightarrow CholeskyQR
- 4. Improving the numerical stability of CholeskyQR
- 5. Preliminary results

ChASE library

ChASE: a Chebyshev Accelerated Subspace Eigensolver for Dense Eigenproblems

The **Ch**ebyshev Accelerated **S**ubspace **E**igensolver (ChASE) is a modern and scalable library based on subspace iteration with polynomial acceleration to solve dense Hermitian (Symmetric) algebraic eigenvalue problems, especially solving dense Hermitian eigenproblems arragend in a sequence. Novel to ChASE is the computation of the spectral estimates that enter in the filter and an optimization of the polynomial degree that further reduces the necessary floating-point operations.

¹ https://dl.acm.org/doi/10.1145/3313828

SIAM PP24, March 5-8, 2024, Baltimore, USA

- Chebyshev polynomial with degree optimization to accelerate convergence¹
- Accurately approximates the extremal eigenvalues of dense Hermitian eigenproblems
- Particularly effective on solving a sequence of correlated eigenproblems
 - Support for homogeneous and heterogeneous architectures with shared and distributed memory
- Modern C++ interface: easy-to-integrate in application codes
 - https://github.com/ChASE-library/ChASE

The algorithm

- Iterative solver for standard symmetric/Hermitian eigenvalue problem:
- $A X = \Lambda X$
- where only a portion on eigenvalues are required
- Mostly cast in terms of BLAS-3 operations

The algorithm

¹Wu, X., Davidović, D., Achilles, S. & Di Napoli, E. (2022) ChASE: a distributed hybrid CPU-GPU eigensolver for large-scale hermitian eigenvalue problems. PASC'22: Proceedings of the Platform for Advanced Scientific Computing Conference. New York, NY, USA, ACM, 9, 12 doi:10.1145/3539781.3539792.

SIAM PP24, March 5-8, 2024, Baltimore, USA

l .	Math operation
+ Vi-1	GEMM
QR	QR
→ v, л	GEMM + EIG Solver
of (V, 1)	AXPY
→ Y	Copy/index
degree	log/min/max

Parallelisation model

•	Input matrix A divided into 2D block layout.	· Co
•	2D MPI process grid (fixed 1 block per rank)	la
	 Large and contiguous matrix multiplication per 	re
	MPI rank	• Pa
•	Hybrid CPU-GPU and CPU-only	Sc

$$A_{dist} = \begin{pmatrix} A_{0,0} & A_{0,1} \\ \hline A_{1,0} & A_{1,1} \\ \hline A_{2,0} & A_{2,1} \end{pmatrix}, \ \hat{V}_{dist} = \begin{pmatrix} \hat{V}_0 & \hat{V}_1 \\ \hline \hat{V}_0 & \hat{V}_1 \\ \hline \hat{V}_0 & \hat{V}_1 \end{pmatrix} \qquad \qquad \begin{bmatrix} 1,2 \\ 3,4 \\ 5,6 \end{bmatrix} \leftarrow \begin{bmatrix} 1 \\ 3 \\ 5 \\ 5 \\ \hat{W} \end{bmatrix}$$

- olumn-matrices (V, W) are divided into 1D row block ayout and distributed among MPI ranks (one block eplicted on multiple ranks)
- arallelism of the level of fine-tuned libraries (Lapack, caLapack, MKL, CUDA)

 \mathbb{C}

ChASE v1.2 speedup and total execution time

Speedup GPU vs CPU. N = 130k, NEV = 1k

SIAM PP24, March 5-8, 2024, Baltimore, USA

 $In_2O_3 N = 76k$, NEV = 800

CROATIAN COMPETENCE CENTRE FOR HPC

Scalability performance

Strong scalability Matrix size 130k, #eigenvalues = 1k

Weak scalability Matrix size = 30k – 360k (30k per node), #eigenvalues = 2250

Scalability issues

- Tall-and-skinny matrix
- QR factorization main issue:
 - full row-rank is participating in the calculating QR
 - does not scale with the number of nodes/GPUs
 - As N grows, the computational load per MPI increases
 - Increased memory footprint
- QR redundantly computed on each MPI rank
 - For small cases QR was small enough to be efficiently computed locally, on each MPI rank
- Original version was Householder QR factorization from the ScaLAPACK and/or cuSolver libraries
- **Block MS46**, tomorrow, 3:35 5:45, Xinzhe Wu: Advancing Chase Library Towards Exascale Applications on Distributed Multi-GPUs and ARM-based Systems

