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We derive exact analytic solutions for density and velocity fields to all orders in Eulerian standard
perturbation theory for ΛCDM cosmology. In particular, we show that density and velocity field
kernels can be written in a separable form in time and momenta at each perturbative order. The
kernel solutions are built from an analytic basis of momentum operators and their time-dependent
coefficients, which solve a set of recursive differential equations. We also provide an exact closed
perturbative solution for such coefficients, expanding around the (quasi-)EdS approximation. We find
that the perturbative solution rapidly converges towards the numerically obtained solutions and its
leading order result suffices for any practical requirements. To illustrate our findings, we compute the
exact two-loop dark matter density and velocity power spectra in ΛCDM cosmology. We show that
the difference between the exact ΛCDM and the (quasi-)EdS approximated result can reach the level
of several percent (at redshift zero, for wavenumbers k < 1h/Mpc). This deviation can be partially
mitigated by exploiting the degeneracy with the EFT counterterms. As an additional benefit of our
algorithm for the solutions of time-dependent coefficients, the computational complexity of power
spectra loops in ΛCDM is comparable to the EdS case. In performing the two-loop computation, we
devise an explicit method to implement the so-called IR cancellations, as well as the cancellations
arising as a consequence of mass and momentum conservation.

PACS numbers:

I. INTRODUCTION

The large scale structure (LSS) is a repository of key information on our universe’s origin and evolution, all the way
to the current dark energy dominated era. Data on inflationary interactions is encoded in the initial conditions for
structure formation while LSS dynamical evolution also depends on the presence of additional components that may
drive late-time acceleration. Astronomical surveys of the galaxy distribution (e.g. Euclid, LSST, SKA) promise to soon
cross the qualitative threshold on cosmological parameter, such as a percent level accuracy on the dark energy equation
of state parameters [1–3]. Crucially, it is by going beyond the background cosmology that we will, for example, extract
information on non-Gaussianities and identify different dark energy models that otherwise support the same expansion
history.
LSS dynamics is amenable to a perturbative description for a limited range of wavenumbers: those for which the

separation of scales underlying a consistent effective treatment can be advocated. The large hierarchy separating the
size of the observable Universe 1/H0 and the onset of non-linearities 1/kNL in structure formation explains the success
of linear perturbation theory in describing the essential features observed in galaxy surveys. At scales as large as 10
Mpc, non-linearities become relevant: different Fourier modes stop evolving independently showing hints of a UV/IR
mixing typical of non-linear regimes.
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At the interface between the linear and highly non-linear regime are so-called quasi-(or mildly-non-) linear scales.
Gaining perturbative control over the quasi-linear range significantly increases the number of modes at our disposal
(N ∝ k3). A plethora of distinct perturbative approaches have been put forward in this direction [4–25], a programme
that has been altogether quite successful. The exact k-reach of the perturbative treatment in particular has been
the subject of intense research activity, especially within the context of the EFT framework [12, 13] (see also [26, 27]
for recent reviews). Even though several aspects need further development on the “model building” front, there are
already definite predictions on given observables, consisting mainly of the one-loop power spectrum and the tree-level
bispectrum, that have already been employed in obtaining cosmological information from the LSS galaxy surveys
[28–35].
Our work tackles the perturbative treatment of LSS in ΛCDM cosmology. In this context, striving for exact

analytical solutions serves multiple purposes. Besides being necessary for a view of the projected accuracy of soon-to-be
operational probes, such solutions are also important to ensure that approximations do not get in the way (i.e. create
degeneracies out) of otherwise distinct signatures. In this work, we present all order exact recursive solutions for
perturbation theory kernels of the density and velocity fields (i.e. Fn, Gn) in ΛCDM cosmology. The need to go beyond
the so-called extended (quasi-)EdS approximation1 has long been recognised as a timely step (see, e.g. [13, 36–44]),
with our own previous work [45] providing for the first time exact all order solutions for ΛCDM and beyond. In this
manuscript we shall take [45] as the starting point and report on the significant progress in manifold directions.
We are after separable solutions accounting for the time and momenta dependence of density and velocity kernels.

We identify, for each order in perturbation theory (PT), a complete “basis” of operators in a separable form that make
up the solution for the F,G kernels. We derive such basis recursively, i.e. by employing the results at lower perturbative
orders as building blocks. By construction, the derivation of time-dependent coefficients needs no input from the
momenta operators and vice-versa, greatly simplifying and speeding up the calculation. We provide an algorithm that
unambiguously couples time and momenta operators to give each basis element. Our algorithm completely eliminates
the need (still present in [45]) for an ansatz to be put forward at every perturbative step to identify the solution. This
is a striking improvement, especially relevant as the community has been increasingly recognising the importance of
tackling higher orders in PT [46–55]. Moreover, we derive explicit perturbative solutions for time-dependent coefficients.
By a suitable choice of time variable our perturbative solutions are valid for generic cosmological parameters within
the ΛCDM cosmology.
We also develop a systematic way to deal with IR (and UV) divergences in loop integrals. As is well-known (see

e.g. [6, 47, 56, 57]) the equivalence principle guarantees the cancellation of leading and sub-leading IR divergencies.
The presence of several large IR contributions in the expression for higher order observables ahead of their overall
cancellation hinder calculational efficiency. In addition to the cancellation of these IR divergences, mass and momentum
conservation also plays a role in determining the scale dependence of loop contributions by imposing cancellations
of large contributions sensitive to UV scales [4, 8, 58, 59]. By introducing suitable window functions, we are able to
renormalize correlation functions and make contact with so-called perturbation theory counterterms in the context of
the EFT framework.

This paper is organised as follows: in Section II we set the stage with the equations of motion for the ΛCDM
system, we also briefly report on previous works on the subject. In Section III we lay out our algorithm and derive
recursive separable solutions for the kernels that may be used up to any order in perturbation theory. We further
show how, starting from the Einstein-de Sitter approximation, one may derive solutions arbitrarily close to the exact
result. In Section IV we focus on one- and two-loop results for the density and velocity cross and auto power spectra.
We draw our conclusions in Section V and comment on future work. A significant fraction of our derivations has
been delegated to the appendices. Thus, in Appendix A we review the linear growth equations and derive a new
expansion of the specific form of the linear growth rate combination. In Appendix B we review the integral solutions
for perturbation theory kernels. Based on these results in Appendix C we derive separable kernel form, for which we
give the perturbative solution of the time-dependence in the Appendix D. In Appendix E we explore the various IR
and UV limits of the newly obtained kernels, which we use in Appendix F to explore the IR and UV properties of the
two-loop power spectra.
Throughout the paper, we assume a Euclidean cosmology with Ωm = 0.3, σ8 = 0.8 and h = 0.7 with the BBKS

linear power spectrum. We work under the assumptions of adiabatic Gaussian perturbations and General Relativity.
As mentioned in footnote 1, in the rest of the paper when we refer to the EdS solutions, we have in mind the usual

1This method consists in handling the time dependence of kernels as in an Einstein-de Sitter universe (only matter content), where e.g.
δ(n)(a) ∝ Dn(a) but with the added prescription to employ the linear growth rate D of a ΛCDM universe. Henceforth, in order to adhere
to common parlance, we refer to this approximation as EdS, rather than (quasi-)EdS.



3

(quasi-EdS) approximation of setting the n-th order growth factor Dn
+, instead of the an which would be the solution

in the actual EdS Universe. Our results for time coefficients and momentum kernels are provided in the Mathematica
notebook, in the arXiv source file of this paper.

II. DYNAMICS IN THE ΛCDM UNIVERSE

As is well known, we may describe the large-scale structure as a fluid in the non-relativistic limit obeying the
following equations of motion for the fluctuations of the density contrast δ and the peculiar velocity θ ≡ ∂ivi:

∂δk

∂τ
+ θk = −

∫
q1,q2

δDk−q12
α(q1, q2)θq1δq2 , (1)

∂θk

∂τ
+Hθk + 3

2ΩmH2δk = −
∫

q1,q2

δDk−q12
β(q1, q2)θq1θq2 ,

where δDq is the Dirac’s delta function, q12 ≡ q1 + q2,
∫

q
≡
∫

d3q/(2π)3, and H = d ln a/dτ . Here a is the scale factor,
and τ is conformal time. The kernels α, β are defined as α(q1, q2) ≡ 1 + (q1 · q2)/q2

1 , β(q1, q2) ≡ (q12)2(q1 · q2)/2q2
1q

2
2 .

At linear order, assuming the growing mode initial conditions, the time and momentum dependent parts are clearly
separable

δ
(1)
k (τ) ≡ D+(τ)δin

k , θ
(1)
k (τ) ≡ −H(τ)f+(τ)D+(τ)δin

k , (2)

where D+ is the linear growth factor, f+ ≡ dlnD±/dln a is the linear growth rate (see Appendix A for a brief review
of results in the linear regime). In addition to the growth mode, we also have the decaying mode with linear decay
factor D−, and equivalently defined decay rate f−. δin

k represents the initial value of the density contrast. The growing
and decaying factors D+ and D− satisfy the differential equation,

d2D(τ)
dτ2 +H(τ)dD(τ)

dτ
− 3

2Ωm(τ)H2(τ)D(τ) = 0 . (3)

In ΛCDM cosmology, the solutions for D±(τ) can be expressed in a closed form (see Eq. (A1)). In order to identify
the solutions for density contrast and velocity beyond the linear order, we employ the following perturbative ansatz:

δk(τ) =
∞∑
n=1

δDk−q1n
F sn(q1, .., qn, τ)Dn

+(τ)δin
q1
..δin

qn
, (4)

θk(τ) =
∞∑
n=1

δDk−q1n
Gsn(q1, .., qn, τ)Dn

+(τ)δin
q1
..δin

qn
,

where q1n ≡ q1 + q2 + · · · qn. Henceforth we shall not display the integration over q1 . . . qn on the right-hand side,
which is taken as granted. The kernel functions F sn, and Gsn are fully symmetrized with respect to the momenta in their
argument. Hereafter all the kernels are to be understood as symmetrized and we omit the superscript “s”. Although
the non-linear kernels Fn, Gn are constant in time and more easily obtained in the EdS universe [4, 8], they become
time-dependent functions in ΛCDM. The standard approximation in the field is to keep the ΛCDM growth rate Dn

+
and keep the EdS, time-independent, solution for the Fn, Gn kernels.
Recently the full time-dependent solution for the kernels in ΛCDM has been found in [45]. This solution has been

derived in an integral recursive form which is somewhat impractical for direct use when computing correlators in
perturbation theory. Here we will start from the results of [45], casting them in a slightly modified but equivalent
form, with the goal of expressing such solutions in an explicitly separable form, disentangling the time dependence of
the kernels from their momentum dependence.

We thus start from the full implicit ΛCDM solution of the kernels at n-th order

Fn(q1, .., qn, a) =
∫ a

0

dã
ã

(
w(n)
α (a, ã)h(n)

α (q1, .., qn, ã) + w
(n)
β (a, ã)h(n)

β (q1, .., qn, ã)
)
, (5)

Gn(q1, .., qn, a) =
∫ a

0

dã
ã

(
u(n)
α (a, ã)h(n)

α (q1, .., qn, ã) + u
(n)
β (a, ã)h(n)

β (q1, .., qn, ã)
)
,

where we use the scale factor a as the time variable, and w(n)
α,β , u

(n)
α,β are the “Green’s functions”, given in the explicit

form (B7). As clear by inspection, these are completely determined by the D± and f± functions. In addition to



4

the purely time-dependent Green’s functions, we have source terms h(n)
α,β , which also depend on time as well as the

momenta. These source terms are recursively constructed from the lower order kernels Fn′ and Gn′ , such that n′ < n.
The explicit form of these source terms is given in (B2). For the full derivation of this result see Appendix B.

As mentioned, in the integral solution in Eq. (5), the source functions h(n)
α,β depend both on time and momenta, and

a considerable calculational advantage would be achieved if one could provide solutions whose time and momenta
dependent parts are separable. Furthermore, given the importance of higher order corrections, one should aim at
recursive solutions, which would enable us to do without, for example, the order-specific ansatz used in [45] to arrive
at the exact analytical solution for the n = 3 case. Here we present a systematic derivation of recursive separable
functions that make up the kernels solution at any given order.

We start by suggesting the separable ansatze for the ΛCDM solutions in Eq. (5),

Fn(q1, .., qn, a) =
N(n)∑
`=1

λ(`)
n (a)H(`)

n (q1, .., qn) = λn(a) ·Hn(q1, .., qn) , (6)

Gn(q1, .., qn, a) =
N(n)∑
`=1

κ(`)
n (a)H(`)

n (q1, .., qn) = κn(a) ·Hn(q1, .., qn) ,

where the time dependent coefficients λ(`)
n , κ

(`)
n and the momentum operators part H(`)

n are explicitly separated. The
last equalities in Eqs. (6) are written with a more compact notation that we shall be using later in the text. For now,
we keep the index “`” explicit to make each manipulation of the operators as clear as possible. We stress that the
same momentum operators H(`)

n are used for both Fn and Gn, while the time-dependent coefficients λ(`)
n and κ(`)

n are
different. The number of terms in the sum N(n) gives us the number of the basis elements at n-th perturbative order
which are, for the first few orders,

N(1) = 1, N(2) = 2, N(3) = 6, N(4) = 25, N(5) = 111. (7)

In general, counting the number of terms generated by the recursive form of Eq. (5), gives us the expression

N(n) = δKn
2 ,b

n
2 c

1
2N

(
n
2
) (

3N
(
n
2
)

+ 1
)

+ 3
b(n−1)/2c∑
m=1

N(m)N(n−m) . (8)

Note that N(n) provides a useful upper bound on the dimension of the basis operators at each given order so that our
basis may contain redundant elements. In order to obtain the minimal number of independent terms, one would need
to employ relations such as the one in Eq. (B9) as well as other physical constraints that arise from requirements such
as the equivalence principle as well as mass and momentum conservation [59, 60]. We shall not linger on extracting all
such relations at this stage but just point out that the solutions for the time coefficient we obtain should manifest all
such properties, as we will show later on. Our task is thus split in two parts: determining the explicit form of the
momentum operator basis H(`)

n , as well as computing the time coefficients λ(`)
n and κ(`)

n at each perturbative order.
For the detailed derivation of how the split of the momentum operators and the time coefficients is performed, we refer
the reader to Appendix C. Here we focus on presenting the main results.

The momentum operator basis H(`)
n is given by the recursive relation involving only the lower order basis operators.

