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ChASE library
 Chebyshev polynomial with degree optimization to
accelerate convergence1

 Accurately approximates the extremal eigenvalues of
dense Hermitian eigenproblems

 Particularly effective on solving a sequence of
correlated eigenproblems

 Support for homogeneous and heterogeneous
architectures with shared and distributedmemory

 Modern C++ interface: easy-to-integrate in application
codes

 https://github.com/ChASE-library/ChASE
1 https://dl.acm.org/doi/10.1145/3313828

https://github.com/ChASE-library/ChASE
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The algorithm
 Iterative solver for standard
symmetric/Hermitian eigenvalue
problem:

 A X = Λ X
 where only a portion on eigenvalues
are required

 Mostly cast in terms of BLAS-3
operations

𝐴𝑋 =𝛬𝑋
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The algorithm

1Wu, X., Davidović, D., Achilles, S. & Di Napoli, E. (2022) ChASE: a distributed hybrid CPU-GPU eigensolver for large-scale hermitian eigenvalue problems.PASC'22: Proceedings of the Platform for Advanced Scientific Computing Conference. New York, NY, USA, ACM, 9, 12 doi:10.1145/3539781.3539792.
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Parallelisation model
 Input matrix A divided into 2D block layout.
 2D MPI process grid (fixed 1 block per rank)

- Large and contiguous matrix multiplication per
MPI rank

 Hybrid CPU-GPU and CPU-only

 Column-matrices (V, W) are divided into 1D row block
layout and distributed among MPI ranks (one block
replicted on multiple ranks)

 Parallelism of the level of fine-tuned libraries (Lapack,
ScaLapack, MKL, CUDA)
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ChASE v1.2 speedup and total execution time

In2O3 N = 76k, NEV = 800Speedup GPU vs CPU. N = 130k, NEV = 1k
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Scalability performance

Weak scalabilityMatrix size = 30k – 360k (30k per node),#eigenvalues = 2250
Strong scalabilityMatrix size 130k, #eigenvalues = 1k
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Scalability issues
 Tall-and-skinny matrix
 QR factorization main issue:

- full row-rank is participating in the calculating QR
- does not scale with the number of nodes/GPUs
- As N grows, the computational load per MPI increases
- Increased memory footprint

 QR redundantly computed on each MPI rank
- For small cases QR was small enough to be efficiently computed locally, on each MPI rank

 Original version was Householder QR factorization from the ScaLAPACK and/or
cuSolver libraries

 Block MS46, tomorrow, 3:35 – 5:45, Xinzhe Wu: Advancing Chase Library Towards
Exascale Applications on Distributed Multi-GPUs and ARM-based Systems
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QR factorization
 Replace QR with a distributed implementation
 Improve the scalability with the number of nodes
 ScaLAPACK → no GPU support
 TSQR → QR factorization for tall-and-skinny matrices

- Parallel algorithm but expensive
- Expensive - > especially if the orthogonal matrix Q is required

Figure taken from https://link.springer.com/chapter/10.1007/978-3-031-29927-8_22
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CholeskyQR
 Tall-and-skinny QR factorization
 Simple algorithm that can be fully cast in terms of
BLAS-3 operations

 Easy parallelisation → high performance
 Drawbacks:

- Can not produce a fully orthogonal matrix Q
- Numerically unstable for ill conditioned matrices
(cond(A) > 108)

 Solution: repeat the process twice (or multiple
times) → CholeskyQR2

CholeskyQR(CQR)

Algorithm CholeskyQR2 (CQR2)

G =ATA Chol(G) =RTR Q = AR-
1
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Integration into the ChASE library
 1D row-block and MPI grid
 Mix of Householder and CholeskyQR2
 If the condition number > 108 fallback to
ScaLapack (Householder QR)
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CholeskyQR with Gram-Schmidt
 Modified Gram-Schmidt (MGS)
 Processed by panels of width b on P
processors

 Computational cost:
 2/3 b2*n + n3/3 + 4 m n2 / P
 Communication cost:
 n(n+b) logP
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Parallelisation of CholeskyQR2 with Gram-Schmidt
 Fine-grain parallelism on per-MPI rank level
 Dividing row-blocks into panels
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Pseudo-code – parallel version
 Two collective communication calls per
iteration (panel)

 Panel width b is the main performance and
stability factor

 Smaller b decreases computational cost, but
increases the communication (#words)

 Tradeoff between the communication and
computation

cond(Ai) = 1010 cond(AiTAi) =1020
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Performance w.r.t. the panel width
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Distributed CholeskyQR2 with Gram-Schmidt
 Smaller panel width decrease computational cost in constructing the Gram matrix,
but increases the communication in Gram-Schmidt re-orthogonalization part

 Stability of the algorithm depends on the panel width b → constructing the Gram
matrix squares the condition number!

 Tradeoff between the computation and communication → panel width b!
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Modified CholeskyQR2 with MGS
CholQR2 MGSupdate CholQR Reorthogonalize CholQR
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Integration with ChASE
 Integrate in the existing ChASE 2D MPI grid using only the column communicators
 The CholeskyQR2 with MGS naturally brings the possibility to avoid re-orthogonalization
of the already converged vectors in Y:

 [Y V] = Q R
 The first step is to apply the already computed Q (Y) to the vectors in V panel (Gram-
Schmidt re-orthogonalization) and then processed with modified CholeskyQR2 with GS by
panels
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Integrate into the ChASE algorithm
ChASEinput MGSupdate CholQR2 withMGS

YY

Theoutput

Y V V Y Q
1

Q
2

 Effectively implements the
updated QR factorization

 The first step → orthogonalize
the filter vectors V against
already converged eigevectors in
Y

 MPI parallelisation via 1D column
communicator
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The Ni2O3 use-cases with sizes 115k and 76k on Fugaku in complex double precision.

ChASE - CholeskyQR2 with MGS only
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ChASE All - CholeskyQR2 with MGS

Test done on Fugaku, complex double, 4096 nodes, noGPU

x2 x2
x2
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Conclusion
 Modified CholeskyQR2 with MGS numerically stable for extremely large condition numbers
(k(1015))

 Added support for processing QR factorization in a distributed GPU environment
 A simpler and more efficient implementation of the ChASE on distributed memory systems
 Increased scalability of the ChASE → no need to fallback to ScaLapack
 Drawbacks

- The CholeskyQR2 with MGS won’t work if singular values are highly clustered
 Future work

- Improve stability using shifting for highly clustered singular values
- Explore the possibility using 2D grid for processing CholeskyQR2 with Gram-Schmidt
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Thank you!
Questions?