QR factorization

- Replace QR with a distributed implementation
- Improve the scalability with the number of nodes
- ScaLAPACK \rightarrow no GPU support
- TSQR \rightarrow QR factorization for tall-and-skinny matrices
 - Parallel algorithm but expensive
 - Expensive > especially if the orthogonal matrix Q is required

Figure taken from https://link.springer.com/chapter/10.1007/978-3-031-29927-8_22

CholeskyQR

- Tall-and-skinny QR factorization
- Simple algorithm that can be fully cast in terms of **BLAS-3** operations
- Easy parallelisation \rightarrow high performance
- Drawbacks:
 - Can not produce a fully orthogonal matrix Q
 - Numerically unstable for ill conditioned matrices $(cond(A) > 10^8)$
- **Solution**: repeat the process twice (or multiple times) \rightarrow CholeskyQR2

Algorithm CholeskyQR2 (CQR2)

Input: $A \in \mathbb{R}^{m \times n}$ **Output:** $Q \in \mathbb{R}^{m \times n}$ orthogonal and $R \in \mathbb{R}^{n \times n}$ upper triangular matrix 1: $[Q_1, R_1] := CQR(A)$ 2: $[Q, R_2] := CQR(Q_1)$ 3: $R := R_2 R_1$

CholeskyQR \rightarrow Chol(G) = $Q = AR^{-}$ $R^{T}R$

Integration into the ChASE library

- 1D row-block and MPI grid
- Mix of Householder and CholeskyQR2
- If the condition number > 10⁸ fallback to
 ScaLapack (Householder QR)

CholeskyQR with Gram-Schmidt

Input: $A \in \mathbb{R}^{m \times n}$, panel width b and number of panels $k = \frac{n}{h}$ **Output:** $Q \in \mathbb{R}^{m \times n}$ orthogonal and $R \in \mathbb{R}^{n \times n}$ upper triangular matrix 1: for j = 1 ... k do
$$\begin{split} W_j &:= A_j^T A_j \\ W_j &= U^T U \end{split}$$
▷ Construct Gram matrix 2: ▷ Cholesky factorization 3: $Q_j = A_j U^{-1}$ 4: $R_{j,j} = U$ 5: $Y := Q_{j}^{T} A_{j+1:k}$ $A_{j+1:k} := A_{j+1:k} - Q_{j} Y$ 6: 7: ▷ Update panels $R_{j,j+1:k} := Y$ 9: end for

n(n+b) logP

- Modified Gram-Schmidt (MGS)
- Processed by panels of width b on P
 - processors
- Computational cost:
- $\cdot 2/3 b^{2*}n + n^{3}/3 + 4 m n^{2}/P$
- Communication cost:

Parallelisation of CholeskyQR2 with Gram-Schmidt

- Fine-grain parallelism on per-MPI rank level
- Dividing row-blocks into panels

Pseudo-code – parallel version

- **Input:** Number of processors P, $A \in \mathbb{R}^{m \times n}$ partitioned into block rows and distributed among processors, panel width b
- **Output:** $Q \in \mathbb{R}^{m \times n}$ orthogonal and $R \in \mathbb{R}^{n \times n}$ upper triangular matrix

