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The Stokes–Einstein–Sutherland Equation at the Nanoscale
Revisited

Andreas Baer, Simon E. Wawra, Kristina Bielmeier, Maximilian J. Uttinger,
David M. Smith, Wolfgang Peukert, Johannes Walter,* and Ana-Sunčana Smith*

The Stokes–Einstein–Sutherland (SES) equation is at the foundation of
statistical physics, relating a particle’s diffusion coefficient and size with the
fluid viscosity, temperature, and the boundary condition for the
particle-solvent interface. It is assumed that it relies on the separation of
scales between the particle and the solvent, hence it is expected to break down
for diffusive transport on the molecular scale. This assumption is however
challenged by a number of experimental studies showing a remarkably small,
if any, violation, while simulations systematically report the opposite. To
understand these discrepancies, analytical ultracentrifugation experiments
are combined with molecular simulations, both performed at unprecedented
accuracies, to study the transport of buckminsterfullerene C60 in toluene at
infinite dilution. This system is demonstrated to clearly violate the conditions
of slow momentum relaxation. Yet, through a linear response to a constant
force, the SES equation can be recovered in the long time limit with no more
than 4% uncertainty both in experiments and in simulations. This nonetheless
requires partial slip on the particle interface, extracted consistently from all
the data. These results, thus, resolve a long-standing discussion on the
validity and limits of the SES equation at the molecular scale.

1. Introduction

Diffusion was first described by Robert Brown in 1827,[1] who
observed jittering of small particles in water. The fundamental
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framework for this phenomenon, how-
ever, emerged only a century later due to
contributions of Einstein,[2] Sutherland,[3]

and Smoluchowski.[4] First, the Stokes–
Einstein–Sutherland (SES) equation was
developed relating the diffusion coeffi-
cient to temperature and the Stokes force
acting on the moving particle. Second,
Einstein and Smoluchowski provided
the keystone for the fully probabilistic
formulation of diffusion. The latter was
experimentally confirmed by Jean–Baptiste
Perrin and his students in 1908.[5–8]

While very simple, easy to use, and often
applied for particle size determination,[9–13]

the SES equation applies in the thermody-
namic limit and requires a separation of
scales between the particle and the solvent
in terms of mass and size.[14–16] Therefore,
it should break down for diffusive transport
at the molecular scale. Surprisingly, how-
ever, experimental studies often confirm the
appropriateness of the SES prediction for
molecular diffusion, despite the clear limits
imposed by the theoretical framework.[17]

The paradigmatic systems for studies of the SES equa-
tion have been the buckminsterfullerenes due to their stabil-
ity and well-defined shape. Specifically, Soret forced Rayleigh
scattering was used to measure the diffusion coefficient of C60
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in o-dichlorobenzene.[18] They compared the radius of C60, ex-
tracted using the SES equation, to partial molecular volume
measurements.[19] With measurement errors of up to 10%, their
measured deviation of the SES equation was less than 15%, using
slip boundary conditions on the particle-solvent interface.

C60 as well as C70 was used again more recently to verify the
performance of the SES equation in analytical ultracentrifuga-
tion (AUC) experiments.[20] Deviations of only about 5% were
found, this time with stick boundary conditions. The reference
size of fullerenes was taken from the size of the rigid carbon
shell,[21–26] which notably ignore solvation effects. Furthermore,
in these experiments, neither finite concentration effects of C60
and C70 have been taken into account nor has the statistical sig-
nificance of the results been checked. Finally, the choice of the
boundary conditions was restricted to stick or slip with the con-
clusion that stick boundary conditions provide better results.

An alternative approach to study the limits of the SES equa-
tion is molecular dynamics (MD) simulations. They are the ideal
tool for this task because they explicitly account for the atomic
nature of the interactions, as well as for all the relevant time and
length scales. However, unlike experiments, MD simulations sys-
tematically demonstrate discrepancies from the SES equation for
small particles.[16,27–35] However, the accuracy of the results was
often questioned due to finite system sizes[27,29–31] and limited
sampling[30,32,35] of slowly convergent power law decays.[36] Inter-
estingly, systematic simulation studies of fullerenes have not yet
been performed. In order to understand the apparently small de-
viations of the SES equation in experiments, and large deviations
in simulations, we here perform AUC measurements as well as
MD simulations of C60 suspended in toluene. Our aim is to com-
bat issues of accuracy and sampling to explore the implication
of different physical assumptions in modeling and measuring
diffusion on the molecular scale as well as the influence of the
partial molecular volume. This joint experimental and theoreti-
cal effort allows us to address the applicability of the SES equa-
tion in the infinite dilution limit, and use the precise analysis to
determine the appropriate boundary conditions at the fullerene-
solvent interface. We are, therefore, able to explore advantages
and limitations of each approximation used to define the SES
equation and hence provide a clear explanation of systematic dis-
crepancy between experimental and modeling efforts appearing
over several decades.