This is similar to the EdS solutions for the Fn and Gn kernels, although the expression for the H(`)
n contains more

terms, and we have

H(`)
n (q1, .., qn) = δKn

2 ,b
n
2 c

N(n/2)∑
i=1

[
N(n/2)∑
j=1

[hα](ij)n
2 ,

n
2
δK`,φ1

+
N(n/2)∑
j=i

[
2− δKij

]
[hβ ](ij)n

2 ,
n
2
δK`,φ2

]
(9)

+
b(n−1)/2c∑
m=1

N(m)∑
i=1

N(n−m)∑
j=1

(
[hα](ij)m,n−mδ

K
`,φ3

+ [hα](ji)n−m,mδ
K
`,φ4

+ 2[hβ ](ij)m,n−mδ
K
`,φ5

)
,

where the sourcing term [hα] above is given by

[hα](ij)m,n−m(q1, .., qn) = m!(n−m)!
n!

∑
π−cross

α(qm, qn−m)H(i)
m (q1, .., qm)H(j)

n−m(qm+1, .., qn) , (10)
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and the expression for [hβ ](ij)m,n−m is obtained by simply replacing α with β in Eq.(10). The Kronecker delta δK`,φi

selects only one of the specific [hα,β ](ij)m,n−m(q1, .., qn) operators and identifies it with H(`)
n . The key to this counting

are the bijective maps φi, which depend on the indices {n,m, i, j} and relate them to the set of numbers that go
from 1 to N(n). The explicit expressions for φi are provided in (C4). At second order, one immediately recovers
H

(1)
2 = αs, H

(2)
2 = β, as expected. Having obtained the expressions for the momentum operator basis, we now move

on to determining the time dependent coefficients.
The expressions for the coefficients λ(`)

n (and similarly for κ(`)
n ) introduced in Eq. (6) give

λ(`)
n (a) = δKn

2 ,b
n
2 c

N(n/2)∑
i=1

[
N(n/2)∑
j=1

W
(ij)
α;n/2,n/2δ

K
`,φ1

+
N(n/2)∑
j=i

W
(ij)
β; n

2 ,
n
2
δK`,φ2

]
(11)

+
b(n−1)/2c∑
m=1

N(m)∑
i=1

N(n−m)∑
j=1

(
W

(ij)
α;m,n−mδ

K
`,φ3

+W
(ji)
α;n−m,mδ

K
`,φ4

+W
(ij)
β;m,n−mδ

K
`,φ5

)
,

where the explicit time-integral representation for functions W is given in Eq. (C3). Analogously to what happens for
the momentum basis “vector” H(`)

n , one of the W (ij)
α;m,n−m(a) or W (ij)

β;m,n−m(a) functions with fixed indices is identified
as λ(`)

n . Equivalent expression holds for κn as shown in Eq. (C6), which identifies one of functions U as κ(`)
n . Note

that, the momenta operators [h](ij)m,n−m and the time coefficients W (ij)
m,n−m and U (ij)

m,n−m share the same index structure.
For n = 1 one has λ(1)

1 = κ
(1)
1 = 1 and at n = 2 one finds

λ
(1)
2 (a) = W

2 (1,1)
α;1,1 , λ

(2)
2 (a) = W

2 (1,1)
β;1,1 , κ

(1)
2 (a) = U

2 (1,1)
α;1,1 , κ

(2)
2 (a) = U

2 (1,1)
β;1,1 , (12)

which, as expected, agrees with the previous findings [45, 61]. Combined with those in Appendix C, the formulas in
Eqs. (9) and (11) for H(`)

n , λ
(`)
n , κ

(`)
n have a close (recursive) structure allowing us to systematically compute kernels up

to an arbitrary order n. The operators H(`)
n are made up by a combination of the basic building blocks α and β ,

making it straightforward to automatize the calculation with a computer program.
Although the time-dependent coefficients, λ(`)

n , κ
(`)
n , can also be systematically written down, their expressions given

in (C3) involve recursive time integrals. This in itself is not a problem and these expressions can easily be used to
obtain the numerical values for the time coefficients. However, instead of these integral representations, we can recast
these expressions in the form of coupled differential equations

Ẇ n (ij)
α;m1,m2

+ nW n (ij)
α;m1,m2

− U n (ij)
α;m1,m2

= κ(i)
m1
λ(j)
m2

, (13)

Ẇ
n (ij)
β;m1,m2

+ nW
n (ij)
β;m1,m2

− U n (ij)
β;m1,m2

= 0 ,

U̇ n (ij)
α;m1,m2

+ (n− 1)U n (ij)
α;m1,m2

− f−
f2

+

[
U n (ij)
α;m1,m2

−W n (ij)
α;m1,m2

]
= 0 ,

U̇
n (ij)
β;m1,m2

+ (n− 1)U n (ij)
β;m1,m2

− f−
f2

+

[
U
n (ij)
β;m1,m2

−W n (ij)
β;m1,m2

]
= κ(i)

m1
κ(j)
m2

,

where one may identify m1 = m, m2 = n − m. The time variable is η ≡ lnD+, and a dot denotes a derivative
w.r.t. to η, that is ˙≡ d/dη. According to Eq. (11), one selects time coefficients λ(`)

n and κ(`)
n from the functions W

and U , respectively. One can recursively solve Eq. (13) with the initial conditions λ(1)
1 = κ

(1)
1 = 1 and obtain the

time-dependent coefficients up to the desired order.
The differential equation for the time coefficients of the kernels is amenable to the direct numerical treatment, and

indeed we will use this approach to obtain our main reference results further on. In addition, the differential equation
representation is particularly useful in formulating the analytical, perturbative solution which we discuss in the next
section.

Before we continue towards the solution of these equations, we stress here an interesting and practical point about
the dependence of Eqs. (13) on cosmological parameters. The only dependence on the cosmological parameters Ωm0
and ΩΛ0 (z = 0 values) comes from the f−/f2

+ factor in the equations for Uα and Uβ . Moreover, in Appendix A we
show that the functional dependence of f−/f2

+ can be written in the form of the single variable ΩΛ0/Ωm0e
3η, which

captures the full dependence on the cosmological parameters. In other words, in Eq. (A7) we show that we can write

f−
f2

+
= −3

2 + c1

(
ΩΛ0

Ωm0
e3η
)

+ c2

(
ΩΛ0

Ωm0
e3η
)2

+ c3

(
ΩΛ0

Ωm0
e3η
)3

+ . . . , (14)
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Figure 1: δf ≡ f−/f
2
+ + 3/2 is shown as a function of the scale factor. Numerical results (solid black line) are compared to the

perturbative expansion in powers of ζ = ΩΛ0/Ωm0e
3η. The expansion up to the first (dot-dashed lines), second (dashed) and

third (long-dashed) order is shown using the c1, c2 and c3 coefficients given in Eq. (18). In EdS approximation this quantity
vanishes identically, while beyond EdS the deviations from zero source the time dependence of all the λ(`)

n and κ(`)
n coefficients.

with some numerical coefficients ci, fixed within the ΛCDM paradigm. Figure 1 shows the convergence of this expansion.
This implies that in Eqs. (13) we can change the variable to ζ ≡ ΩΛ0/Ωm0e

3η, which would alter only the first derivative
terms with ∂η = 3ζ∂ζ . Then a change of the cosmological parameters merely results in a shift of time ζ.2

Thus, our equations are independent from cosmological parameters Ωm0 and ΩΛ0 and once solved, the solutions are
valid for all choices of cosmological parameters.

III. NUMERICAL AND PERTURBATIVE SOLUTIONS OF THE KERNEL TIME DEPENDENCE

As we have anticipated in the previous section, the λ(`)
n and κ

(`)
n solutions can be obtained either by using the

explicit integral solutions given in Eqs. (C3), or alternatively by numerically solving the differential Eqs. (13) and
using the correspondence in Eq. (11). Either one is a viable option, although given the plethora of existing tools for
solving coupled differential equations, the path via differential equations seems the most practical and efficient. We
have used this method to obtain the results in Figure 2. Solid lines denote the relative deviations of λ(`)

n and κ(`)
n

obtained in the EdS limit from the exact numerical results. Since the ΛCDM universe matches the EdS universe at
early times, the deviations vanish at a = 0. As expected, the deviations grow with time in all the panels of Figure 2,
and can reach values barely shy of ten percent. Note in particular that the typical deviation at redshift z = 1 is a
factor of a few smaller than its z = 0 counterpart. One expects this difference to propagate all the way to correlators.

Given that the number of coefficients at higher orders is large (see Eq. (7)), in Figure 2 we show the average value
of all of the deviations and the typical spread (in terms of the one standard deviation). From this, we can observe the
trend that, at later times, the deviation of the coefficients from the EdS approximation tends to grow with n, (i.e.
when considering higher perturbative orders) and the spread of the coefficient values may also grow (i.e. some tend to
be close to the EdS values while for others the deviations can be larger). One might wonder how much of a role outliers
play in such analysis. To address this, in Figure 3 we show the relative deviations of the ΛCDM and the EdS results
for all the time-dependent coefficients at a = 1, up to n = 5. Although the ∆λ(`)

n are typically O(1%) in size, ∆κ(`)
n

can be as large as O(10%), which is not at all negligible when compared to the precision of upcoming observations.
Motivated by the discussion in the last section, we now embark on a journey to find the analytic perturbative solution

for the time dependence of the λ(`)
n and κ(`)

n coefficients. As shown in Figure 2, EdS approximation for these coefficients
is a good starting point, and the deviation are relatively small. It will thus serve us well to use the EdS solution as
the result around which to organise the perturbative expansion. These deviations from the EdS approximation are

2This fact has subsequently been also observed, at the level of one-loop results, in the reference [62].
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Figure 2: Relative error showing the deviation of the analytic (dashed) and EdS (solid) λn and κn coefficients from the numerical
calculations. The error is defined as X/Xnum − 1 for X = λ

(`)
n (blue) and κ(`)

n (red). The above four panels illustrate the typical
time evolution of the relative deviations for n =2 (top left), 3 (top right), 4 (bottom left) and 5 (bottom right). Analytic results
correspond to the perturbative calculations up to the third order in ζ, see Eqs. (19) and (D12). The central lines are the
average of N(n) lines for each order, while the coloured bands indicate the spread of all of the coefficients in ` (i.e. one standard
deviation around the mean of all coefficients in ` is used). As can be seen in the figure, the analytic results generally agree with
the full numerical solution to 0.1% accuracy while the deviation associated to the EdS results can reach up 10% at late times.

encoded in the factor f−/f2
+ in the differential Eqs. (13), as well as in the higher order source terms. Since this ratio is

exactly −3/2 in the EdS limit, we introduce the deviation from the EdS value as a small perturbative parameter,

δf(τ) ≡ f−(τ)
f2

+(τ) + 3
2 . (15)

Figure 1, shows that this dimensionless parameter is . 0.2 in absolute terms throughout the evolution of the Universe.
This is a good indication that a convergent perturbative expansion can be obtained by treating δf as a small parameter.
In addition to the expansion in δf we are interested in representing δf as a power series in ζ ≡ ΩΛ0/Ωm0e

3η which
would allow us to express the final λ(`)

n and κ(`)
n results as a power series in the same variable. We thus expand W n (ij)

m1,m2

and U n (ij)
m1,m2 appearing in Eqs. (13) as

Wn = Wn[0] +Wn[1] +Wn[2] + · · · , Un = Un[0] + Un[1] + Un[2] + · · · , (16)

where the superscript [n] denotes the perturbative order with respect to δf , namely O(δfn), and the suppressed
indices are the same in both sides of the equations. Note that order [0] means the solution in the EdS limit. This also
corresponds to the static limit of the Eqs. (13), where we drop the time derivative terms turning these equations into
recursive algebraic equations. In this limit, once the coefficients are combined with the momentum basis H(`)

n , one just
recovers the usual EdS solutions for the Fn and Gn kernels.

For a detailed derivation of the perturbative results, we refer the reader to Appendix D. Here we just note that the
solutions of Eq. (13) at the order of O(δf l) can be expressed in the integral form of lower order terms

Wn[l]
α = In

[(
∂η + n+ 1

2
)

(κλ)[l] + δf
(
Ẇ n[l−1]
α + (n− 1)W n[l−1]

α − (κλ)[l−1]
)]

, (17)

W
n[l]
β = In

[
(κκ)[l] + δf

(
Ẇ

n[l−1]
β + (n− 1)W n[l−1]

β

)]
,
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Figure 3: Relative deviation of the λ(`)
n (blue) κ(`)

n (red) coefficients in ΛCDM cosmology to the EdS values at the present time,
a = 1. Shown are both numerical (solid lines) and analytic (dashed lines) results, calculated up to the third power in ζ. Different
values of n are given in each panel, coefficients range is (n, `) = (2, 2), (3, 6), (4, 25) and (5, 111). κ(`)

n ’s tend to have larger errors
ranging from 0.1% to almost ten percent, while λ(`)

n ’s errors are somewhat smaller reaching up to a few percent. This figure also
shows that differences between the ΛCDM and EdS coefficients tend to grow with perturbative order n.

where In[X] is the time functional defined in (D3). Using the above recursive relations repeatedly, one can obtain
the expression for the perturbative solutions (D9) for Wn

α and Wn
β . Moreover, to analytically evaluate the integral

expressions so obtained, we rely on the expansion of δf in power law form. In Appendix A we show how one may
obtain the expansion of δf in powers of ζ = ΩΛ0/Ωm0e

3η. Up to the third order, it reads

δf(η) ' c1ζ + c2ζ
2 + c3ζ

3 , c1 = − 3
22 , c2 = − 141

4114 , c3 = − 9993
1040842 . (18)

Upon performing these steps, we derive the analytic expressions for λ(`)
n and κ(`)

n for a generic choice of cosmological
parameters ΩΛ0, Ωm0. For instance, at n = 2, we obtain

λ
(1)
2 = 5

7 −
c1
91ζ −

4c2
931ζ

2 − 2c3
875ζ

3 , λ
(2)
2 = 2

7 + c1
91ζ + 4c2

931ζ
2 + 2c3

875ζ
3 , (19)

κ
(1)
2 = 3

7 −
5c1
91 ζ −

32c2
931 ζ

2 − 22c3
875 ζ

3 , κ
(2)
2 = 4

7 + 5c1
91 ζ + 32c2

931 ζ
2 + 22c3

875 ζ
3 ,

where we write explicitly only the leading order results in δf , suppressing the O(δf2) terms. The results for n = 3
and 4, namely λ

(`)
3 , κ

(`)
3 , λ

(`)
4 , κ

(`)
4 , are reported in Eqs. (D12) and (D13). Using this perturbative approach, it is

straightforward to generate all terms at higher orders.3 It suffices here to derive the ones that will be needed for the
two-loop calculation (up to the λ(`)

5 and κ(`)
5 coefficients). Given the number of components (recall that for n = 5 we

have 111 terms), we do not report the explicit expression. Nonetheless, in Figs. 2 and 3 we compare the analytical
results at leading order in δf to the numerical ones. One observes that our analytic expressions typically achieve
O(10−3) accuracy at the present time and better accuracy at earlier times. Compared to the EdS results, our analytic
expressions are about 100 times more accurate.