1: for j=1,2, ..., k do
2:
$$W_{p,j} := A_{p,j}^T A_{p,j}$$

3: $W_j := \text{MPI}_Allreduce(W_{p,j}) \triangleright \text{Communication}$
4: $W_j = U^T U$
5: $Q_{p,j} := A_{p,j} U^{-1}$
6: $R_{j,j} := U$
7: $Y_p := Q_{p,j}^T [A_{p,j+1}, A_{p,j+2}, ..., A_{p,k}]$
8: $Y := \text{MPI}_Allreduce(Y_p) \triangleright \text{Communication}$
9: $[A_{p,j+1}, ..., A_{p,k}] := [A_{p,j+1}, ..., A_{p,k}] - Q_{p,j}Y$
10: $[R_{j,j+1}, R_{j,j+2}, ..., R_{j,k}] := Y$
11: end for

- Two collective communication calls per iteration (panel)
- Panel width b is the main performance and stability factor
- cond(A_i) = 10^{10} \longrightarrow cond(A_i^TA_i) = 10^{20} . Smaller b decreases computational cost, but increases the communication (#words)
- Tradeoff between the communication and computation

Performance w.r.t. the panel width

SIAM PP24, March 5-8, 2024, Baltimore, USA

CROATIAN COMPETENCE CENTRE FOR HPC

Distributed CholeskyQR2 with Gram-Schmidt

- Smaller panel width **decrease computational cost** in constructing the Gram matrix, but **increases the communication** in Gram-Schmidt re-orthogonalization part
- Stability of the algorithm depends on the panel width b \rightarrow constructing the Gram matrix squares the condition number!
- Tradeoff between the computation and communication \rightarrow panel width b!

Modified CholeskyQR2 with MGS

>>> SIAM PP24, March 5-8, 2024, Baltimore, USA

Integration with ChASE

- Integrate in the existing ChASE 2D MPI grid using only the column communicators
- The CholeskyQR2 with MGS naturally brings the possibility to avoid re-orthogonalization of the already converged vectors in Y:
- [YV] = QR
- The first step is to apply the already computed Q (Y) to the vectors in V panel (Gram-Schmidt re-orthogonalization) and then processed with modified CholeskyQR2 with GS by panels

Integrate into the ChASE algorithm

SIAM PP24, March 5-8, 2024, Baltimore, USA

- Effectively implements the updated QR factorization
- The first step → orthogonalize
 the filter vectors V against
 already converged eigevectors in
 Y
- MPI parallelisation via 1D column communicator

ChASE - CholeskyQR2 with MGS only

The Ni₂O₃ use-cases with sizes 115k and 76k on Fugaku in complex double precision.

CROATIAN COMPETENCE CENTRE FOR HPC

ChASE All - CholeskyQR2 with MGS

Test done on Fugaku, complex double, 4096 nodes, no

SIAM PP24, March 5-8, 2024, Baltimore, USA

GPU

CROATIAN COMPETENCE CENTRE FOR HPC

Conclusion

- Modified CholeskyQR2 with MGS numerically stable for extremely large condition numbers $(k(10^{15}))$
- Added support for processing QR factorization in a distributed GPU environment
- A simpler and more efficient implementation of the ChASE on distributed memory systems
- Increased scalability of the ChASE \rightarrow no need to fallback to ScaLapack
- Drawbacks
 - The CholeskyQR2 with MGS won't work if singular values are highly clustered
- Future work
 - Improve stability using shifting for highly clustered singular values
 - Explore the possibility using 2D grid for processing CholeskyQR2 with Gram-Schmidt

Research group

Nenad Mijić, PhD

Edoardo di Napoli, PI, group leader

SIAM PP24, March 5-8, 2024, Baltimore, USA

Abhiram Kaushik postdoc

Davor Davidović, group leader

JÜLICH

Forschungszentru

Xinzhe Wu, postdoc

Hrzz

Hrvatska zaklad

Thank you!

Questions?

za znanost

SIAM PP24, March 5-8, 2024, Baltimore, USA

CROATIAN COMPETENCE **CENTRE FOR HPC**