2. Stokes–Einstein–Sutherland Equation and
Equilibrium Statistical Mechanics

2.1. Theoretical Consideration

In 1905, both Einstein[2] and Sutherland[3] published the well-
known relation between the diffusion and friction coefficients D
and 𝜉, respectively, of a particle in a solvent

D =
kBT
𝜉

(1)

Here, T is the temperature and kB the Boltzmann constant. Both
Einstein and Sutherland used the Stokes’ formula to express the
friction coefficient as a function of the fluid shear viscosity 𝜂 and

the hydrodynamic radius RH of the particle, which was assumed
to be spherical:

𝜉 = b𝜋𝜂RH (2)

The prefactor b is a function of the boundary condition on the
particle-solvent interface and ranges from 4 for a perfect slip to 6
for a perfect stick boundary condition, as used by Stokes[37] and
Einstein.[2] Finally, by combining Equations (1) and (2) one ob-
tains the SES equation

D =
kBT

b𝜋𝜂RH
(3)

for the diffusion coefficient of a particle dispersed in a liquid.
This approach surprisingly well relates molecular fluctuations,

characterized by diffusion, with a highly coarse grained hydrody-
namic friction, where molecular details are no longer resolved.
Instead, they are incorporated into the boundary condition b. The
friction itself is defined as the ratio of a force F acting on the par-
ticle and the velocity v resulting from this force

𝜉 = F
v

(4)

Already in the original derivation,[2,3] the force acting on the par-
ticle was presumed to arise from its collisions with the solvent
molecules that in equilibrium should average to zero in the long
time limit.

Significant progress in understanding the relation of transport
coefficients to microscopic degrees of freedom as well as the lim-
its of applicability of the SES equation in terms of involved time
and length scales was achieved using techniques from statistical
mechanics.[14,38–44] Building on the molecular theory, it became
possible to express transport coefficients as integrals of autocor-
relation functions of a corresponding dynamic variable using the
so called Green–Kubo (GK) relations.[38–40,42] For example, the
shear viscosity could be calculated from the off-diagonal elements
of the stress tensor P𝛼𝛽

𝜂 = V
kBT ∫

∞

0
⟨P𝛼𝛽 (t)P𝛼𝛽 (0)⟩dt (5)

where the brackets 〈.〉 denote an ensemble average. Most notably,
the diffusion coefficient was found to be related to the velocity
autocorrelation function (VACF) with

DVACF = ∫
∞

0
⟨v(t)v(0)⟩dt (6)

while the friction coefficient was related to the stochastic force
FS(t) acting on the particle of interest through its autocorrelation
function[38,43–45]

𝜉 = 1
kBT ∫

∞

0
⟨FS(0)FS(t)⟩dt (7)
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The latter equation can be obtained from a general Langevin
equation

𝜕

𝜕t
p(t) = −∫

t

0
dsK(s)p(t − s) + FS(t) (8)

where p(t) is the particle momentum, K(s) the memory kernel,
and FS(t) a stochastic force acting on the particle. The fluctuation-
dissipation theorem relates the memory kernel to the stochastic
force via

⟨FS(t)FS(t′)⟩ = 3kBTK(t − t′) (9)

and the integral of the memory kernel yields Equation (7). Ob-
taining the stochastic force autocorrelation function (FSACF), re-
quired for the memory kernel, from simulations or experiments
is a non-trivial task.[46] However, upon deriving this formula via
the projection operator formalism[44,45] (cf. Section SI A, Support-
ing Information, for the derivation), and assuming a small rate
of change of the particle momentum, that is,

𝜕

𝜕t
p(t) = (𝜆) (10)

with some small parameter 𝜆, the FSACF can be approximated
with the total force autocorrelation function (FTACF)

⟨FS(t)FS(t′)⟩ = ⟨FT(t)FT(t′)⟩ + (𝜆3
)

(11)

upon neglecting orders of 𝜆3 and higher. The total force FT is eas-
ily accessible through Newton’s equation FT = 𝜕p∕𝜕t, especially
from MD simulations, where it is a prognostic variable. The fric-
tion coefficient is then given as

𝜉 = 1
kBT ∫

∞

0
⟨FT(0)FT(t)⟩dt (12)

Notably, it was shown, that the zero frequency component of the
FTACF and hence its time integral, will be non-zero if and only if
the limit 𝜆 → 0 is strictly fulfilled,[15,38,43,47,48] which corresponds
to a particle with constant momentum, often referred to as the
frozen particle. Nonetheless, invoking Stokes’ formula in Equa-
tion (2) for a particle with constant, non-zero momentum also
fulfills this limit. Furthermore, both the autocorrelation func-
tions of velocity (Equation (6)) and position (not shown here) do
have a zero frequency component and can thus be used to ob-
tain the friction coefficient,[48] which is equivalent to invoking the
Einstein–Sutherland equation. The statistical approach therefore
provides Equation (1) from first principles and sets the limits of
applicability of the SES equation.