3Mathematica notebook for these coefficients and Hn kernels, up to the fifth order, can be found in the arXiv source file of this paper.
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IV. ONE- AND TWO-LOOP POWER SPECTRA

Equipped with the results of the last section, we are now ready to tackle observables such as the matter density and
velocity power spectra, as well as the cross power spectrum. In the process, we shall develop and illustrate the utility
of a systematic method to handle infrared and ultraviolet divergences in loop integrals. The equivalence principle, fully
at work in ΛCDM, guarantees that specific cancellations will take place in the IR configurations of the kernels. Similar
cancellations take place due to the mass and momentum conservation, in the absence of which there would be large
UV contributions. Such cancellations between large contributions typically require very high precision, thus making
numerical integration more difficult and less stable. As we show in the rest of this section, the properties required for
such cancellations are all imprinted in the solutions for the λn and κn coefficients. The coefficients “remember” all
the information inherited from their EoM, and we see the equivalence principle, mass and momentum conservation
respected and manifested in the various limits of the one- and two-loop power spectra that we study below. One can
use these properties in evaluating the loop integrals: we do so by first isolating the leading divergences, analytically
confirming they are cancelled out, and numerically evaluating the remaining “regularised” parts of the power spectra.
As observables whose calculation (and target of percent-level precision) requires an improvement upon the EdS

approximation, we compute the one-loop and two-loop order of the following power spectra

(2π)3δDk+k′Pδδ(k) = 〈δ(k)δ(k′)〉 , (2π)3δDk+k′Pδθ(k) = 〈δ(k)θ(k′)〉 , (2π)3δDk+k′Pθθ(k) = 〈θ(k)θ(k′)〉 . (20)

A. One-loop results

Using the notation introduced in Eq. (6), the one-loop results are as follows:

P 1-loop
δδ (k) = (λ2 · I22 · λ2) + 2 (λ1 · I13 · λ3) , (21)
P 1-loop
δθ (k) = (λ2 · I22 · κ2) + (λ1 · I13 · κ3 + 1↔ 3) ,
P 1-loop
δθ (k) = (κ2 · I22 · κ2) + 2 (κ1 · I13 · κ3) ,

where we have defined the scale dependent integrals

I22 = 2
∫

q

H2(q,k − q)⊗H2(q,k − q)Plin(q)Plin(k − q) , (22)

I13 = 3
∫

q

H1(k)⊗H3(k, q,−q)Plin(k)Plin(q) .

Note that, when seen as matrices, these integrals have the properties: IT22 = I22 and I13 = IT31.
In this subsection, we describe an efficient method to compute loop power spectra using the one-loop power spectrum

as the simplest example before applying it to two-loop calculations. This method is essentially important to avoid
artificial residuals of the physical cancellations and achieve high-precision calculations while saving computational
resources. Our strategy is simple. We know the integrals Iij in (21) contain the IR and UV contributions, which
eventually cancel. Hence we isolate them as in Iij = Ĩij + [Iij ]IR + [Iij ]UV, where Ĩij is the remaining regular part.
The cancellations of [Iij ]IR and [Iij ]UV are analytically confirmed. Then, we focus on the numerical evaluations of the
regularised contributions from Ĩij .

We begin with I22. One can see that its IR contributions come from two configurations, namely q → 0, and q → k.
It is convenient at this point to re-map the second sector to the first one (see [47]) as

I22 =
∫
|q|<|k−q|

+
∫
|q|≥|k−q|

= 4
∫

q

H2(q,k − q)⊗H2(q,k − q)Θ(|k − q| − q)Plin(q)Plin(k − q) . (23)

We extract the IR and UV contributions in this integrand. Using the asymptotic form of the kernels, one can write

H2(q,k − q)⊗H2(q,k − q) ∼

h
(2)
22,IR (k, q̂) k

2

q2 + h(1)
22,IR (k, q̂) kq +O(q0) , as q → 0 ,

h
(4)
22,UV

(
k̂, q
)
k4

q4 +O(k5) , as k → 0 .
(24)

For the explicit form of the Hn operators in the various limits, as well as the asymptotics of h(n)
22 , we refer the reader

to Appendix E. Having identified both the IR and UV limits of the kernel products, we can introduce the regularised
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version of our integral (we label it Ĩ22) by subtracting these contributions only in the asymptotic regimes. In order to
do so, we introduce window functions, W IR

22 (k) and WUV
22 (k), which ensure that the appropriate asymptotic form is

applied only in the IR and UV regimes. The regularised integral is thus given by

Ĩ22 =
∫

q

[
4H2(q,k − q)⊗H2(q,k − q)Θ(|k − q| − q)Plin(k − q) (25)

− 4
(
h

(2)
22,IR (k, q̂) k

2

q2 + h(1)
22,IR (k, q̂) k

q

)
W IR

22 (k)Plin(k)− 2h(4)
22,UV

(
k̂, q
)k4

q4W
UV
22 (k)Plin(q)

]
Plin(q),

where one can write I22 = Ĩ22 + [I22]IR + [I22]UV, with

[I22]IR = 4
∫

q

(
h

(2)
22,IR (k, q̂) k

2

q2 + h(1)
22,IR (k, q̂) k

q

)
W IR

22 Plin(k)Plin(q) =
(
hIR

22W
IR
22
)
k2σ2

2Plin(k) , (26)

[I22]UV = 2
∫

q

h
(4)
22,UV

(
k̂, q
)k4

q4W
UV
22 Plin(q)Plin(q) =

(
hUV

22 W
UV
22
)
k4Σ2

2 .

Here we have introduced Σ2
2 = 1

3
∫

q
Plin(q)2/q2, σ2

2 = 1
3
∫

q
Plin(q)/q2, and

hIR
22 =

(
1 1
1 1

)
and hUV

22 = 1
2

( 7
5 −1
−1 3

)
, (27)

as also shown in Appendix E. Note that the UV contribution does not have an additional factor of two since it does
not require a re-map in the low k limit.

Let us specify the window functions W IR
22 and WUV

22 . The task we demand of these functions is to effectively restrict
the domain of the contribution they are multiplied by into the appropriate momenta configuration, i.e. high and low k
regimes respectively. We are free to choose the form of such functions that is best suited for the task at hand. We
choose one convenient and simple form

W IR
22 (k) = (k/kIR)4

1 + (k/kIR)4 , and WUV
22 (k) = 1

1 + (k/kUV)6 , (28)

with parameters kIR ≈ 0.1Mpc/h and kUV ≈ 0.2Mpc/h. It will, of course, be convenient to choose W IR
22 = W IR

13 , in
order to quickly arrive at the cancellation of the leading IR contributions in the total one-loop power spectrum.

Let us turn to the I13 term, where the asymptotic contributions are

H1(k)⊗H3(k, q,−q) ∼

h
(2)
13,IR (k, q̂) k

2

q2 +O(q0) , as q → 0,

h
(0)
13,UV

(
k̂, q
)

+ h(2)
13,UV

(
k̂, q
)
k2

q2 +O(k4) , as k → 0.
(29)

In an analogous way to Ĩ22, we can introduce the regularised integrals as

Ĩ13 = 3
∫

q

[
H1(k)⊗H3(k, q,−q) (30)

− h(2)
13,IR (k, q̂) k

2

q2W
IR
13 −

(
h

(0)
13,UV

(
k̂, q
)

+ h(2)
13,UV

(
k̂, q
)k2

q2

)
WUV

13

]
Plin(k)Plin(q),

i.e. I13 = Ĩ13 + [I13]IR + [I13]UV with

[I13]IR = 3
∫

q

h
(2)
13,IR (k, q̂) k

2

q2W
IR
13 Plin(k)Plin(q) =

(
hIR

13W
IR
13
)
k2σ2

2Plin(k) , (31)

[I13]UV = 3Plin(k)
∫

q

h
(2)
13,UV

(
k̂, q
)k2

q2W
UV
13 Plin(k)Plin(q) =

(
hUV

13 W
UV
13
)
k2σ2

2Plin(k),

where hIR
13 = −

(
1 1 0 0 1 1

)
and hUV

13 = −
(
1, 1,− 12

5 , 0, 5, 1
)
. Here, since λ3 · h(0)

13,UV = κ3 · h(0)
13,UV = 0, the term

h
(0)
13,UV does not contribute to the power spectrum and is not included in [I13]UV. The remaining UV contribution

comes only from the next-to-leading order term h
(2)
13,UV.
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Figure 4: One- (left panel) and two-loop (right panel) contributions to the density-density, density-velocity and velocity-velocity
power spectrum. Upper panels show the absolute contributions of EdS results (blue lines) compared to the ΛCDM corrections
(red lines). We see that the three different spectra Pδδ (dashed lines), Pδθ (dot-dashed lines) and Pθθ (solid lines) receive
corrections of different sizes, whose relative importance is also a function of the scale dependence of the EdS terms. Lower panels
display the ΛCDM corrections δPδδ, δPδθ and δPθθ computed using the numerical evaluations of the λn and κn coefficients
(shown in dots). We also show the perturbative time dependence computation as described in Sec. III. The results including
the O(ζ1) (dotted lines), O(ζ2) (dashed lines) and O(ζ3) (solid lines) contributions are shown. Results are shown for redshift
z = 0.0.

This is of course guaranteed by the mass and momentum conservation of the original EoM [8]. We now move to the
IR cancellations. As soon as the “22” and “13” terms are combined, we find

(λ2 · [I22]IR · λ2) + 2 (λ1 · [I13]IR · λ3) =
[ (
λ2 · hIR

22 · λ2
)
W IR

22 + 2
(
λ1 · hIR

13 · λ3
)
W IR

13

]
k2σ2

2Plin(k) = 0, (32)

where we take W IR
22 = W IR

13 . This is of course the same as the usual IR cancellation between P22 and P13 in standard
perturbation theory (SPT) [8]: it is guaranteed for equal-time correlators by the equivalence principle, as has been
discussed in [57, 59, 60, 63–66]. The same cancellations take place for the velocity-velocity spectrum and for the
velocity-density cross-spectrum. The final expression for the one-loop density power spectrum is

P 1-loop
δδ (k) = (λ2 · I22 · λ2) + 2 (λ1 · I13 · λ3) , (33)

and analogous expressions hold for the other two observables, P 1-loop
δθ and P 1-loop

θθ , with the appropriate time-dependent
coefficients in the same way as Eqs. (21). The momentum dependent matrices Iij that all the three power spectra
share at one-loop order are given by

I22 = Ĩ22 +
(
hUV

22 W
UV
22
)
k4Σ2

4, and I13 = Ĩ13 +
(
hUV

13 W
UV
13
)
k2σ2

2Plin. (34)

We numerically evaluate these regularised expressions, a procedure that circumvents the expensive numerical treatment
of the IR and UV cancellations and saves significant computational time.
In the left panels of Figure 4 we show the one-loop contributions for all these power spectra: Pδδ, Pδθ and

Pθθ. In particular, we display the EdS solutions and the corresponding ΛCDM correction to the EdS result, i.e.
δPδδ = PΛcdm

δδ − PEdS
δδ (and equivalently for the other two spectra). As one can see from the figure, the one-loop

ΛCDM corrections are from one to two orders of magnitude smaller than the one-loop EdS contributions. However,
the relevant regime lies in the higher k range (k & 0.1h/Mpc), given that is where the one-loop contributions start to
be comparable in amplitude to the linear result. Moving towards higher redshift the corrections relative to the EdS
result decrease further (see Appendix G).
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In Figure 5 we show the ratio of the three different total power spectra in ΛCDM relative to the EdS results. The left
panels display the one-loop results, where the upper left panel shows the one-loop spectra without adding counterterms
to either EdS or ΛCDM solutions. We see that, at z = 0, the largest corrections range from a half (for δPδδ) to
a few percent (for Pθθ) at scales k ∼ 0.4h/Mpc (scales where higher loop results are also relevant). These results
are consistent with the earlier findings shown in [42, 43, 45]). In the bottom panel of the same figure we plot the
effects of the EFT counterterms on the total deviations from ΛCDM. First, we note that for the typical values of the
counterterms, shown as the central lines within the grey bands, the relative difference in the power spectra is lowered.
This is expected since the counterterms contributions to the total power spectrum is of the same size as the loop
contributions at the relevant scales and by construction are equivalent in both the ΛCDM and EdS case.

Grey bands around each of the three power spectrum lines show the effects of variations (of order 5%) in the values
of the ΛCDM counterterms. As one can see, assuming the ∼ 1% accuracy thresholds, the presence of a counterterm
can make up for the deviation between the EdS and the ΛCDM result for the density-density power spectrum. This
is not the case for the density-velocity and velocity-velocity power spectra, which exhibit a noticeably steeper scale
dependence.
As the last comment on Figure 5, we note that, in addition to the results obtained by numerical evaluation of the

λn and κn coefficients (shown as black lines), we also show in the upper left panel the perturbative results given in
Eqs. (19) and (D12). The profiles corresponding to the O(ζ1) perturbative order are shown explicitly (red lines), and
we see that they exhibit up to 0.5% agreement with the full numerical solutions. The perturbative solutions accounting
up to O(ζ3) order expansion are not shown as they would be indistinguishable from the full numerical solutions already
present in these plots.

B. Two-loop results

In the rest of this section we turn our attention to the the two-loop results. Writing the perturbative contributions
in the separable form, we have

P 2-loop
δδ (k) = (λ3 · I33 · λ3) + 2 (λ2 · I24 · λ4) + 2 (λ1 · I15 · λ5) , (35)
P 2-loop
δθ (k) = (λ3 · I33 · κ3) + (λ2 · I24 · κ4 + 2↔ 4) + (λ1 · I15 · κ5 + 1↔ 5) ,
P 2-loop
θθ (k) = (κ3 · I33 · κ3) + 2 (κ2 · I24 · κ4) + 2 (κ1 · I15 · κ5) ,

where the two-loop integral functions are

I33 = 3
∫

q,p

(
2H3(k − q − p, q,p)⊗H3(k − q − p, q,p)Plin(k − q − p) (36)

+ 3H3(k,−q, q)⊗H3(k,−p,p)Plin(k)
)
Plin(q)Plin(p) ,

I24 = 12
∫

q,p

H2(k − q, q)⊗H4(k − q, q,p,−p)Plin(k − q)Plin(q)Plin(p) ,

I15 = 15
∫

q,p

H1(k)⊗H5(k, q,−q,p,−p)Plin(k)Plin(q)Plin(p) .

and one may verify that IT33 = I33, I24 = IT42 and I15(k) = IT51(k).
In the two-loop calculation, there are two integration variables q and p. UV and IR divergences may result from

integrating in both these variables. After having identified such divergent contributions, our goal is to subtract them
from the integrands and implement the cancellation explicitly, in full analogy with the one-loop case above. The
procedure in the two-loop case is somewhat more involved: besides the leading divergencies (when specific limits of
both q and p produce a divergent contribution), one can have sub-leading terms associated with a specific limit of
only one of the two variables, while the contribution from the other stays finite. We provide more details on the UV
and IR properties of the two-loop result in Appendix F, and we briefly summarise some of the key properties below.

Similarly to the one-loop case, the IR contribution extracted from the individual two-loop terms ought to cancel as
a consequence of the equivalence principle and consistency relations (see [60] e.g. for a recent explicit treatment).

Hence one may verify the following cancellation

λ3 · ([I33,I]IR + [I33,II]IR) · λ3 + 2λ2 · [I24]IR · λ4 + 2λ1 · [I15]IR · λ5 = 0, (37)
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and similarly for the cross- and auto- correlations including κn coefficients. Plugging the expressions derived in
Appendix F, we have (

λ3 · hIR
33,I · λ3 + 2λ2 · hIR

24,II · λ4 + 2λ1 · hIR
15 · λ5

)
W IR

I k2Plin(k) = 0 , (38)(
λ3 · hIR

33,II · λ3 + 2λ2 · hIR
24,I · λ4

)
W IR

II k
2 = 0 ,

where we used that W IR
33,I = W IR

24,II = W IR
15 = W IR

I and W IR
33,II = W IR

24,I = W IR
II . The fact that the cancellation occurs

independently in two different terms was also pointed out in [47]. More explicitly, we can write

λ3 · ĥ(2)
33,I,IR · λ3 + 2λ2 · ĥ(2)

24,II,IR · λ4 + 2λ1 · ĥ(2)
15,IR · λ5 = 0 , (39)

λ3 · ĥ(2)
33,II,IR · λ3 + 2λ2 · ĥ(2)

24,I,IR · λ4 = 0 .

In addition, IR and UV cancellations take place as a consequence of the mass and momentum conservation. Thus,
in addition to the condition λ3 · [H3,I](0)

UV = κ3 · [H3,I](0)
UV = 0, one may also verify how the contributions from h

(0)
15

vanish after contractions with the λ5 and κ5 coefficients.
Using such properties in the IR and UV regimes as well as the appropriately defined window functions W IR and

WUV, one may introduce the regularised integrals Ĩ33,I, Ĩ33,II, Ĩ24 and Ĩ15, which are shown explicitly in Appendix
F. These steps mirror the procedure we employed in the one-loop case and motivate our introducing the regularised
two-loop expressions,

P 2-loop
δδ (k) = (λ3 · I33 · λ3) + 2 (λ2 · I24 · λ4) + 2 (λ1 · I15 · λ5) , (40)

and similarly for P 2-loop
δθ and P 2-loop

θθ . The regularised integral functions Iij , including the sub-leading UV contributions
that are isolated and subsequently computed, read

I33 = Ĩ33,I + Ĩ33,II +
(
hUV

33,IW
UV
33,I
)
k4Plin(k) +

(
hUV

33,IIW
UV
33,II

)
k4 , (41)

I24 = Ĩ24 +
(
hUV

24 W
UV
24
)
k4 ,

I15 = Ĩ15 +
(
hUV

15 W
UV
15
)
k2Plin ,

where all the terms are written explicitly in Appendix F.
In the right panels of Figure 4, we show the two-loop contributions for the three power spectra Pδδ, Pδθ and Pθθ.

The two-loop ΛCDM corrections are typically one to two orders of magnitude smaller than the EdS contributions.
However, they can in fact dominate in the regimes where EdS contributions have zero crossing.

Figure 5 shows the ratio of the three total power spectra in ΛCDM relative to the EdS results. In the right panels,
we plot our two-loop results. The upper right panel displays the two-loop spectra without the effect of counterterms
either in the EdS or ΛCDM case. The deviations range from a few percent (for δPδδ) to a dozen percents (for e.g. Pδθ)
at scales k & 0.4h/Mpc.4 In the bottom panel of the same figure we include the EFT counterterms for both PEdS and
PΛcdm. For two-loops, this is done so that the additional counterterms only cancel the k2Plin contributions, and so we
effectively only have counterterms that are already present at one-loop order.

These are shown as the central lines within the grey bands, while the bands themselves represent the effects of
variations of the ΛCDM counterterms by 5%. One can see how the addition of counterterms can significantly change
the relative differences between the ΛCDM and EdS results, reducing it to below ten percent on most of the scales of
interest. We stress the high sensitivity of these lines on the values of the counterterms. This is especially so for Pθθ, in
which case the values of the counterterms affect the zero crossing of the total two-loop power spectrum prediction.

As in the case of one-loop results, we also compare our two-loop numerical results (i.e. those obtained using the
numerical values for λn and κn) to their perturbative counterpart. These are shown both in Figure 4 and in Figure 5
as orange lines. We see that adding the linear corrections in the ζ parameter reaches roughly a few percent agreements
with the full numerical results, while adding corrections up to ζ3 renders the results essentially indistinguishable from
the numerical findings.
Before closing this section, a few comments on computational methods are in order. Our proposed method for

dealing with the cancellation of these divergences differs from the one suggested in [47] in that it explicitly subtracts
the contributions that are cancelled at the level of the integrand(s). In the case of EdS, the difference between the two

4These results also agree with the numerical results obtained in the reference [67].
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Figure 5: The ratio of the ΛCDM and the EdS density-density (solid lines), density-velocity (dot-dashed lines), velocity-velocity
(dashed lines) power spectrum at the redshift z = 0.0. Upper panels show the ratios of these spectra without any counterterms.
Black lines denote spectra computed by numerically evaluating the λn and κn coefficients, while the orange lines show the
perturbatively evaluated coefficients up to the linear corrections in ζ. Adding the corrections up to order ζ3 would superimpose
the perturbative results onto the numerical ones (black lines). Lower panels show the ratio of the power spectra when including
the leading EFT counterterms (∼ k2Plin), the latter having been chosen to roughly match the realistic values (c2δδ ≈ 3.0,
c2δθ ≈ −1.0, c2θθ ≈ −1.5). Grey hashed bands centred on each of the lines indicate the 5% variation in the values for the
counterterms.

recipes is not particularly noteworthy: the cancellations, encoded in the analytic coefficients in the Fn and Gn kernels,
can be implemented with machine-level accuracy since they amount to subtractions of simple fractions. In ΛCDM the
time coefficients, when obtained numerically, are computed with finite accuracy which can generate some spurious
remainders in the cancellations. These can spoil the accuracy when evaluating the various integrals. For this reason, it
is quite useful to implement subtraction and cancellation of the key contributions analytically. We also note that in
our perturbative treatment of the coefficients λn and κn given in Eqs. (19) and in Appendix D these cancellations
are enforced at each ζ order. Since the corresponding pre-factors of ζ powers are also given as fractions, the implicit
method proposed in [47] may also be applied at each ζ order. We are able to confirm that the power spectra with the
perturbative coefficients computed in this manner reproduce the same results as our proposed method, thus providing
yet another consistency check for our treatment of the regularised integral functions.

V. DISCUSSION AND CONCLUSIONS

Perturbative approaches to structure formation allow us to develop controlled analytical predictions on the physics of
mildly non-linear scales. Although limited in its reach to large scales, the perturbative scheme provides a clean and
systematic treatment of LSS dynamics. In particular, it is the ideal framework to highlight the role of symmetries
and related properties, such as the equivalence principle, mass and momentum conservation (see [59, 60]), in the
construction of cosmological correlations, the key observables in large scale structure.

In this work, we develop exact, separable solutions for PT kernels of density and velocity fields in ΛCDM cosmology.
So far, such explicit solutions have been obtained only within the EdS approximation, with the extensions to ΛCDM
worked out analytically only to lower orders. In this work, we presented a recursive solution valid up to arbitrary order
in perturbation theory, providing in particular an algorithm to obtain separable solutions for the Fn and Gn kernels at
each perturbative order n.

The solutions building blocks are elements of the basis of the momentum dependent operators Hn. The (upper limit



15

on the) dimension of the basis depends on the perturbative order n and is given by the number N(n), for which we
also provide the explicit recursive expression. To obtain the full kernels Fn and Gn, this momentum operator basis
has to be appropriately “contracted” with the time-dependent coefficients for matter and velocity fields, respectively
dubbed λn and κn.
We arrive at the solutions for the time coefficients following two different paths. First, starting from the implicit

integral solutions obtained in [45], we obtain the recursive integral solution for λn and κn. We show that these can be
recast as the solutions to a set of coupled differential equations, which we find quite suitable for numerical treatment.
We are then able to compute our numerical benchmark solutions, which we use in the remainder of our analysis. The
analysis of the differential equations makes it clear that the “clock”, i.e. the time evolution, is set by the combination
of growth rates f−/f2

+, whose time dependence in ΛCDM cosmology is completely determined by the new variable
ζ = ΩΛ,0/Ωm,0D+. This implies that using ζ as the time variable in solving for the λn and κn coefficients one obtains
solutions valid universally in ΛCDM, that is irrespective of the choice of cosmological parameters. This significantly
simplifies the computational task involved in the cosmological parameter search.

As an alternative path to the solution, equipped with the differential equations we develop an analytic perturbative
solution for the λn and κn coefficients. The starting point of this perturbative solution lies in the observation that
the EdS approximation, a static solution to the set of our differential equations, is an excellent (yet insufficient)
approximation to the full set of the λn and κn coefficients, especially at lower orders. This suggests that we organise
the perturbative treatment around the parameter δf = 3/2 + f−/f

2
+. We have obtained the general perturbative

solution, laying the basis for an iterative path to the time coefficients. We then applied our algorithm to derive
solutions up to the leading correction in δf , and implemented our procedure all the way to the λ5 and κ5 coefficients
needed for the two-loop power spectrum calculations.

The final form of these perturbative solutions is given in terms of the variable ζ so as to fully capture the dependence
on cosmological parameters. We investigated the agreement of our perturbative solutions with the full numerical
evaluation and found a perfect agreement for all coefficients up to n = 5 if terms up to third order in ζ are included.
We also note that the perturbative solutions exhibit, at each order in ζ, similar behaviour as the EdS solutions
when it comes to IR cancellations and properties that stem from mass and momentum conservation. This makes
them particularly well suited for use in the numerical evaluation of higher loop power spectra that rely on accurate
cancellations in their integrands. Let us also mention that these findings may be generalised to beyond-ΛCDM
scenarios, something we will address in future work.

As an application of our results, we compute one- and two-loop matter and velocity auto- and cross-power spectra. We
compare our solutions and explore the differences between the EdS and ΛCDM solutions. The results are summarized
in Figures 4 and 5. We find that some care has to be exerted in quantifying these differences since a fraction of the
effect in the one- and two-loop contributions can be re-absorbed in the EFT counterterms, which can be treated as free
coefficients of the perturbative loop expansion. Specifically, in the one-loop case, the difference in the density-density
power spectrum between ΛCDM and EdS can be fully reabsorbed by the counterterms at the scales and accuracy of
interest. For the velocity statistics, the deviation is instead more pronounced, at the level of a few percent, even when
fully engaging counterterms. At two-loop the ΛCDM deviation from the EdS result increases to a couple of percent,
which, to a large extent, can again be covered by counterterms. In terms of the velocity related statistics, the results
depend rather heavily on the numerical values of the required counterterms, with the latter requiring calibration
against N-body simulations, something that goes beyond the scope of our analysis. Nevertheless, our work clearly
shows how the deviation could reach ten percent at the scales of interest, as demonstrated in Figure 5.

Beyond their use in higher loop calculations, our results are also readily applicable in tackling higher n-point
functions, such as the bispectrum, the trispectrum, etc. Remarkably, these observables are sensitive to the ΛCDM
deviations from the EdS approximation already at tree-level (see [61] and also [44, 68] for the recent investigations).

Lastly, we ought to comment on the fact that the dark matter density and velocity are not directly observable but
act as the building components within the more general framework of the biased tracers of large scale structure (see,
e.g. [26]). Given the additional dynamics (and degeneracies) associated with the presence of the bias coefficients, one
ought to take into account what survives of the discrepancies such as the one between the EdS and ΛCDM solutions at
the level of the observables. This has been recently explored in [43] at one loop order. It would be quite interesting to
do the corresponding analysis at two loops. This will be possible upon deriving the two-loop results for biased tracers
in redshift space. This is yet another line of investigation we plan to pursue in the near future. It is possible that
deviations like the ones studied here might well bias our parameter inference and would thus need to be included in
the budget of possible theoretical systematic errors. It is important to keep this budget to a minimum given that
parameter tensions of several sigmas are nowadays a familiar occurrence in data-driven cosmology.
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Appendix A: Linear growth and decay factors and rates

In this appendix, we summarise the linear growth solutions and derive some of the results in a form useful for
our subsequent computation. In particular, we derive a specific form in which we can expand the linear growth rate
combination f−/f2

+ around the EdS value.
We start from the well-known solutions for D±, these are

D+ = 5
2H

2
0 Ωm0H(a)

∫ a

0

dã
ã3H3(ã) , D− = H(a)

H0
, (A1)

where Ωm0 and ΩΛ0 are the current energy fractions of dark matter and the cosmological constant, respectively. The
Hubble parameter is given by H(a) = H0

√
Ωm0a−3 + ΩΛ0, where the radiation component can be ignored. Changing

the time variable into q ≡ a3ΩΛ0/Ωm0 and performing the integral in D+, we find

D̂+ ≡
(

ΩΛ0

Ωm0

) 1
3

D+ = q
1
3 2F1

(
1, 1

3 ,
11
6 ,−q

)
, (A2)

where we introduced D̂+, which depends only on q, and 2F1(a, b, c, z) is the hypergeometric function. Using the above
equations, we can compute δf = f−/f

2
+ + 3/2 = (d lnH/d ln a)(D+/a)2(dD+/da)−2 + 3/2 obtaining

δf = 3
2

[
1− 4(1 + q)

(
5

2F1(1, 1/3, 11/6,−q) − 3
)−2

]
. (A3)

This expression is useful for the purpose of numerical treatments. However, we choose to further reduce D̂+ and δf to
obtain simplified expressions. Expanding D̂+ around q = 0, one finds

D̂+ ' q
1
3

[
1− ε 2

11q + ε2
16
187q

2 − ε3 224
4301q

3 + . . .