2.2. Molecular Dynamics Simulations

To assess how crucial the restriction of the constant particle mo-
mentum is, we reformulate the problem (cf. Section SI A, Sup-
porting Information, for the derivation), to obtain a Volterra equa-
tion of first kind, that can be directly checked from simulations:

𝜕

𝜕t
⟨p(t)p(0)⟩ = − 1

kBT ∫
t

0
ds⟨FT(s)FT(0)⟩ ⋅ ⟨p(t)p(0)⟩ (13)

This equation includes approximating the FSACF with the
FTACF.

MD simulations are performed using the GROMACS simula-
tion package,[49–55] by placing a single C60 in a box of toluene (cf.
Figure 1a) and applying periodic boundary conditions (see Sec-
tion SII A, Supporting Information, for details). For toluene, we
use the Optimized Potentials for Liquid Simulations (all atoms)
(OPLS-AA) force field,[56] while the parameters for C60 are taken
from previous work.[57] Following an extensive protocol to equi-
librate the system at room temperature and 1 bar, production
simulations are performed in NVT ensemble with the tempera-
ture maintained by the Nosé–Hoover thermostat. We modify the
output routine of GROMACS to simultaneously extract the total
force on the particle and its momentum with the output rate of
10 fs without all solvent information. This accounts for C60 in-
ternal forces and external van der Waals forces, while Coulomb
forces are absent for the uncharged C60 atoms. To take into ac-
count finite size effects we simulate an array of systems with
478 to 46838 toluene molecules (Figure 1a), for in total 0.6 to
35 μs, and apply the appropriate finite size corrections.[58,59] Us-
ing the system isotropy, averaging over all spatial dimensions is
performed to improve the statistics.

This methodology allows us to evaluate both sides of Equa-
tion (13) by numerical differentiation or integration. We find that
this expression does not hold for a C60 in toluene, which clearly
demonstrates that the momentum is not a slowly changing vari-
able (Figure 1b). Thus, one could infer that the friction coeffi-
cient cannot be properly obtained by the Green–Kubo approach,
which becomes evident from directly evaluating Equation (12).
The full integral vanishes as expected.[38,48] Other methods were
previously suggested to calculate the friction coefficient from the
running integral of the FTACF,[15,16,32] which worked for parti-
cles heavy compared to the solvent molecules but not necessarily
infinitely heavy. In our case, neither a linear nor an exponen-
tial decay can be observed (cf. Section SIII A4 and Figure S8,
Supporting Information) and thus the only method left is using
the maximum of the running integral, that corresponds to the
first zero-crossing of the FTACF, as suggested by Lagar’kov and
Sergeev.[60] This method, known to be an overestimation,[15,32]

yields with corrections for finite size effects (see Section SIII A1
and Equation (S28), Supporting Information) 𝜉 = (3.37 ± 0.03) ×
10−12 kg s−1.

This can be verified by extracting the diffusion coefficient
of C60 from the VACF via the Green–Kubo relation (Equa-
tion (6)) and the mean square displacement (MSD) (cf. Sec-
tion SIII A3, Supporting Information) as both methods are
well established[16,36] (cf. Figure 2a,b). We account for the finite
size effects by the theoretical size dependence of the diffusion
coefficient,[58,59] adjusted to include a variable boundary condi-
tion b

D∞ = DPBC +
kBT𝜁
b𝜋𝜂a

(14)

Using this equation, all data (cf. Figure 2c) can be fitted (blue
circles and orange squares) or corrected (green diamonds and
red triangles). Hereby, the fit was calculated by treating both the
boundary condition parameter b and the infinite diffusivity D∞ as
free parameters, yielding D∞ = (5.67 ± 0.19) × 10−10 m2 s−1 for
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Figure 1. C60 in toluene as a model for studying molecular diffusion. a) The system in question: A single C60 (colored in yellow) is dispersed in toluene.
b) Comparison between left and right hand side of Equation (13). The left hand side is nearly 20 times larger than the right hand side. In addition, the
sign is different in the regime from 1.0 to 1.7 ps, demonstrating that the momentum of C60 cannot be treated as a slow variable. Ensemble averages
cover 3D trajectories of the same system size with 3824 solvent molecules and a total simulation time of ≈35 μs.

the VACF and D∞ = (5.65 ± 0.17) × 10−10 m2 s−1 for the MSD.
Unfortunately, the parameter b carries a significant uncertainty,
such that precise conclusions about the effective boundary con-
dition cannot be made using this approach.