]
, (A4)

where we inserted a bookkeeping parameter ε. Inverting the above expression by plugging an ansatz, q = Q0 + εQ1 +
ε2Q2 + ε3Q3 + · · · , and solving for Qn at each order in ε, we obtain

q ' D̂3
+ + ε

6
11D̂

6
+ + ε2

492
2057D̂

9
+ + ε3

50216
520421D̂

12
+ + . . . . (A5)

We can also expand δf around q = 0 to obtain

δf ' − 3
22q + ε

15
374q

2 − ε2 21585
1040842q

3 + ε3
74212575

5644486166q
4 + · · · . (A6)

By substituting Eq. (A5) into this equation, one finds an analytic expression for δf in powers of D+,

δf ' c1
(

ΩΛ0

Ωm0

)
D3

+ + c2

(
ΩΛ0

Ωm0

)2
D6

+ + c3

(
ΩΛ0

Ωm0

)3
D9

+ + c4

(
ΩΛ0

Ωm0

)4
D12

+ + . . . , (A7)

with c1, c2, c3 given below Eq. (18) and c4 = − 15954399
5644486166 . Here we omit the higher order correction O(D15

+ ) and set
ε = 1. We find that c4 and the higher order terms obtained in this manner do not significantly improve the fit to δf ,
as can also be deduced from Figure 1. In this work it will therefore suffice to truncate the expansion so as to include
the c1, c2 and c3 coefficients. Nevertheless, we note that the extension to higher orders is straightforward within the
formalism developed in this work.
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Appendix B: Direct integral solutions of the dark matter kernels

In Section II we have presented the integral solutions for the dark matter kernels. Here we return to these findings
providing further details for each component of the solution. We start from the EoMs and briefly review the solutions
obtained in [45]. With the symmetrized kernels Fn(q1, .., qn, η) and Gn(q1, .., qn, η) in Eq. (4), the EoMs given in
Eq. (1) read

Ḟn + nFn −Gn = h(n)
α (q1, .., qn, η) , (B1)

Ġn + (n− 1)Gn −
f−
f2

+
(Gn − Fn) = h

(n)
β (q1, .., qn, η) ,

where we used the shorthand notation ˙ = ∂/∂η (remember that η ≡ lnD+). The functions f+,− are defined as
f+,− ≡ d lnD+,−/d ln a. The source terms are given by:

h(n)
α (q1, .., qn, η) =

∑
π−all

n−1∑
m=1

α(pm,pn−m)Gm(q1, .., qm, η)Fn−m(qm+1, .., qn, η) (B2)

=
n−1∑
m=1

m!(n−m)!
n!

∑
π−cross

α(pm,pn−m)GmFn−m

= δKn
2 ,b

n
2 c

(n/2!)2

n!
∑

π−cross
α(pn/2,pn/2)Gn/2Fn/2

+
b(n−1)/2c∑
m=1

m!(n−m)!
n!

∑
π−cross

[
α(pm,pn−m)GmFn−m + α(pn−m,pm)Gn−mFm

]
,

h
(n)
β (q1, .., qn, η) =

∑
π−all

n−1∑
m=1

β(pm,pm−n)Gm(q1, .., qm, η)Gn−m(qm+1, .., qn, η) ,

= δKn
2 ,b

n
2 c

(n/2!)2

n!
∑

π−cross
β(pn/2,pn/2)Gn/2Gn/2

+ 2
b(n−1)/2c∑
m=1

m!(n−m)!
n!

∑
π−cross

β(pm,pn−m)GmGn−m .

where the subscript “π−all” stands for symmetrization over all momenta {q1 . . .qn} while π − cross indicates permu-
tations that exchange the momenta in the {1 . . .m} set with those in the {m+ 1 . . . n} set. In the last line of Eq. (B2)
the double counting for the case when n is even has been removed. The following definitions have also been employed:
pm = q1 + ..+ qm; pn−m = qm+1 + ..+ qn. Combining the two expressions in Eq. (B1) one readily obtains the EoM
for the first kernel Fn:

F̈n + Ḟn

(
2n− 1− f−

f2
+

)
+ (n− 1)Fn

(
n− f−

f2
+

)
= h

(n)
β +

(
n− 1− f−

f2
+

)
h(n)
α + ḣ(n)

α , (B3)

whose solution reads:

Fn(η) =
∫ η

−∞
dη̃ e(n−1)(η̃−η) f̃+

f̃+ − f̃−

[(
h̃

(n)
β − f̃−

f̃+
h̃(n)
α

)
+ eη̃−η

D−(η)
D−(η̃)

(
h̃(n)
α − h̃(n)

β

)]
, (B4)

where in deriving the above we have used Eq. (3) for the growing and decaying solutions for the linear growth factor
D±(η). Using again the first expression in Eq. (B1) one arrives at the solution for the G kernels:

Gn(η) =
∫ η

−∞
dη̃ e(n−1)(η̃−η) f̃+

f̃+ − f̃−

[(
h̃

(n)
β − f̃−

f̃+
h̃(n)
α

)
+ eη̃−η

f−
f+

D−(η)
D−(η̃)

(
h̃(n)
α − h̃(n)

β

)]
, (B5)

where again a function with tilde depends not on the variable a but the variable ã (e.g. D̃+ ≡ D+(ã)). Note that the
time-dependent coefficients of h̃(n)

α and h̃(n)
β in the integrands of Eqs. (B4) and (B5), also require integration, thus
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implying recursive time integrals, something that is far from ideal for a fast evaluation. Eqs. (B4) and (B5) are the
integral solutions, to all orders, as first derived in [45]. Changing the time variable in favour of the scaling factor a, we
can express these solutions in the form

Fn(q1, .., qn, a) =
∫ a

0

dã
ã

(
w(n)
α (a, ã)h(n)

α (q1, .., qn, ã) + w
(n)
β (a, ã)h(n)

β (q1, .., qn, ã)
)
, (B6)

Gn(q1, .., qn, a) =
∫ a

0

dã
ã

(
u(n)
α (a, ã)h(n)

α (q1, .., qn, ã) + u
(n)
β (a, ã)h(n)

β (q1, .., qn, ã)
)
,

as was presented in the Eq. (5). The Green’s function components are given by

w(n)
α (a, ã) = w(n)(a, ã)

(
1− δ(ã)d(a, ã)

)
, w

(n)
β (a, ã) = −w(n)(a, ã)

(
1− d(a, ã)

)
, (B7)

u(n)
α (a, ã) = w(n)(a, ã)

(
δ(a)− δ(ã)d(a, ã)

)
, u

(n)
β (a, ã) = −w(n)(a, ã)

(
δ(a)− d(a, ã)

)
,

where we introduced the quantities

w(n)(a, ã) =
(
D̃+

D+

)n
f̃2

+

f̃+ − f̃−
D−

D̃−
, d(a, ã) = D̃−

D−

D+

D̃+
, δ(a) = f−

f+
. (B8)

Moreover, we find that w(n)
α,β and u(n)

α,β satisfy a simple relation,

w(n)
α (a, ã) + w

(n)
β (a, ã) = u(n)

α (a, ã) + u
(n)
β (a, ã) = w(n)d(1− δ̃) =

(
D̃+

D+

)n−1

f̃+ . (B9)

Eq. (B9) indicates that not all of the Green’s functions are independent: there are relations between them that can be
obtained at each order n. We see how these come to play when computing the one- and two- loop power spectra in
Section III.

Appendix C: Derivation of the separable kernels

In Appendix B we have shown the explicit integral form of the solutions for the Fn and Gn kernels. In this appendix,
we recast such solutions into separable form Fn = λn ·Hn and Gn = κn ·Hn, as indicated in Section II. Plugging
Eqs. (B2) and (6) into the right hand side of Eq. (5), and separately re-organizing the momentum-dependent and
time-dependent terms, one finds

Fn(a) = δKn
2 ,b

n
2 c

N(n/2)∑
i=1

N(n/2)∑
j=1

W
(ij)
α;n/2,n/2[hα](ij)n/2,n/2 + δKn

2 ,b
n
2 c

N(n/2)∑
i=1

N(n/2)∑
j=i

[
2− δKij

]
W

(ij)
β;n/2,n/2[hβ ](ij)n/2,n/2 (C1)

+
b(n−1)/2c∑
m=1

N(m)∑
i=1

N(n−m)∑
j=1

(
W

(ij)
α;m,n−m[hα](ij)m,n−m +W

(ji)
α;n−m,m[hα](ji)n−m,m + 2W (ij)

β;m,n−m[hβ ](ij)m,n−m

)
,

Gn(a) = δKn
2 ,b

n
2 c

N(n/2)∑
i=1

N(n/2)∑
j=1

U
(ij)
α;n/2,n/2[hα](ij)n/2,n/2 + δKn

2 ,b
n
2 c

N(n/2)∑
i=1

N(n/2)∑
j=i

[
2− δKij

]
U

(ij)
β;n/2,n/2[hβ ](ij)n/2,n/2

+
b(n−1)/2c∑
m=1

N(m)∑
i=1

N(n−m)∑
j=1

(
U

(ij)
α;m,n−m[hα](ij)m,n−m + U

(ji)
α;n−m,m[hα](ji)n−m,m + 2U (ij)

β;m,n−m[hβ ](ij)m,n−m

)
,

with the momentum basis source terms [hα] and [hβ ] defined as

[hα](ij)m,n−m(q1, .., qn) = m!(n−m)!
n!

∑
π−cross

α(qm, qn−m)H(i)
m (q1, .., qm)H(j)

n−m(qm+1, .., qn) , (C2)

[hβ ](ij)m,n−m(q1, .., qn) = m!(n−m)!
n!

∑
π−cross

β(qm, qn−m)H(i)
m (q1, .., qm)H(j)

n−m(qm+1, .., qn) .
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We have also introduced the time-dependent coefficients

Wn,(ij)
α;m1,m2

(a) =
∫ a

0

dã
ã
w(n)
α (a, ã)κ(i)

m1
(ã)λ(j)

m2
(ã) , W

n,(ij)
β;m1,m2

(a) =
∫ a

0

dã
ã
w

(n)
β (a, ã)κ(i)

m1
(ã)κ(j)

m2
(ã) , (C3)

Un,(ij)α;m1,m2
(a) =

∫ a

0

dã
ã
u(n)
α (a, ã)κ(i)

m1
(ã)λ(j)

m2
(ã) , U

n,(ij)
β;m1,m2

(a) =
∫ a

0

dã
ã
u

(n)
β (a, ã)κ(i)

m1
(ã)κ(j)

m2
(ã) ,

which are constructed from to the Green’s functions introduced in Eq. (B7), as well as from the lower order coefficients
λn and κn.
Note that Eqs. (C1) are already in the form required in Eq. (6). However, there remains to be chosen a counting

algorithm that systematically maps (bijectively) the [hα](ij)m,n−m and [hβ ](ij)m,n−m operators to the H(`)
n operators. The

running of the various indices in the h operators will correspond to the running of the index ` in H
(`)
n according

to ` = 1, 2, . . . , N(n) at any given order n. We shall employ the algorithm based on the following five “counting”
functions:

φ1(n, i, j) = N
(
n
2
)

(i− 1) + j, φ2(n, i, j) =
(
N
(
n
2
))2 − 1

2 i (i− 1) + φ1(n, i, j), (C4)

φ3(n,m, i, j) = δKn
2 ,b

n
2 c

1
2N

(
n
2
) (

3N
(
n
2
)

+ 1
)

+
m−1∑
k=1

N(k)N(n− k) + (i− 1)N(n−m) + j,

φ4(n,m, i, j) =
b(n−1)/2c∑

k=1
N(k)N(n− k) + φ3(n,m, i, j), φ5(n,m, i, j) = 2

b(n−1)/2c∑
k=1

N(k)N(n− k) + φ3(n,m, i, j).