Using Equation (1), we compare the obtained D∞, with the cal-
culated kBT∕𝜉. We find deviations larger than 50%, due to the
gross underestimation of the C60 friction coefficient. This clearly
shows that the standard approximations of equilibrium statisti-
cal physics underlying the SES equation do not hold in this sys-
tem, presumably because of the similar mass of the C60 and the
toluene molecule.

As this deviation stems from the failure of approximating the
memory kernel K(s) with the FTACF instead of the FSACF, it is
only natural to verify whether the memory kernel, if extracted
with different methods,[46] reproduces the correct friction coef-
ficient. Several methods to derive the memory kernel for sys-
tems on the molecular scale have been developed in the past
years.[46] We calculate K(s) through the Fourier transform from
the VACF, as suggested by refs. [46, 61] which is equivalent to
calculating the diffusion coefficient from the VACF and invoking
the Einstein–Sutherland equation (Equation (1)). For the system
with 3824 solvent molecules, we obtain a clear deviation from
the kernel obtained from the FTACF (see Figure S9a, Supporting
Information). By integrating the kernel from the VACF, we ob-
tain 𝜉PBC = (8.68 ± 0.03) × 10−12 kg s−1, which, by the Einstein–
Sutherland equation (Equation (1)), corresponds to a diffusion
coefficient of DPBC = (4.66 ± 0.02) × 10−10 m2 s−1, precisely the
value obtained by integrating the VACF (both values are for the
same system size and thus not corrected for system size effects).
This expected agreement underlines the failure of approximat-
ing the FSACF with the FTACF for such small particles, while
supporting the validity of the Einstein–Sutherland equation.

3. Einstein–Sutherland Equation under Conditions
of Constant Drag

3.1. Analytical Ultracentrifugation Experiments

There are several reports that validate the SES equation for
C60 in molecular solvents.[17,18,20] However, even these works

differ in the choice of the boundary conditions and treatment
of effects of finite concentration. This, together with the re-
sults of the previous section, calls for a discussion of the va-
lidity of the theory and/or the correct choice of parameters for
comparison.

To clarify these issues, we perform a set of AUC experiments
to observe the reaction of the system to a centrifugal field.[62–64]

In this type of experiments, referred to as sedimentation veloc-
ity AUC (SV-AUC) experiments, we resolve the temporal evolu-
tion and radial distribution of the particles’ concentration (cf. Sec-
tion SII B, Supporting Information). Using numerical solutions
of the Lamm equation (Equation (S14), Supporting Information),
we fit the data with the diffusion and sedimentation coefficients
D and s, respectively, while also considering compressibility of
the solvent (cf. Sections SI B, SII C and SIII A7, Supporting In-
formation, for details). Conducting the experiment at different
concentrations (Figure 3), allows us to retrieve the values extrapo-
lated to infinite dilution by means of a linear fit to be D0 = (7.41 ±
0.04) × 10−10 m2 s−1 and s0 = (1.26 ± 0.01) sved. The single sam-
ple measurement of Pearson et al.[20] at a finite concentration,
which we estimate to be about 1 g L−1, yields DPearson = (7.59) ×
10−10 m2 s−1, which is fully consistent with our data.

However, direct comparison of the measured diffusion coeffi-
cients to simulation results (Section 2.2) shows significant differ-
ences. This discrepancy can be attributed to the 1.4 times higher
viscosity of toluene provided by the OPLS-AA force field[56] (see
Section SIII A2, Supporting Information) compared to experi-
mental reference measurements at same thermodynamic condi-
tions of a temperature of 293.15 K and pressure of 1 bar.[65] We
can, nonetheless, normalize the diffusion coefficient by the ratio
of the MD and measured viscosity (Section SIII A2, Supporting
Information), which provides an agreement between the simu-
lated and the experimental diffusivity with a deviation of less than
10% (see Table 2, column 4).