For a given n, the φ1,...,5 counters run through all the relevant values of the indices {m, i, j}, eventually covering5 all
the N(n) entries and mapping all of the [hα](ij)m,n−m and [hβ ](ij)m,n−m operators to H(`)

n operators. As shown in Eq. (9),
using this mapping, we obtain a closed expression

H(`)
n (q1, .., qn) = δKn

2 ,b
n
2 c

N(n/2)∑
i=1

[
N(n/2)∑
j=1

[hα](ij)n
2 ,

n
2
δK`,φ1

+
N(n/2)∑
j=i

[
2− δKij

]
[hβ ](ij)n

2 ,
n
2
δK`,φ2

]
(C5)

+
b(n−1)/2c∑
m=1

N(m)∑
i=1

N(n−m)∑
j=1

(
[hα](ij)m,n−mδ

K
`,φ3

+ [hα](ji)n−m,mδ
K
`,φ4

+ 2[hβ ](ij)m,n−mδ
K
`,φ5

)
,

with the initial terms H(1)
2 = α and H(2)

2 = β, and one can systematically compute the higher momentum operators
using definition of the sourcing terms [hα] and [hβ ] given in Eq. (C2).
Once this mapping is chosen for the H(`)

n operators, it immediately fixes the mapping between the λn(κn) and W
(U) time coefficients. Explicitly we have

λ(`)
n (a) = δKn

2 ,b
n
2 c

N(n/2)∑
i=1

[
N(n/2)∑
j=1

W
(ij)
α;n/2,n/2δ

K
`,φ1

+
N(n/2)∑
j=i

W
(ij)
β; n

2 ,
n
2
δK`,φ2

]
(C6)

+
b(n−1)/2c∑
m=1

N(m)∑
i=1

N(n−m)∑
j=1

(
W

(ij)
α;m,n−mδ

K
`,φ3

+W
(ji)
α;n−m,mδ

K
`,φ4

+W
(ij)
β;m,n−mδ

K
`,φ5

)
,

κ(`)
n (a) = δKn

2 ,b
n
2 c

N(n/2)∑
i=1

[
N(n/2)∑
j=1

U
(ij)
α;n/2,n/2δ

K
`,φ1

+
N(n/2)∑
j=i

U
(ij)
β; n

2 ,
n
2
δK`,φ2

]

+
b(n−1)/2c∑
m=1

N(m)∑
i=1

N(n−m)∑
j=1

(
U

(ij)
α;m,n−mδ

K
`,φ3

+ U
(ji)
α;n−m,mδ

K
`,φ4

+ U
(ij)
β;m,n−mδ

K
`,φ5

)
,

5One may choose, for example, to first fix a value for m starting with the lowest possible, m = 1, then do the same for the index i, and
run through the index j, again running from the lowest to the highest value allowed etc. So long as this is done consistently, no ambiguity
arises in the process.
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with W and U coefficients given in Eq. (C3). We have thus achieved the separation of the Fn and Gn kernels in the
purely momentum dependent operators Hn and time dependent coefficients λn and κn. However, the time coefficients
are still determined by the recursive time integrals given in Eq. (C3). In order to facilitate the evaluation of these
coefficients we can recast these integral expressions into differential equations. After some manipulation of our integral
solutions, we obtain

Ẇ n (ij)
α;m1,m2

+ nW n (ij)
α;m1,m2

− U n (ij)
α;m1,m2

= κ(i)
m1
λ(j)
m2

, (C7)

Ẇ
n (ij)
β;m1,m2

+ nW
n (ij)
β;m1,m2

− U n (ij)
β;m1,m2

= 0 ,

U̇ n (ij)
α;m1,m2

+ (n− 1)U n (ij)
α;m1,m2

− f−
f2

+

[
U n (ij)
α;m1,m2

−W n (ij)
α;m1,m2

]
= 0 ,

U̇
n (ij)
β;m1,m2

+ (n− 1)U n (ij)
β;m1,m2

− f−
f2

+

[
U
n (ij)
β;m1,m2

−W n (ij)
β;m1,m2

]
= κ(i)

m1
κ(j)
m2

,

which we have also presented in Eq. (13). This form is convenient for the recursive numerical treatment using the
λ

(1)
1 = κ

(1)
1 = 1 initial conditions. These expressions are used in Section III to compare the results with the analytic

perturbative treatment derived in Appendix D.
Before we close this appendix and turn our attention towards obtaining the analytic solutions for these time

coefficients, we note that it is useful to count the number of coefficients at each perturbative order n. As we have
indicated when postulating the ansatz in Eq. (6), we expect the the number of the basis elements N(n) to be a function
of the perturbative order. Thus, counting the terms given either in the Eq. (9), or equivalently in Eq. (11) gives

N(n) = δKn
2 ,b

n
2 c

1
2N

(
n
2
) (

3N
(
n
2
)

+ 1
)

+ 3
b(n−1)/2c∑
m=1

N(m)N(n−m) , (C8)

which, up to the fifth order, yields the numbers given in Eq. (7). As noted in Section II, not all of these time coefficients
are independent, there are indeed several constraints that effectively reduce the dimension of the operators basis down
from the upper bound N(n).

Appendix D: Perturbative solution of the time-dependence

In Section III we have summarised the perturbative solution for the time-dependent coefficients λ(`)
n and κ(`)

n . Here
we present the derivation. In this appendix, we show how we can analytically invert the differential equations given in
Eqs. (13) (and Eqs. (C7)) and thus represent the solution as a power expansion in δf parameter.
We start by eliminating Unα,β from the equations given in Eqs. (13), to find the EoMs for Wn

α,β . As expected, we
end up with the second order differential equations that read

Ẅ n (ij)
α;m1,m2

+
(

2n+ 1
2 − δf

)
Ẇ n (ij)
α;m1,m2

+
(
n2 + n− 3

2 − (n− 1)δf
)
W n (ij)
α;m1,m2

=
(
∂η + n+ 1

2 − δf
)
κ(i)
m1
λ(j)
m2

, (D1)

Ẅ
n (ij)
β;m1,m2

+
(

2n+ 1
2 − δf

)
Ẇ

n (ij)
β;m1,m2

+
(
n2 + n− 3

2 − (n− 1)δf
)
W

n (ij)
β;m1,m2

= κ(i)
m1
κ(j)
m2

.

Further on we suppress the indices, n,m1,m2 and (ij), that are not relevant for the following calculation, given that
they stay the same on the right and the left side of the equations. We can reorganise the above equations perturbatively
w.r.t. δf , recasting them as

Ẅ n
α +

(
2n+ 1

2

)
Ẇ n
α +

(
n2 + n

2 −
3
2

)
W n
α =

(
∂η + n+ 1

2

)
κλ+ δf

(
Ẇ n
α + (n− 1)W n

α − κλ
)
, (D2)

Ẅ n
β +

(
2n+ 1

2

)
Ẇ n
β +

(
n2 + n

2 −
3
2

)
W n
β = κκ+ δf

(
Ẇ n
β + (n− 1)W n

β

)
.

We note that the structure of the left hand side in both these equations is exactly the same. It is straightforward to
solve this type of equation,

Ẅ n
γ (η) +

(
2n+ 1

2

)
Ẇ n
γ (η) +

(
n2 + n

2 −
3
2

)
W n
γ (η) = S nγ (η) , (D3)

=⇒ W n
γ (η) = In[S nγ ] ≡ 2

5

∫ η

−∞
dη′
[
e(n−1)(η′−η) − e(n+ 3

2 )(η′−η)
]
S nγ (η′) ,
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where γ = α, β and Snγ denotes the source term, including the one proportional to δf . Note that, in the process above,
we have also defined the functional integral In. Although one initially includes other terms with integration constants
c1e
−(n+3/2)η + c2e

(1−n)η in the general solution, these ought to be set to zero in our case in order to reproduce the
known EdS results. This is, of course, equivalent to setting the initial conditions to the EdS values. In particular, for a
constant source term, the time integration is performed as follows

In[C] = 2
5C
∫ η

−∞
dη′
[
e(n−1)(η′−η) − e(n+ 3

2 )(η′−η)
]

= 2C
(2n+ 3)(n− 1) . (D4)

We seek to obtain the perturbative solution using this integral representation. As noted in Section III we expand our
solutions in δf as

Wn = Wn[0] +Wn[1] +Wn[2] + · · · , (D5)

where the superscript [n] denotes the order in powers of δf , with [0] representing the solution in the EdS limit. We
obtain the recursive relations

Wn[l]
α = In

[(
∂η + n+ 1

2
)

(κλ)[l] + δf
(
Ẇ n[l−1]
α + (n− 1)W n[l−1]

α − (κλ)[l−1]
)]

, (D6)

W
n[l]
β = In

[
(κκ)[l] + δf

(
Ẇ

n[l−1]
β + (n− 1)W n[l−1]

β

)]
,

where (xy)[l] = x[0]y[l] + x[1]y[l−1] + x[2]y[l−2] + · · ·+ x[l]y[0] and (κλ)[−1] = 0. To further reduce the expressions, it is
useful to define the second functional expression

Ĩn[X] ≡ (∂η + n− 1) In[δf X] = 2n+ 1
5

∫ η

−∞
dη′e(n+ 3

2 )(η′−η)δf(η′)X(η′) . (D7)

Repeatedly using the above recursive relation, one finds

Ẇ
n[l]
β + (n− 1)W n[l]

β = Ĩn
[

(κκ)[l]

δf
+ Ẇ

n[l−1]
β + (n− 1)W n[l−1]

β

]
(D8)

= Ĩn
[

(κκ)[l]

δf
+ Ĩn

[
(κκ)[l−1]

δf
+ Ẇ

n[l−2]
β + (n− 1)W n[l−2]

β

]]
=

l∑
k=1
Ĩkn
[

(κκ)[l−k+1]

δf

]
+ (n− 1)W n[0]

β Ĩln[1] ,

where Ẇ n[0]
β = 0 and Ĩkn[X] means the recursive operations of Ĩn by k times, for instance, Ĩ3

n[X] = Ĩn[Ĩn[Ĩn[X]]]. In
the case of Wn[l]

α , (κκ)[l] in Eq. (D8) is replaced by
(
∂η + n+ 1

2
)

(κλ)[l] − δf(κλ)[l−1]. Plugging these expressions back
into Eq. (D6), and restoring the suppressed indices, we obtain the general solutions

W n (ij)
α;m1,m2

=
(

1− 2n− 2
2n+ 1

∞∑
l=1
In
[
δf Ĩl−1

n [1]
])

W n (ij) [0]
α;m1,m2

(D9)

+
∞∑
l=1
In
[(
∂η + n+ 1

2
) (
κ(i)
m2
λ(j)
m2

)[l]
]
−
∞∑
l=2
In
[
δf
(
κ(i)
m2
λ(j)
m2

)[l−1]
]

+
∞∑
l=2
In

[
δf

l−1∑
k=1
Ĩkn
[
δf−1 (∂η + n+ 1

2
) (
κ(i)
m2
λ(j)
m2

)[l−k]
]
− δf

l−2∑
k=1
Ĩkn
[(
κ(i)
m2
λ(j)
m2

)[l−k−1]
]]

,

W
n (ij)
β;m1,m2

=
(

1 + (n− 1)
∞∑
l=1
In
[
δf Ĩl−1

n [1]
])

W
n (ij) [0]
β;m1,m2

+
∞∑
l=1
In
[(
κ(i)
m1
κ(j)
m2

)[l]
]

+
∞∑
l=2
In

[
δf

l−1∑
k=1
Ĩkn
[
δf−1

(
κ(i)
m1
κ(j)
m2

)[l−k]
]]

,

where we manipulated the terms with (κλ)[0]. The results in the EdS limit can be found from (D6) for l = 0,

Wn[0]
α = In

[(
n+ 1

2
)

(κλ)[0]
]

= (2n+ 1)κ[0]λ[0]

(2n+ 3)(n− 1) , W
n[0]
β = In

[
(κκ)[0]

]
= 2κ[0]κ[0]

(2n+ 3)(n− 1) , (D10)
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where we used the fact that the zero-th order quantities are constant, κ[0], λ[0] = const.
In order to utilise these general solutions and employ the explicit form of the In and Ĩn integrals we use the expanded

form of δf that we put forward in Eq. (18) and derived in Appendix A. Plugging this approximated expression into
(D9) and then using (13), at leading order in δf we obtain for n = 2

λ
(1)
2 = 5

7 −
c1
91ζ −

4c2
931ζ

2 − 2c3
875ζ

3 , λ
(2)
2 = 2

7 + c1
91ζ + 4c2

931ζ
2 + 2c3

875ζ
3 , (D11)

κ
(1)
2 = 3

7 −
5c1
91 ζ −

32c2
931 ζ

2 − 22c3
875 ζ

3 , κ
(2)
2 = 4

7 + 5c1
91 ζ + 32c2

931 ζ
2 + 22c3

875 ζ
3 ,

shown also in Eq. (19). In the same way, we compute the n = 3 time-dependent coefficients

λ
(1)
3 = 5

18 −
29c1
4725ζ −

22c2
9261ζ

2 − 118c3
93555ζ

3 , λ
(2)
3 = 1

9 + c1
4725ζ −

5c2
18522ζ

2 − 2c3
8505ζ

3 , (D12)

λ
(3)
3 = 1

6 −
19c1
1575ζ −

31c2
6174ζ

2 − 86c3
31185ζ

3 , λ
(4)
3 = 2

9 + 29c1
4725ζ + 22c2

9261ζ
2 + 118c3

93555ζ
3 ,

λ
(5)
3 = 1

21 + 22c1
20475ζ + 85c2

117306ζ
2 + 368c3

779625ζ
3 , λ

(6)
3 = 4

63 + 298c1
61425ζ + 338c2

175959ζ
2 + 2396c3

2338875ζ
3 ,

κ
(1)
3 = 5

42 −
529c1
20475ζ −

334c2
19551ζ

2 − 10018c3
779625 ζ

3 , κ
(2)
3 = 1

21 −
199c1
20475ζ −

263c2
39102ζ

2 − 362c3
70875ζ

3 ,

κ
(3)
3 = 1

14 −
17c1
975 ζ −

141c2
13034ζ

2 − 2066c3
259875ζ

3 , κ
(4)
3 = 2

21 −
53c1
2925ζ −

254c2
19551ζ

2 − 7802c3
779625ζ

3 ,

κ
(5)
3 = 1

7 + 44c1
6825ζ + 85c2

13034ζ
2 + 1472c3

259875ζ
3 , κ

(6)
3 = 4

21 + 596c1
20475ζ + 338c2

19551ζ
2 + 9584c3

779625ζ
3 .

and the result for n = 4

λ
(1)
4 = 45

539 −
900c1ζ
119119 −

2272c2ζ2

706629 −
3496c3ζ3

1953875 , λ
(2)
4 = 18

539 −
489c1ζ
238238 −

724c2ζ2

706629 −
2381c3ζ3

3907750 , (D13)