We can then obtain the friction coefficient directly from s0 =
m/𝜉, with m being the excess mass of the analyte, that is, the
mass of the analyte minus the mass of solvent with the same
volume. Ruelle et al.[19] measured the C60 partial molecular vol-
ume in toluene to be 0.603 nm3, which combined with its molec-
ular mass of 720.66 u and a toluene density of 866.86 kg m−3
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Figure 2. Diffusion coefficient of C60 in toluene obtained from MD sim-
ulations. a) Log–log representation of the absolute value of the VACF for
two different system sizes (inverse of box length: ≈0.23 and 0.11 nm−1).
The analysis runs over 6 and 35 μs 3D trajectory, for the small and large
systems, respectively. Especially for the larger system, the expected decay
proportional to t−3/2 is apparent for times >2 ps.[36] The inset shows a lin–
lin representation of the VACF in the region around the first minimum.
b) MSD for the same system sizes as in (a). Due to finite size effects,
the larger system produces a larger MSD and diffusion coefficient (cf.
panel (c)). c) Size dependence of the diffusion coefficient. Equation (14)
is used for both the fit (lines) and the corrected values. Symbols represent
mean and standard deviation of the plateau region for a single system size
each (cf. Figure S1, Supporting Information). The analysis runs over 6 to
35 μs 3D trajectory, for the different systems.

yields a friction coefficient of 5.35× 10−12 kg s−1. We can now
compare this to the prediction of the Einstein–Sutherland equa-
tion (Equation (1)) obtained from the diffusion coefficient of
the AUC experiments, which gives kBT∕D0 = 5.46 × 10−12 kg s−1.
Both results agree within 2%,clearly demonstrating the valid-
ity of the Einstein–Sutherland equation for this system, which
was not explicitly shown before. We hypothesize that this esti-
mate of friction stems from the non-equilibrium nature of the
AUC experiment. Namely rather than the friction being mea-
sured as a response to the stochastic force, here it emerges from
the response to a constant drag or centrifugal force acting on
the C60.

Figure 3. a) Retrieved inverse sedimentation coefficients and b) diffusion
coefficients from SV-AUC experiments as a function of C60 mass concen-
tration. Depicted are hydro- and thermodynamic non-ideality of C60 result-
ing from data-analysis with the c(s)-model (Levenberg–Marquardt). Linear
fits were performed taking the uncertainty of the extinction, optical path
length, and the extinction coefficient at 570 nm for the concentrations into
account. The corresponding uncertainty (standard deviation) is depicted
with the symbols.

3.2. Friction as Response to a Drag Force in Non-Equilibrium MD
Simulations

To verify our hypothesis that the friction coefficient can be deter-
mined if a particle is subject to a non-vanishing average force, we
return to modeling and perform non-equilibrium molecular dy-
namics NEMD simulations. Specifically, an additional (constant)
force on the fullerene is added while removing the center-of-
mass motion of the entire system. The latter is required to obtain
a proper frame of reference with periodic boundary conditions.
The resulting particle velocity, relative to the fluid, is then calcu-
lated and combined with the known force to extract the friction
coefficient 𝜉 from Equation (4).

To ensure, that we sample the linear regime, a set of pull forces
is investigated (cf. Figure 4 and Section SIII A6, Supporting In-
formation). For weak pull forces (blue points in Figure 4), the
sampling is poor due to the small signal-to-noise ratio, while
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Figure 4. Friction coefficient of C60 obtained from steered MD simula-
tions. The friction coefficient 𝜉PBC is calculated for each applied constant
force as the ratio of applied force and resulting average velocity. Three
regimes are indicated, the regime where statistics are not sufficient to de-
termine a precise friction coefficient, the regime of proper linear response
and the regime of non-linear response, where the apparent friction coef-
ficient drops significantly. For the present study, only the linear regime is
relevant and used to determine the friction coefficient as the mean over the
entire range. Displayed error bars denote the uncertainty in the mean of
the calculated friction coefficient, where the mean is calculated over a total
of 40–200 ns trajectory. The hydrodynamic radius displayed corresponds
to a boundary condition value of c = 6.

for large pull forces (green points), non-linear effects arise. For
intermediate pull forces (orange points), we observe a prop-
erly converged and linear regime. Accounting for finite size ef-
fects (Equation (S28)) yields 𝜉 = (6.9 ± 0.15) × 10−12 kg2 s−1 No-
tably, this again compares well (about 10% deviation) to the AUC
result, when corrected for the differences in the viscosity (cf. Sec-
tion 3.1).

Importantly, we can calculate the diffusion coefficient from
this friction coefficient with the Einstein–Sutherland equa-
tion (Equation (1)) to obtain D = (5.9 ± 0.1) × 10−10 m2 s−1, with
the statistical error of 2%. This is basically the same result as the
diffusion coefficient obtained from the MSD or the VACF (Sec-
tion 2.2). This confirms the validity of the Einstein–Sutherland
equation found in the AUC experiments also for MD simulations,
rendering both techniques consistent.

4. Stokes–Einstein–Sutherland Equation

4.1. The Effective Radius of C60

With the validity of the Einstein–Sutherland equation demon-
strated for both experiments and NEMD simulations, the next
step is to assess the validity of the SES equation and more im-
portantly to retrieve a proper value for the boundary condition
coefficient b. To assess this, we need to calculate and/or measure
toluene viscosity (Section SIII A2, Supporting Information), and
the hydrodynamic radius of the C60 independently from the fric-
tion and diffusion coefficients.

As the C60 is a very rigid, nearly spherical molecule that does
not feature extraordinarily strong interactions with the carbon-

rich toluene, solvation effects in this specific environment were
found to be very small compared to the C60 in the solid phase.[19]

This is reflected in sub-angstrom differences in radii RV, that
can be associated to a sphere with equivalent volume (cf. refs.
[19, 22–25, 66–70], Table 1, and Section SIII C, Supporting Infor-
mation). Because of these small differences, RV has been used as
the estimate for the C60 hydrodynamic radius RH.[20]

To verify these results and validate our own simulation and ex-
perimental protocols, we pursue the independent calculation of
the partial molecular volume. In simulations, the partial molec-
ular volume can be obtained from the particle-solvent radial dis-
tribution function g(r) via a Kirkwood–Buff integral[71]

V = 4
3
𝜋R3

V = 1
ns

+ 4𝜋 ∫
∞

0
[gs(r) − g(r)]r2dr (15)

with gs(r) being the radial distribution function of the
pure solvent and ns the number density of the solvent
(cf. Figure S11a, Supporting Information). This provides
Rsim

V = 0.500 ± 0.003 nm, deviating from the experimental
ref. [19] by only 4%.

We, furthermore, independently determine the C60 radius
in experiments, using sedimentation equilibrium AUC experi-
ments with density contrast. In these measurements, the rotor
speed and thus centrifugal force is sufficiently small such that
the sedimentation flux compensates the diffusion flux at each ra-
dial position. From the resulting exponential concentration pro-
file, the apparent buoyant mass can be calculated independent
of the viscosity. Using solvents with different levels of deutera-
tion, which changes solvent density but not the solvation proper-
ties of dissolved species, the partial specific volume (PSV) can
be obtained. Due to a small number of parameters and thus
small statistical uncertainties, the relevant data can be obtained
with high accuracy yielding Rexp,DC

V = 0.526 ± 0.014 nm, which
is within measurement errors of less than 3% compared to lit-
erature results obtained using different methods,[19] and only
5% different to the simulation data. Finally to check the con-
sistency of our SV-AUC experiments, we retrieve the PSV di-
rectly from the diffusion and sedimentation coefficients at the
infinite dilution limit by rearranging the well-known Svedberg

Table 1. Summary of radii of the C60 obtained by various methods. The ra-
dius Rexp

graphite
is obtained by adding half of the graphite interplanar distance

to the radius of the structure of the C60 nuclei, which gives the radius in
the gas phase. The radius Rexp

cryst is obtained by the fullerene distance in C60

crystal. All radii RV are volume equivalent radii, that is, radii corresponding
to the partial molecular volume or the partial specific volume.

Method Source Radius [nm]

Rexp
graphite

Refs. [22–24, 66–68] 0.522 ± 0.001a)

Rexp
cryst Refs. [25, 69, 70] 0.52 ± 0.01a)

Rsim
V Section 4.1 0.500 ± 0.003

Rexp,AUC
V Section 4.1 0.520 ± 0.002

Rexp,DCSE
V Section SIII C, Supporting Information 0.526 ± 0.014

Rexp
V

[19] 0.524 ± 0.003
a)

This value is the average over several measurements reported in the literature (see
Section SIII C, Supporting Information).
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equation (Equation (S15), Supporting Information) to solve for
the PSV (Equation (S32), Supporting Information). This gives
Rexp,AUC

V = 0.520 ± 0.002 nm. Notably, this is within measure-
ment errors of less than 1% equivalent to the values obtained
with our other approaches and the literature[19] (cf. Table 1).