λ
(3)
4 = 60

539 + 2425c1ζ
714714 + 3232c2ζ2

2119887 + 10147c3ζ3

11723250 , λ
(4)
4 = 24

539 + 947c1ζ
357357 + 2032c2ζ2

2119887 + 2861c3ζ3

5861625 ,

λ
(5)
4 = 6

539 −
32c1ζ

119119 + 188c2ζ2

4946403 + 19c3ζ3

279125 , λ
(6)
4 = 8

539 + 257c1ζ
357357 + 5680c2ζ2

14839209 + 197c3ζ3

837375 ,

λ
(7)
4 = 32

1617 + 856c1ζ
357357 + 14144c2ζ2

14839209 + 424c3ζ3

837375 , λ
(8)
4 = 5

66 −
223c1ζ
117810 −

244c2ζ2

334719 −
13c3ζ3

33495 ,

λ
(9)
4 = 1

33 −
43c1ζ

117810 −
149c2ζ2

669438 −
3c3ζ3

22330 , λ
(10)
4 = 1

22 −
31c1ζ
13090 −

179c2ζ2

223146 −
13c3ζ3

33495 ,

λ
(11)
4 = 2

33 + 13c1ζ
117810 −

50c2ζ2

334719 −
3c3ζ3

22330 , λ
(12)
4 = 1

77 −
c1ζ

85085 −
43c2ζ2

4239774 −
c3ζ

3

76125 ,

λ
(13)
4 = 4

231 + 373c1ζ
765765 + 530c2ζ2

6359661 + c3ζ
3

76125 , λ
(14)
4 = 5

154 −
6469c1ζ
1531530 −

12352c2ζ2

6359661 −
313c3ζ3

279125 ,

λ
(15)
4 = 1

77 −
2449c1ζ
1531530 −

9743c2ζ2

12719322 −
249c3ζ3

558250 , λ
(16)
4 = 3

154 −
1439c1ζ
510510 −

5185c2ζ2

4239774 −
193c3ζ3

279125 ,

λ
(17)
4 = 2

77 −
4601c1ζ
1531530 −

9446c2ζ2

6359661 −
489c3ζ3

558250 , λ
(18)
4 = 3

77 + 16c1ζ
36465 + 1741c2ζ2

4239774 + 81c3ζ3

279125 ,

λ
(19)
4 = 4

77 + 394c1ζ
109395 + 9026c2ζ2

6359661 + 632c3ζ3

837375 , λ
(20)
4 = 5

693 −
944c1ζ

11486475 + 218c2ζ2

4946403 + 6857c3ζ3

135654750 ,

λ
(21)
4 = 2

693 −
239c1ζ

11486475 + 277c2ζ2

14839209 + 1384c3ζ3

67827375 , λ
(22)
4 = 1

231 −
334c1ζ

3828825 + 311c2ζ2

14839209 + 17c3ζ3

587250 ,

λ
(23)
4 = 4

693 −
181c1ζ

11486475 + 620c2ζ2

14839209 + 37c3ζ3

880875 , λ
(24)
4 = 2

231 + 2434c1ζ
3828825 + 1553c2ζ2

4946403 + 4111c3ζ3

22609125 ,

λ
(25)
4 = 8

693 + 14356c1ζ
11486475 + 7444c2ζ2

14839209 + 18292c3ζ3

67827375 , κ
(1)
4 = 15

539 −
152c1ζ
17017 −

28492c2ζ2

4946403 −
8444c3ζ3

1953875 ,

κ
(2)
4 = 6

539 −
115c1ζ
34034 −

11212c2ζ2

4946403 −
6709c3ζ3

3907750 , κ
(3)
4 = 20

539 −
941c1ζ
102102 −

101648c2ζ2

14839209 −
63317c3ζ3

11723250 ,

κ
(4)
4 = 8

539 −
25c1ζ
7293 −

39920c2ζ2

14839209 −
12571c3ζ3

5861625 , κ
(5)
4 = 24

539 −
32c1ζ
17017 + 1880c2ζ2

4946403 + 247c3ζ3

279125 ,
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κ
(6)
4 = 32

539 + 257c1ζ
51051 + 56800c2ζ2

14839209 + 2561c3ζ3

837375 , κ
(7)
4 = 128

1617 + 856c1ζ
51051 + 141440c2ζ2

14839209 + 5512c3ζ3

837375 ,

κ
(8)
4 = 5

198 −
12569c1ζ
1767150 −

3838c2ζ2

781011 −
10267c3ζ3

2713095 , κ
(9)
4 = 1

99 −
4889c1ζ
1767150 −

3055c2ζ2

1562022 −
8201c3ζ3

5426190 ,

κ
(10)
4 = 1

66 −
2659c1ζ
589050 −

4687c2ζ2

1562022 −
2069c3ζ3

904365 , κ
(11)
4 = 2

99 −
9481c1ζ
1767150 −

3022c2ζ2

781011 −
16321c3ζ3

5426190 ,

κ
(12)
4 = 1

231 −
4429c1ζ
3828825 −

24515c2ζ2

29678418 −
14533c3ζ3

22609125 , κ
(13)
4 = 4

693 −
16561c1ζ
11486475 −

16138c2ζ2

14839209 −
57901c3ζ3

67827375 ,

κ
(14)
4 = 5

462 −
9523c1ζ
2552550 −

104122c2ζ2

44517627 −
5581c3ζ3

3229875 , κ
(15)
4 = 1

231 −
3763c1ζ
2552550 −

83159c2ζ2

89035254 −
4463c3ζ3

6459750 ,

κ
(16)
4 = 1

154 −
279c1ζ
121550 −

41893c2ζ2

29678418 −
7829c3ζ3

7536375 , κ
(17)
4 = 2

231 −
1061c1ζ
364650 −

82862c2ζ2

44517627 −
62401c3ζ3

45218250 ,

κ
(18)
4 = 1

77 −
1436c1ζ
425425 −

71675c2ζ2

29678418 −
14257c3ζ3

7536375 , κ
(19)
4 = 4

231 −
1658c1ζ
425425 −

137806c2ζ2

44517627 −
56104c3ζ3

22609125 ,

κ
(20)
4 = 20

693 −
944c1ζ

1640925 + 2180c2ζ2

4946403 + 89141c3ζ3

135654750 , κ
(21)
4 = 8

693 −
239c1ζ

1640925 + 2770c2ζ2

14839209 + 17992c3ζ3

67827375 ,

κ
(22)
4 = 4

231 −
334c1ζ
546975 + 3110c2ζ2

14839209 + 221c3ζ3

587250 , κ
(23)
4 = 16

693 −
181c1ζ

1640925 + 6200c2ζ2

14839209 + 481c3ζ3

880875 ,

κ
(24)
4 = 8

231 + 2434c1ζ
546975 + 15530c2ζ2

4946403 + 53443c3ζ3

22609125 , κ
(25)
4 = 32

693 + 14356c1ζ
1640925 + 74440c2ζ2

14839209 + 237796c3ζ3

67827375 .

One can continue this exercise up to an arbitrary n. For the purposes of this work, it suffices to run this procedure
up to n = 5: F5 and G5 are the highest order kernels necessary for the calculation of the two-loop power spectra, and
therefore we may stop at the λ(i)

5 , κ
(i)
5 set of time coefficients (all coefficients and corresponding kernels are given in

the Mathematica notebook, provided in the arXiv source file of this paper).

Appendix E: IR and UV limits of kernels

In this appendix, we consider the IR and UV limits of the Hn kernels in the momenta configurations contributing
to the one- and two-loop calculations. For IR limits, we have the following expansions

H2(p,k − p) ∼ [H2](1)
IR (p̂)k

p
+ [H2](0)

IR (p̂) +O(p1) , (E1)

H3(k,p,−p) ∼ [H3,I](2)
IR (p̂)k

2

p2 + [H3,I](0)
IR (p̂) +O(p1) ,

H3(k − q − p, q,p) ∼ [H3,II](1)
IR (p̂)k

p
+ [H3,II](0)

IR (p̂) +O(p1) ,

H4(k − q, q,p,−p) ∼ [H4,I](2)
IR (p̂)k

2

p2 + [H4,I](0)
IR (p̂) +O(p1) ,

H4(k − p,p, q,−q) ∼ [H4,II](1)
IR (p̂)k

p
+ [H4,II](0)

IR (p̂) +O(p1) ,

H5(k, q,−q,p,−p) ∼ [H5](2)
IR (p̂)k

2

p2 + [H5](0)
IR (p̂) +O(p1) ,

as p → 0. We can write explicitly the first few coefficients as [H2](1)
IR = µ

2 (1, 1) and [H2](0)
IR = 1

2
(
1, 2µ2 − 1

)
, and

[H3,I](2)
IR = −µ

2

3 (1, 1, 0, 0, 1, 1), [H3,I](0)
IR = − 1

3
(
µ2, µ2, µ2 − 2,−µ2, 2− 6µ2 + 4µ4, 0

)
, where µ = k̂ · p̂. We shall not

give the explicit form here for the remaining coefficients. These are obtained in a similar manner and can be arrived at
by expanding the full kernels.
In computing the loop contribution, it is crucial to isolate the leading product divergencies of the kernel products.
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Focusing on the IR limit at one-loop we have

h
(2)
22,IR = [H2](1)

IR ⊗ [H2](1)
IR = µ2

4

(
1 1
1 1

)
, (E2)

h
(1)
22,IR = [H2](1)

IR ⊗ [H2](0)
IR + [H2](0)

IR ⊗ [H2](1)
IR = µ

2

(
1 µ2

µ2 2µ2 − 1

)
,

h
(2)
13,IR = H1(k)⊗ [H3,I](2)

IR = −µ
2

3
(
1 1 0 0 1 1

)
,

while at two-loops one finds

h
(2)
33,I,IR = H3(k, q,−q)⊗ [H3,I](2)

IR , (E3)

h
(2)
33,II,IR = [H3,II](1)

IR ⊗ [H3,II](1)
IR ,

h
(1)
33,II,IR = [H3,II](1)

IR ⊗ [H3,II](0)
IR + [H3,II](0)

IR ⊗ [H3,II](1)
IR ,

h
(2)
24,I,IR = H2(k − q, q)⊗ [H4,I](2)

IR ,

h
(2)
24,II,IR = [H2](1)

IR ⊗ [H4,II](1)
IR ,

h
(1)
24,II,IR = [H2](1)

IR ⊗ [H4,II](0)
IR + [H2](0)

IR ⊗ [H4,II](1)
IR ,

h
(2)
15,IR = H1(k)⊗ [H5](2)

IR .

Similarly, one can derive the UV limit of the various terms, which are given by

H2(p,k − p) ∼ [H2](2)
UV(k̂)k

2

p2 + [H2](3)
UV(k̂)k

3

p3 +O(k4) , (E4)

H3(k,p,−p) ∼ [H3,I](0)
UV(k̂) + [H3,I](2)

UV(k̂)k
2

p2 +O(k4) ,

H3(k − q − p, q,p) ∼ [H3,II](1)
UV(k̂)k

p
+ [H3,II](2)

UV(k̂)k
2

p2 + [H3,II](3)
UV(k̂)k

3

p3 +O(k4) ,

H4(k − q, q,p,−p) ∼ [H4](2)
UV(k̂)k

2

p2 + [H4](3)
UV(k̂)k

3

p3 +O(k4) ,

H5(k, q,−q,p,−p) ∼ [H5](0)
UV(k̂) + [H5](2)

UV(k̂)k
2

p2 +O(k4) ,

as k → 0. Again, the first few coefficients can be written as [H2](2)
UV = 1

2
(
1− 2µ2,−1

)
, [H2](3)

UV = µ
2
(
3− 4µ2,−1

)
,

[H3,I](0)
UV = µ2

3 (−1,−1, 1, 1, 0, 0) and [H3,I](2)
UV = − 1

3
(
µ2, µ2, 2(1− µ2)(2µ2 − 1), 0, 2− µ2, µ2). The kernel products

relevant for the UV divergencies in the power spectra are, at one-loop power,

h
(4)
22,UV = [H2](2)

UV ⊗ [H2](2)
UV = 1

4

((
2µ2 − 1

)2 2µ2 − 1
2µ2 − 1 1

)
, (E5)

h
(0)
13,UV = H1 ⊗ [H3,I](0)

UV = −µ
2

3
(
−1 −1 1 1 0 0

)
,

h
(2)
13,UV = H1 ⊗ [H3,I](2)

UV = −1
3
(
µ2 µ2 2(1− µ2)(2µ2 − 1) 0 2− µ2 µ2) ,
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and, at two-loop,

h
(0)
33,I,UV = [H3,I](0)

UV ⊗ [H3,I](0)
UV , (E6)

h
(2)
33,I,UV = [H3,I](0)

UV ⊗ [H3,I](2)
UV , not symmetric in q̂ and p̂,

h
(4)
33,I,UV = [H3,I](2)

UV ⊗ [H3,I](2)
UV ,

h
(2)
33,II,UV = [H3,II](1)

UV ⊗ [H3,II](1)
UV ,

h
(3)
33,II,UV = [H3,II](1)

UV ⊗ [H3,II](2)
UV + [H3,II](2)

UV ⊗ [H3,II](1)
UV ,

h
(4)
33,II,UV = [H3,II](2)

UV ⊗ [H3,II](2)
UV + [H3,II](1)

UV ⊗ [H3,II](3)
UV + [H3,II](3)

UV ⊗ [H3,II](1)
UV ,

h
(4)
24,UV = [H2](2)

UV ⊗ [H4](2)
UV ,

h
(0)
15,UV = H1(k)⊗ [H5](0)

UV ,

h
(2)
15,UV = H1(k)⊗ [H5](2)

UV .

Appendix F: Two-loop basis power spectra, IR and UV properties

In this appendix, we look into the IR and UV properties of the integrands given in Eq. (36). We first look at the I33
term, which has two distinct contributions. It is convenient to remap the contributions (see [47]) as

I33,I = 9Plin(k)
∫

q,p

H3(k,−q, q)⊗H3(k,−p,p)Plin(q)Plin(p) (F1)

= 9Plin(k)
∫

q,p

[
H3(k,−q, q)⊗H3(k,−p,p)Θ(q − p) + q ↔ p

]
Plin(q)Plin(p).

The IR and UV limits can be expressed as

H3(k,−q, q)⊗H3(k,−p,p) ∼


h

(2)
33,I,IR (k, q, p̂) k

2

p2 +O(p0) , as p→ 0,

h
(0)
33,I,UV(k̂, q,p) +

(
h

(2)
33,I,UV(k̂, q,p)k

2

q2 + q ↔ p
)

+ h(4)
33,I,UV(k̂, q,p) k4

p2q2 +O(k5)
, as k → 0,

(F2)

and we can thus write the regularized integral as

Ĩ33,I = 18Plin(k)
∫

q,p

[
H3(k,−q, q)⊗H3(k,−p,p)− h(2)

33,I,IR(k, q, p̂)k
2

p2W
IR
33,I (F3)

−
(
h

(0)
33,I,UV(k̂, q,p) +

(
h

(2)
33,I,UV(k̂, q,p)k

2

q2 + q ↔ p

)
+ h(4)

33,I,UV(k̂, q,p) k4

p2q2

)
WUV

33,I

]
Θ(q − p)Plin(q)Plin(p).