4.2. Effective Boundary Condition at the C60 Toluene Interface

With these referent values for the C60 size, we can now proceed
with the determination of the boundary condition at the particle-
solvent interface. For the AUC experiments, the boundary condi-
tion value can be retrieved directly from the well-known frictional
ratio 𝜉/𝜉0, which is also known as f/f0 in the AUC literature. It is
defined as the ratio of the friction coefficient of the analyte to the
friction coefficient of a sphere of equal volume as the analyte and
assuming stick boundary conditions. When expressed in terms
of s and D and using the PSV �̄� of the fullerene, one obtains for
spherical particles the well-known form

𝜉∕𝜉0 =

(√
2

18𝜋
kBT

D
√

s𝜂
3
2

√
1 − �̄�𝜌

�̄�

) 2
3

= 0.95 ± 0.01 (16)

The frictional ratio is typically used to evaluate shape anisotropy
and volume expansion due to solvation, when 𝜉/𝜉0 ⩾ 1.[63] With
the nearly perfect spherical shape of C60 and hardly any volume
expansion effects (see Sections SIII B and SIII C, Supporting In-
formation), we expect a value very close to unity. However, values
𝜉/𝜉0 < 1, on the other hand, point to deviations from the stick
boundary condition. Indeed, when assuming RH = RV, we obtain
b = 6 · 𝜉/𝜉0 = 5.71 ± 0.06.

We can furthermore determine the boundary condition b at
the C60–toluene interface, such that the SES equation holds, also
from simulations. Using DVACF or DMSD and Equation (3), with
RH = RV determined in simulations, we obtain b = 5.3 ± 0.2.
Following a similar strategy, we can combine experimental data
in the literature (Rexp

V
[19] and DAUC

[20]), and obtain b = 5.54 ±
0.03, which is within the error bar of the simulation and only
3% smaller than our experimental results.

Due to significant accuracy of the measurements and simu-
lations, these results clearly indicate that perfect stick bound-
ary conditions, typically assumed in experiments[17,20,72–76] and
simulations,[27,28,33–35] may not be the correct choice for C60. Ac-
tually, with b = 6 systematic errors of 5% to 12% are found in
simulations and experiments. Furthermore, RH calculated from
the SES is found to be smaller than RV.

Finding deviations from the stick boundary conditions should
not be surprising in the light of a long going discussion on its
application for small particles.[77] The argument is captured by
the Knudsen number Kn, the latter being defined as the ratio
of mean free path and size of a particle. It can be calculated as
Kn = (

√
2𝜋nd2l)−1, where n and d are number density and di-

ameter of the solvent, while l is the characteristic length of the
system. With d taken to be the diameter of the toluene aromatic
ring and l the diameter of the fullerene, we estimate Kn ≈ 0.09.
This is significant because the Knudsen number can be used as
a measure to determine b.[72] Specifically for Kn = 0, one expects
perfect stick (b = 6) while for Kn → ∞, perfect slip (b = 4). As

soon as Kn is not vanishing, as in the present case, b < 6 should
be obtained, which is indeed the case.

5. Discussion and Conclusions

We here present a set of experimental and simulation results on
the dynamic and static properties of a C60 dispersed in toluene.
We perform AUC experiments reporting diffusion and sedimen-
tation coefficients in the infinite dilution limit, improving the ac-
curacy of the method.[20] Instead of following the usual approach
to AUC data and calculating the particle mass and size, we use
the known mass of C60 to report the hydrodynamic radius and the
boundary condition at the particle-solvent interface. We also per-
form a quantitative comparison of simulations and experiments,
which is excellent for static properties derived from density dis-
tributions. This includes the determination of the partial molec-
ular volume of C60, which differs from the experimental estimate
by only a couple of percent. Extracting dynamic properties such
as viscosity is more challenging due to the limitations of current
force fields. However, upon simple re-scaling by the viscosity con-
trast (column 4 in Table 2) the difference between observed and
measured diffusivities is only 10%. Furthermore, the analysis,
which does not rely on correcting for the viscosity contrast, al-
lows us to make several important findings:

• The expression associating the FTACF and the friction coeffi-
cient suggested by Kirkwood,[38] the Green–Kubo theory,[39–42]

and the Mori–Zwanzig formalism[14,43,44] is the main starting
point for the critique on the applicability of the SES equation at
the nanoscale. In its derivation, the assumption that the par-
ticle momentum is constant, or only very slowly changing, is
mandatory. We show that this assumption is clearly violated
for C60 in toluene due to its small molecular weight ,[15,47]

back-scattering, and dissipation of momentum through inter-
nal degrees of freedom that couple with directional motions on
sub-picosecond time scales (Figure 1b). The FTACF integrates
these effects, resulting in a vanishing response of the zero fre-
quency component, and thus, in this formulation, cannot be
directly related to friction. If, contrastingly, the memory ker-
nel is obtained from the FSACF or via a different method,[46,61]