Given that λ3 · [H3,I](0)
UV = κ3 · [H3,I](0)

UV = 0, both in EdS and ΛCDM case, the terms h(0)
33,I,UV and h(2)

33,I,UV are zero.
We thus have I33,I(k) = Ĩ33,I(k) + [I33,I]IR + [I33,I]UV, where

[I33,I]IR = 18Plin(k)
∫

q,p

h
(2)
33,I,IR(k, q, p̂)k

2

p2W
IR
33,IΘ(q − p)Plin(q)Plin(p) =

(
hIR

33,IW
IR
33,I
)
k2Plin(k) , (F4)

[I33,I]UV = 9Plin(k)
∫

q,p

h
(4)
33,I,UV(k̂, q,p) k4

p2q2W
UV
33,IPlin(q)Plin(p) =

(
hUV

33,IW
UV
33,I
)
k4Plin(k).

In the last integral we have reverted back to the symmetric form of the integrand. We used the fact that

hIR
33,I =

∫
q

ĥ
(2)
33,I,IR(k, q)σ2

2(q)Plin(q) , and hUV
33,I = 2

(
hUV

13 ⊗ hUV
13
) (
σ2

2
)2
, (F5)
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where we have introduced the coefficients ĥ(2)
33,I,IR(k, q) = 54

∫ dΩp̂

4π h
(2)
33,I,IR(k, q, p̂), integrating the h(2)

33,I,IR over p̂. We
have also introduced the variance due to the p modes smaller than q as

σ2
2(q) = 1

3

∫
p

Θ(q − p)Plin(p)/p2 = 1
3

∫ q

0

dp

2π2 Plin(p) . (F6)

Note that the final IR term hIR
33,I(k) is k dependent.

Next we consider the I33,II integral

I33,II = 6
∫

q,p

H3(k − q − p, q,p)⊗H3(k − q − p, q,p)Plin(k − q − p)Plin(q)Plin(p) , (F7)

which has leading divergencies when q and p go to zero, and when one of these momenta goes to zero while the other
approaches k. The sub-leading divergencies arise when q or p go to zero, while the other is finite, and when q+p→ k.
Since the integral can be symmetrized by introducing the delta function (see e.g. [47]), we can remap some of these
divergencies into others by writing

I33,II = 36
∫

q,p

H3(k−q−p, q,p)⊗H3(k−q−p, q,p)Θ(q− p)Θ(|k−q−p|− q)Plin(k−q−p)Plin(q)Plin(p), (F8)

where the leading divergencies appear only when q and p go to zero and the subleading ones appear when q goes to
zero for finite p. The product of the kernels can be written as

H3(k− q−p, q,p)⊗H3(k− q−p, q,p) ∼


h

(2)
33,II,IR(k, q, p̂)k

2

p2 + h(1)
33,II,IR(k, q, p̂)kp +O(p0), as p→ 0 ,

h
(2)
33,II,UV(k̂,p, q)k

2

p2 + h(3)
33,II,UV(k̂,p, q)k

3

p3

+ h(4)
33,II,UV(k̂,p, q)k

4

p4 +O(k5)
, as k → 0 .

(F9)

We can thus write the regularized integral as

Ĩ33,II = 36
∫

q,p

[
H3(k − q − p, q,p)⊗H3(k − q − p, q,p)Θ(|k − q − p| − q)Plin(k − q − p) (F10)

−
(
h

(2)
33,II,IR(k, q, p̂)k

2

p2 + h(1)
33,II,IR(k, q, p̂)k

p

)
W IR

33,IIΘ(|k − q| − q)Plin(k − q)

−
(
h

(2)
33,II,UV(k̂,p, q)k

2

p2 + h(3)
33,II,UV(k̂,p, q)k

3

p3 + h(4)
33,II,UV(k̂,p, q)k

4

p4

)
WUV

33,IIΘ(|q + p| − q)Plin(q + p)
]

×Θ(q − p)Plin(q)Plin(p) .

After integrating over the p̂ we see that the h(1)
33,II,IR term does not contribute. Similarly, the contribution of h(2)

33,II,UV and
h

(3)
33,II,UV vanish once contracted with λ3 and κ3. This is so since λ3 · [H3,II](1)

UV = κ3 · [H3,II](1)
UV = 0. Note also that only

the first term in h(4)
33,II,UV actually contributes. To compute the full I33,II we have I33,II(k) = Ĩ33,II+[I33,II]IR+[I33,II]UV

where

[I33,II]IR = 36
∫

q,p

h
(2)
33,II,IR(k, q, p̂)k

2

p2W
IR
33,IIΘ(|k − q| − q)Θ(q − p)Plin(k − q)Plin(q)Plin(p) =

(
hIR

33,IIW
IR
33,II

)
k2,

(F11)

[I33,II]UV = 6
∫

q,p

h
(4)
33,II,UV(k̂,p, q)k

4

p4W
UV
33,IIPlin(q + p)Plin(q)Plin(p) =

(
hUV

33,IIW
UV
33,II

)
k4.

The leading IR contribution gives

hIR
33,II =

∫
q

ĥ
(2)
33,II,IR(k, q)σ2

2(q)Θ(|k − q| − q)Plin(k − q)Plin(q) , (F12)

hUV
33,II =

∫
q,p

ĥ
(4)
33,II,UV(p, q)Plin(q + p)Plin(q)Plin(p) , (F13)
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where we have introduced the coefficients ĥ(2)
33,II,IR(k, q) = 108

∫ dΩp̂

4π h
(2)
33,II,IR(k, q, p̂). We also have the variance due

to the p modes smaller than q, defined in Eq. (F6). We have defined the short scale noise hUV
33,II contribution, which is

scale independent given that ĥ(4)
33,II,UV(p, q) = 6

∫ dΩk̂

4π h
(4)
33,II,UV/p

4.
Next we look first at the I24 terms. The integrals are of the form

I24 = 12
∫

q,p

H2(k − q, q)⊗H4(k − q, q,p,−p)Plin(k − q)Plin(q)Plin(p), (F14)

and the leading divergencies arise when p→ 0 & q → 0, and p→ 0 and q → k. The latter divergence can be re-mapped
again into p→ 0 & q → 0 in the same way as was done for the I22 term. We have

I24 =
∫

p,q<|k−q|
+
∫

p,q>|k−q|
= 24

∫
p,q

H2(k − q, q)⊗H4(k − q, q,p,−p)Θ(|k − q| − q)Plin(k − q)Plin(q)Plin(p).

The remaining divergencies are now in p→ 0 and q → 0. Since the integral is not symmetric in these variables the two
divergencies are distinct. However, we can symmetrise the integral first to get

I24 = 12
∫

p,q

[
H2(k − q, q)⊗H4(k − q, q,p,−p)Plin(k − q)Θ(|k − q| − q) + q ↔ p

]
Plin(q)Plin(p). (F15)

We can remap the integral as

I24 = 24
∫

p,q

[
H2(k − q, q)⊗H4(k − q, q,p,−p)Plin(k − q)Θ(|k − q| − q) + q ↔ p

]
Θ(q − p)Plin(q)Plin(p), (F16)

where the q → 0 divergencies have been remapped into p→ 0 ones. The two terms obviously give equal contributions
to the leading divergence while in the sub-leading case they are different. In the IR limit, we thus have

H2(k − q, q)⊗H4(k − q, q,p,−p) ∼

h
(2)
24,I,IR(k, q, p̂)k

2

p2 +O(p0), as p→ 0,

h
(4)
24,UV(k̂, q,p)k

4

p4 +O(k5), as k → 0,
(F17)

H2(k − p,p)⊗H4(k − p,p, q,−q) ∼

h
(2)
24,II,IR(k, q, p̂)k

2

p2 + h(1)
24,II,IR(k, q, p̂)kp +O(p0), as p→ 0,

h
(4)
24,UV(k̂,p, q)k

4

q4 +O(k5), as k → 0.

We thus have

Ĩ24 = 24
∫

p,q

[(
H2(k − q, q)⊗H4(k − q, q,p,−p)− h(2)

24,I,IR(k, q, p̂)k
2

p2W
IR
24,I

)
Plin(k − q)Θ(|k − q| − q) (F18)

+H2(k − p,p)⊗H4(k − p,p, q,−q)Plin(k − p)Θ(|k − p| − p)

−
(
h

(2)
24,II,IR(k, q, p̂)k

2

p2 + h(1)
24,II,IR(k, q, p̂)k

p

)
W IR

24,IIPlin(k)

−
(
h

(4)
24,UV(k̂, q,p)k

4

p4 Plin(q) + q ↔ p

)
WUV

24

]
Plin(q)Plin(p)Θ(q − p).

To compute the full I, we have I24 = Ĩ24(k) + [I24,I]IR + [I24,II]IR + [I24]UV, where

[I24,I]IR = 24
∫

p,q

h
(2)
24,I,IR(k, q, p̂)k

2

p2W
IR
24,IΘ(|k − q| − q)Θ(q − p)Plin(k − q)Plin(q)Plin(p) =

(
hIR

24,IW
IR
24,I
)
k2 , (F19)

[I24,II]IR = 24Plin(k)
∫

p,q

h
(2)
24,II,IR(k, q, p̂)k

2

p2W
IR
24,IIΘ(q − p)Plin(q)Plin(p) =

(
hIR

24,IIW
IR
24,II

)
k2Plin(k) ,

where

hIR
24,I =

∫
q

ĥ
(2)
24,I,IR(k, q)σ2

2(q)Θ(|k − q| − q)Plin(k − q)Plin(q) , where ĥ
(2)
24,I,IR = 72

∫
dΩp̂
4π h

(2)
24,I,IR(k, q, p̂) , (F20)

hIR
24,II =

∫
q

ĥ
(2)
24,II,IR(k, q)σ2

2(q)Plin(q) , where ĥ
(2)
24,II,IR = 72

∫
dΩp̂
4π h

(2)
24,II,IR(k, q, p̂) .
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The UV components give

[I24]UV = 12
∫

p,q

h
(4)
24,UV(k̂, q,p)k

4

p4W
UV
24 Plin(q)2Plin(p) =

(
hUV

24 W
UV
24
)
k4 , (F21)

where

hUV
24 =

∫
p,q

ĥ
(4)
24,UV(q,p)Plin(q)2Plin(p), where ĥ

(4)
24,UV(q,p) = 12

∫
dΩk̂
4π ĥ

(4)
24,UV(k̂, q,p). (F22)

At last, let us look at the I15 term. The integrals are of the form

I15 = 15Plin(k)
∫

q,p

H1(k)⊗H5(k, q,−q,p,−p)Plin(q)Plin(p). (F23)

The leading divergencies arise when p→ 0 & q → 0. We can re-map this so that we have

I15 = 30Plin(k)
∫

q,p

H1(k)⊗H5(k, q,−q,p,−p)θ(q − p)Plin(q)Plin(p). (F24)

The IR and UV limits are

H1(k)⊗H5(k, q,−q,p,−p) ∼
{
h

(2)
15,IR(k, q, p̂)k

2

p2 +O(p0), as p→ 0,
h

(0)
15,UV(k̂, q,p) + h(2)

15,UV(k̂, q,p)k
2

p2 +O(p0) as k → 0.

The regularised integrals are thus

Ĩ15(k) = 30Plin(k)
∫

q,p

[
H1(k)⊗H5(k, q,−q,p,−p)− k2

p2h
(2)
15,IR(k, q, p̂)W IR

15 (F25)

−
(
h

(0)
15,UV(k̂, q,p) + h(2)

15,UV(k̂, q,p)k
2

p2

)
WUV

15

]
θ(q − p)Plin(q)Plin(p) .

The contributions from h
(0)
15 vanish after contractions with the λ5 and κ5 coefficients. To compute the full integral we

have I15(k) = Ĩ15(k) + [I15]IR + [I15]UV, with

[I15]IR = 30Plin(k)
∫

q,p

h
(2)
15,IR(k, q, p̂)k

2

p2W
IR
15 θ(q − p)Plin(q)Plin(p) =

(
hIR

15W
IR
15
)
k2Plin(k) , (F26)

[I15]UV = 15Plin(k)
∫

q,p

h
(2)
15,UV(k̂, q,p)k

2

p2W
UV
15 Plin(q)Plin(p) =

(
hUV

15 W
UV
15
)
k2Plin(k) .

We have also introduced

hIR
15 =

∫
q

ĥ
(2)
15,IR(k, q)σ2

2(q)Plin(q) and hUV
15 =

∫
q

ĥ
(2)
15,UV(q,p) 1

p2Plin(q)Plin(p) , (F27)

where ĥ(2)
15,IR(k, q) = 90

∫ dΩp̂

4π h
(2)
15,IR(k, q, p̂), and ĥ(2)

15,UV(q,p) = 15
∫ dΩk̂

4π h
(2)
15,IR(k̂, q,p)/p2.

Appendix G: One- and two-loop results at redshift z = 1.0.

In this appendix, we present the results of one- and two-loop contributions to the density-density, density-velocity
and velocity-velocity power spectrum at redshift z = 1.0, similar to what was presented in Sec.IV for the z = 0.0 case.
In analogy to the Figure 4, the left panels of Figure 6 show the one-loop contributions for power spectra of density and
velocity fields at z = 1.0: Pδδ, Pδθ and Pθθ. We again show the EdS results and the corresponding ΛCDM correction.
We see that the one-loop ΛCDM corrections at z = 1.0 are approximately two orders of magnitude smaller than the
one-loop EdS contributions. Note that in the wavelength range where the EdS results exhibit the zero crossing the
relative importance of ΛCDM correction is larger and similar in magnitude to the two-loop EdS results.

Analogous results hold for the two-loop order, shown on the right-hand side of Figure 6. One can observe that the
corresponding ΛCDM corrections are approximately two orders of magnitude smaller than the EdS results (except in
the Pθθ case for k < 0.1h/Mpc, where the corrections can reach up to 5%). Here too, the exception is the wavenumber
interval in the proximity of the k-value corresponding to the zero crossing of the EdS result. The correction due to
such contributions can be partially mitigated once the UV counterterms are added, as was shown for the z = 0.0
case in Figure 5. In general, we see that these beyond-EdS corrections are overall smaller and less relevant at higher
redshifts than is the case at z = 0.0, as one would expect.
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Figure 6: Plotted above are the same quantities shown in Figure 4, but this time at z = 1.0. Upper panels show the absolute
contributions of EdS results (blue lines) compared to the ΛCDM corrections (red lines). We again see that the three different
spectra Pδδ (dashed lines), Pδθ (dot-dashed lines) and Pθθ (solid lines) receive corrections of different size, whose relative
importance is also a function of the scale dependence of the EdS terms. Lower panels display the ΛCDM corrections δPδδ, δPδθ
and δPθθ computed using the numerical evaluations of the λn and κn coefficients (show in dots). We also show the perturbative
time dependence computation as described in Sec. III up to the third order (solid lines).
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