the actual friction coefficient can be obtained.
• Another reliable measurement of the friction coefficient, how-

ever, can be obtained in non-equilibrium conditions. A good
estimate can be extracted from the average velocity of C60 in-
duced by a drag force in the linear response. This is permit-
ted by the momentum conservation and the nanosecond sam-
pling times when conditions of slow dynamics are recovered
(Figure 1b). In experiments, the non-equilibrium conditions
are provided in the sedimentation experiments, while in simu-
lations, the friction is obtained in steered molecular dynamics
(following Equation (4)). Using the Einstein–Sutherland rela-
tion, we can compare this friction to independently measured
diffusion constants. For experiments, where infinite dilution
sedimentation and diffusion coefficients are extracted by a se-
quence of measurements, the Einstein–Sutherland equation is
recovered with 1% accuracy. In simulations, by accounting
for finite size effects, the Einstein–Sutherland relation holds
with a precision of <2%. This confirms the validity of the
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Table 2. Summary of diffusion coefficients and boundary conditions of the C60 obtained by various methods. Values derived using Equation (1) are
indicated by superscripts. All values except for the one obtained from the FTACF match. We find the averaged value of b̄ = 5.5 ± 0.2 (cf. Section 4.2) to
be consistent with all other presented data.

Method Source Diffusivity Rescaled diffusivity b from SES

[ 10−10 m2 s−1 ] [10−10 m2 s−1] [−]

FTACF Section SIII A4, Supporting Information 12.0 ± 0.1a) 17.4 ± 0.2a) 2.53 ± 0.04

VACF, MSD Section 2.2 5.7 ± 0.2 8.2 ± 0.3 5.3 ± 0.2

Pulling force Section 3.2 5.9 ± 0.1a) 8.5 ± 0.2a) 5.2 ± 0.2

AUC exp. Section SIII A7, Supporting Information 7.41 ± 0.04 7.41 ± 0.04 5.71 ± 0.06

AUC exp. Ref. [20] 7.59 7.59 5.54 ± 0.03b)

a)
This value is calculated using Equation (1);

b)
This value is derived in conjunction with the radius obtained from Ruelle et al.[19]

Einstein–Sutherland relation in Equation (1) at the nanoscale
for long observation times.

• Under the assumption of stick (b = 6), the hydrodynamic ra-
dius, as measured from diffusion data or from the response
to drag is systematically smaller than the radius calculated di-
rectly from the partial molecular volume associated with the
second virial coefficient. With this assumption, we can also ver-
ify the validity of the SES equation, which is found with 10%
–15% precision.

• Using the size of the particle obtained from the partial molec-
ular volume, the independently obtained friction coefficient
and viscosity, we deduce the boundary condition on the par-
ticle with Equation (2). Averaging over all experimental and
simulation data, we find small deviations from perfect stick
(b̄ = 5.5 ± 0.2). This is fully consistent with the Knudsen num-
ber for C60 in toluene.

• Using partial slip, all experimental and simulation data be-
come consistent with the Stokes–Einstein–Sutherland equa-
tion (Equation (3)). Acquired potential errors are within the
statistical uncertainties of 2% to 4% (cf. Table 2). This demon-
strates a quantitative agreement of simulation results and care-
fully acquired experimental data on the validity of the SES
equation, in a real system on the 1 nm length scale, and away
from the infinite mass limit of the solute, which was a decades
old problem.

In conclusion, our findings are instrumental to explain the
reason for small or no inconsistencies of the Stokes–Einstein–
Sutherland equation on the nanoscale,[17,18,20,78] despite violation
of basic premise of the Mori–Zwanzig equilibrium theory.[14,43,44]

As we show in our simulations and experiments, this agreement
stems from extracting friction from non-equilibrium drag on the
particle in simulations or the sedimentation experiments, which
is in essence probing the zero frequency linear response to a net
force. Notably, such extracted friction is through the Eisnstein–
Sutherland equation consistent with the equilibrium diffusion
coefficient of C60. The very basic nature of this finding suggests
that it is applicable very generally, and therefore could be system-
atically used to determine friction on the molecular scale. Recov-
ering the SES equation is, however, a little more delicate—for C60
it requires a small partial slip on the particle surface, as suggested
by a small but not negligible Knudsen number.[72,77] This find-
ing truly benefited from the choice of the solute and the solvent,
as this combination allows for the independent estimate of the

hydrodynamic radius. This is more challenging in systems with
flexible solutes and stronger solute-solvent interactions, and is a
task that will be addressed in future work.
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